
Financial Toolbox™

User’s Guide

R2012a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Financial Toolbox™ User’s Guide

© COPYRIGHT 1995–2012 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
October 1995 First printing
January 1998 Second printing Revised for Version 1.1
January 1999 Third printing Revised for Version 2.0 (Release 11)
November 2000 Fourth printing Revised for Version 2.1.2 (Release 12)
May 2003 Online only Revised for Version 2.3 (Release 13)
June 2004 Online only Revised for Version 2.4 (Release 14)
August 2004 Online only Revised for Version 2.4.1 (Release 14+)
September 2005 Fifth printing Revised for Version 2.5 (Release 14SP3)
March 2006 Online only Revised for Version 3.0 (Release 2006a)
September 2006 Sixth printing Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 3.5 (Release 2008b)
March 2009 Online only Revised for Version 3.6 (Release 2009a)
September 2009 Online only Revised for Version 3.7 (Release 2009b)
March 2010 Online only Revised for Version 3.7.1 (Release 2010a)
September 2010 Online only Revised for Version 3.8 (Release 2010b)
April 2011 Online only Revised for Version 4.0 (Release 2011a)
September 2011 Online only Revised for Version 4.1 (Release 2011b)
March 2012 Online only Revised for Version 4.2 (Release 2012a)

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

Expected Users . 1-3

Using Matrix Functions for Finance 1-4
Introduction . 1-4
Key Definitions . 1-4
Referencing Matrix Elements . 1-5
Transposing Matrices . 1-6

Matrix Algebra Refresher . 1-7
Introduction . 1-7
Adding and Subtracting Matrices . 1-7
Multiplying Matrices . 1-8
Dividing Matrices . 1-13
Solving Simultaneous Linear Equations 1-14
Operating Element by Element . 1-17

Function Input and Output Arguments 1-18
Input Arguments . 1-18
Output Arguments . 1-20
Interest Rate Arguments . 1-21

Performing Common Financial Tasks

2
Introduction . 2-2

Handling and Converting Dates . 2-4

v

Date Formats . 2-4
Date Conversions . 2-5
Current Date and Time . 2-8
Determining Dates . 2-9

Formatting Currency . 2-12

Charting Financial Data . 2-13
Introduction . 2-13
High-Low-Close Chart Example . 2-14
Bollinger Chart Example . 2-15

Analyzing and Computing Cash Flows 2-17
Introduction . 2-17
Interest Rates/Rates of Return . 2-17
Present or Future Values . 2-18
Depreciation . 2-19
Annuities . 2-19

Pricing and Computing Yields for Fixed-Income
Securities . 2-21
Introduction . 2-21
Fixed-Income Terminology . 2-21
Framework . 2-26
Default Parameter Values . 2-27
Coupon Date Calculations . 2-30
Yield Conventions . 2-31
Pricing Functions . 2-31
Yield Functions . 2-32
Fixed-Income Sensitivities . 2-33

Term Structure of Interest Rates . 2-36
Introduction . 2-36
Deriving an Implied Zero Curve . 2-37

Pricing and Analyzing Equity Derivatives 2-39
Introduction . 2-39
Sensitivity Measures . 2-39
Analysis Models . 2-40

vi Contents

Portfolio Analysis

3
Analyzing Portfolios . 3-2

Portfolio Optimization Functions 3-3

Portfolio Construction Examples 3-5
Introduction . 3-5
Efficient Frontier Example . 3-5

Portfolio Selection and Risk Aversion 3-8
Introduction . 3-8
Optimal Risky Portfolio Example . 3-9

Constraint Specification . 3-12
Example . 3-12
Linear Constraint Equations . 3-14
Specifying Additional Constraints . 3-17

Active Returns and Tracking Error Efficient
Frontier . 3-20

Portfolio Optimization Tools

4
Portfolio Optimization Theory . 4-2
Portfolio Optimization Problems . 4-2
Portfolio Problem Specification . 4-2
Return Proxy . 4-3
Risk Proxy . 4-5
Portfolio Set for Mean-Variance Portfolio Optimization . . . 4-5
Default Portfolio Problem . 4-12

Portfolio Object . 4-13
Portfolio Object Properties and Methods 4-13
Working with Portfolio Objects . 4-18

vii

Setting and Getting Properties . 4-19
Displaying Portfolio Objects . 4-20
Saving and Loading Portfolio Objects 4-20
Estimating Efficient Portfolios and Frontiers 4-20
Arrays of Portfolio Objects . 4-21
Subclassing Portfolio Objects . 4-21
Conventions for Representation of Data 4-22

Constructing the Portfolio Object 4-23
Syntax . 4-23
Portfolio Problem Sufficiency . 4-24
Constructor Examples . 4-24

Common Operations on the Portfolio Object 4-30
Naming a Portfolio Object . 4-30
Setting Up the Number of Assets in the Asset Universe . . 4-30
Setting Up a List of Asset Identifiers 4-31
Truncating and Padding Asset Lists 4-32
Setting Up an Initial or Current Portfolio 4-33

Working with Asset Returns and Moments of Asset
Returns . 4-37
Assignment Using the Portfolio Constructor 4-37
Assignment Using the setAssetMoments Method 4-39
Scalar Expansion of Arguments . 4-40
Estimating Asset Moments from Asset Prices or
Returns . 4-41

Estimating Asset Moments from Asset Returns or Prices
with Missing Data . 4-45

Estimating Asset Moments from Financial Time Series
Data . 4-47

Working with a Riskless Asset . 4-49
Working with Transaction Costs . 4-50

Working with Portfolio Constraints 4-53
Setting Default Constraints for Portfolio Weights 4-53
Working with Bound Constraints . 4-56
Working with Budget Constraints . 4-59
Working with Group Constraints . 4-60
Working with Group Ratio Constraints 4-64
Working with Linear Equality Constraints 4-67
Working with Linear Inequality Constraints 4-69

viii Contents

Working with Average Turnover Constraints 4-71
Working with One-Way Turnover Constraints 4-74

Validating the Portfolio Problem . 4-78
Validating a Portfolio Set . 4-78
Validating Portfolios . 4-80

Estimate Efficient Portfolios . 4-82
Obtaining Portfolios Along the Entire Efficient Frontier . . 4-82
Obtaining Endpoints of the Efficient Frontier 4-84
Obtaining Efficient Portfolios for Target Returns 4-86
Obtaining Efficient Portfolios for Target Risks 4-89
Obtaining an Efficient Portfolio that Maximizes the Sharpe
Ratio . 4-91

Choosing and Controlling the Solver 4-93

Estimate Efficient Frontiers . 4-96
Obtaining Portfolio Risks and Returns 4-96
Plotting the Efficient Frontier . 4-98

Post-Processing . 4-103
Setting Up Tradable Portfolios . 4-103
Troubleshooting Portfolio Optimization Results 4-105

Asset Allocation Example . 4-108
Defining the Portfolio Problem . 4-108
Simulating Asset Prices . 4-109
Setting Up the Portfolio Object . 4-111
Validating the Portfolio Problem . 4-113
Plotting the Efficient Frontier . 4-113
Evaluating Gross vs. Net Portfolio Returns 4-114
Analyzing Descriptive Properties of the Portfolio
Structures . 4-115

Obtaining a Portfolio at the Specified Return Level on the
Efficient Frontier . 4-116

Obtaining a Portfolio at the Specified Risk Levels on the
Efficient Frontier . 4-117

Displaying the Final Results . 4-120

ix

Investment Performance Metrics

5
Overview of Performance Metrics 5-2
Performance Metrics Types . 5-2
Performance Metrics Example . 5-3

Using the Sharpe Ratio . 5-6
Introduction . 5-6
Sharpe Ratio Example . 5-6

Using the Information Ratio . 5-8
Introduction . 5-8
Information Ratio Example . 5-8

Tracking Error . 5-10
Introduction . 5-10
Tracking Error Example . 5-10

Risk-Adjusted Return . 5-11
Introduction . 5-11
Risk-Adjusted Return Example . 5-11

Sample and Expected Lower Partial Moments 5-14
Introduction . 5-14
Sample Lower Partial Moments Example 5-14
Expected Lower Partial Moments Example 5-15

Maximum and Expected Maximum Drawdown 5-17
Introduction . 5-17
Maximum Drawdown Example . 5-17
Expected Maximum Drawdown Example 5-21

Credit Risk Analysis

6
Credit Rating . 6-2

x Contents

Introduction . 6-2
Example . 6-2

Estimation of Transition Probabilities 6-3
Introduction . 6-3
Estimate Transition Probabilities . 6-4
Estimate Transition Probabilities for Different Rating
Scales . 6-7

Estimate Point-in-Time and Through-the-Cycle
Probabilities . 6-8

Estimate t-Year Default Probabilities 6-12
Estimate Bootstrap Confidence Intervals 6-13
Group Credit Ratings . 6-15
Work with Nonsquare Matrices . 6-17
Remove Outliers . 6-19
Estimate Probabilities for Different Segments 6-20
Work with Large Datasets . 6-21

Forecast Corporate Default Rates 6-25
Introduction . 6-25
Example . 6-25

Credit Quality Thresholds . 6-26
Introduction . 6-26
Compute Credit Quality Thresholds 6-26
Visualize Credit Quality Thresholds 6-28

Regression with Missing Data

7
Multivariate Normal Regression . 7-2
Introduction . 7-2
Multivariate Normal Linear Regression 7-3
Maximum Likelihood Estimation . 7-4
Special Case of a Multiple Linear Regression Model 7-5
Least-Squares Regression . 7-5
Mean and Covariance Estimation . 7-5
Convergence . 7-6
Fisher Information . 7-6

xi

Statistical Tests . 7-7

Maximum Likelihood Estimation with Missing Data . . 7-9
Introduction . 7-9
ECM Algorithm . 7-10
Standard Errors . 7-10
Data Augmentation . 7-11
Multivariate Normal Regression Functions 7-12
Multivariate Normal Regression Without Missing Data . . 7-14
Multivariate Normal Regression With Missing Data 7-14
Least-Squares Regression with Missing Data 7-15
Multivariate Normal Parameter Estimation with Missing
Data . 7-15

Support Functions . 7-16

Multivariate Normal Regression Types 7-17
Regressions . 7-17
Multivariate Normal Regression . 7-17
Least-Squares Regression . 7-18
Covariance-Weighted Least Squares 7-19
Feasible Generalized Least Squares 7-20
Seemingly Unrelated Regression . 7-21
Mean and Covariance Parameter Estimation 7-23
Troubleshooting Multivariate Normal Regression 7-23
Slow Convergence . 7-24
Nonrandom Residuals . 7-24
Nonconvergence . 7-25
Example of Portfolios with Missing Data 7-26

Valuation with Missing Data . 7-34
Introduction . 7-34
Capital Asset Pricing Model . 7-34
Estimation of the CAPM . 7-35
Estimation with Missing Data . 7-36
Estimation of Some Technology Stock Betas 7-36
Grouped Estimation of Some Technology Stock Betas 7-39
References . 7-42

xii Contents

Solving Sample Problems

8
Introduction . 8-2

Common Problems in Finance . 8-3
Sensitivity of Bond Prices to Changes in Interest Rates . . 8-3
Constructing a Bond Portfolio to Hedge Against Duration
and Convexity . 8-6

Sensitivity of Bond Prices to Parallel Shifts in the Yield
Curve . 8-9

Sensitivity of Bond Prices to Nonparallel Shifts in the Yield
Curve . 8-12

Constructing Greek-Neutral Portfolios of European Stock
Options . 8-14

Term Structure Analysis and Interest Rate Swap
Pricing . 8-18

Producing Graphics with the Toolbox 8-21
Introduction . 8-21
Plotting an Efficient Frontier . 8-21
Plotting Sensitivities of an Option . 8-24
Plotting Sensitivities of a Portfolio of Options 8-26

Financial Time Series Analysis

9
Analyzing Financial Time Series . 9-2

Creating Financial Time Series Objects 9-3
Introduction . 9-3
Using the Constructor . 9-3
Transforming a Text File . 9-14

Visualizing Financial Time Series Objects 9-18
Introduction . 9-18
Using chartfts . 9-18
Zoom Tool . 9-21

xiii

Combine Axes Tool . 9-24

Using Financial Time Series

10
Introduction . 10-2

Working with Financial Time Series Objects 10-3
Introduction . 10-3
Financial Time Series Object Structure 10-3
Data Extraction . 10-4
Object-to-Matrix Conversion . 10-6
Indexing a Financial Time Series Object 10-8
Financial Time Series Operations . 10-15
Data Transformation and Frequency Conversion 10-19

Financial Time Series Example . 10-25
Overview . 10-25
Loading the Data . 10-26
Create Financial Time Series Objects 10-26
Create Closing Prices Adjustment Series 10-27
Adjust Closing Prices and Make Them Spot Prices 10-28
Create Return Series . 10-28
Regress Return Series Against Metric Data 10-28
Plot the Results . 10-29
Calculate the Dividend Rate . 10-30

Financial Time Series Tool (FTSTool)

11
What Is the Financial Time Series Tool? 11-2

Getting Started with FTSTool . 11-4

Loading Data with FTSTool . 11-5

xiv Contents

Overview . 11-5
Obtaining External Data . 11-5
Obtaining Internal Data . 11-7
Viewing the MATLAB Workspace . 11-8

Using FTSTool for Supported Tasks 11-10
Creating a Financial Time Series Object 11-10
Merging Financial Time Series Objects 11-11
Converting a Financial Time Series Object to a MATLAB
Double-Precision Matrix . 11-12

Plotting the Output in Several Formats 11-12
Viewing Data for a Financial Time Series Object in the
Data Table . 11-13

Modifying Data for a Financial Time Series Object in the
Data Table . 11-15

Viewing and Modifying the Properties for a FINTS
Object . 11-17

Using FTSTool with Other Time Series GUIs 11-18

Financial Time Series Graphical User Interface

12
Introduction . 12-2
Main Window . 12-2

Using the Financial Time Series GUI 12-7
Getting Started . 12-7
Data Menu . 12-9
Analysis Menu . 12-13
Graphs Menu . 12-15
Saving Time Series Data . 12-19

xv

Trading Date Utilities

13
Trading Calendars Graphical User Interface 13-2

UICalendar Graphical User Interface 13-4
Using UICalendar in Standalone Mode 13-4
Using UICalendar with an Application 13-5

Technical Analysis

14
Technical Indicators . 14-2

Examples . 14-4
Overview . 14-4
Moving Average Convergence/Divergence (MACD) 14-4
Williams %R . 14-6
Relative Strength Index (RSI) . 14-7
Relative Strength Index (RSI)) . 14-8

Function Reference

15
Dates . 15-3
Current Time and Date . 15-3
Date and Time Components . 15-3
Date Conversion . 15-4
Financial Dates . 15-4
Coupon Bond Dates . 15-6

Currency and Price . 15-7

Financial Data Charts . 15-8

xvi Contents

Cash Flows . 15-9
Annuities . 15-9
Amortization and Depreciation . 15-9
Present Value . 15-10
Future Value . 15-10
Payment Calculations . 15-10
Rates of Return . 15-10
Cash Flow Sensitivities . 15-11

Fixed-Income Securities . 15-12
Accrued Interest . 15-12
Prices . 15-12
Term Structure of Interest Rates . 15-12
Yields . 15-13
Spreads . 15-13
Interest Rate Sensitivities . 15-14

Portfolio Optimization Objects . 15-15
Portfolio Objects . 15-15
Get Methods . 15-15
Set Methods . 15-16
Add Methods . 15-17
Preprocessing Methods . 15-17
Efficient Portfolio Estimation Methods 15-18
Efficient Frontier Methods . 15-18
Utility Methods . 15-18

Portfolio Analysis . 15-19
Basic Portfolio Optimization . 15-19
Performance Metrics . 15-20
Portfolio Utilities . 15-20

Financial Statistics . 15-22
Expectation Conditional Maximization 15-22
Multivariate Normal Regression . 15-23
Expectation Conditional Maximization – Multivariate
Normal Regression . 15-23

Expectation Conditional Maximization – Least-Squares
Regression . 15-24

Seemingly Unrelated Regression . 15-24

Derivatives . 15-25

xvii

Option Valuation and Sensitivity . 15-25

Credit Risk Utilities . 15-26
Estimation of Transition Probabilities 15-26

GARCH Processes . 15-27
Univariate GARCH Processes . 15-27

Financial Time Series Object and File Construction . . 15-28

Financial Time Series Arithmetic 15-29

Financial Time Series Math . 15-30

Financial Time Series Descriptive Statistics 15-31

Financial Time Series Utility . 15-32

Financial Time Series Data Transformation 15-33

Financial Time Series Indicator . 15-34

Financial Time Series GUI . 15-36

Financial Time Series Tool . 15-37

xviii Contents

Class Reference

16

Functions — Alphabetical List

17

Bibliography

A
Bond Pricing and Yields . A-2

Term Structure of Interest Rates . A-3

Derivatives Pricing and Yields . A-4

Portfolio Analysis . A-5

Investment Performance Metrics A-6

Financial Statistics . A-8

Standard References . A-9

Credit Risk Analysis . A-11

Portfolio Optimization . A-12

xix

Examples

B
Bond Examples . B-2

Portfolio Examples . B-3

Portfolio Object Examples . B-4

Estimation of Transition Probabilities B-5

Estimating Transition Probabilities for Different
Rating Scales . B-6

Financial Statistics . B-7

Sample Programs . B-8

Graphics Programs . B-9

Charting Financial Time Series . B-10

Indexing Financial Time Series . B-11

Financial Time Series Demonstration Program B-12

Financial Time Series Graphical User Interface
Examples . B-13

Technical Analysis . B-14

xx Contents

Glossary

Index

xxi

xxii Contents

1

Getting Started

• “Product Description” on page 1-2

• “Expected Users” on page 1-3

• “Using Matrix Functions for Finance” on page 1-4

• “Matrix Algebra Refresher” on page 1-7

• “Function Input and Output Arguments” on page 1-18

1 Getting Started

Product Description
Analyze financial data and develop financial algorithms

Financial Toolbox™ provides functions for mathematical modeling and
statistical analysis of financial data. You can optimize portfolios of financial
instruments, optionally taking into account turnover and transaction costs.
The toolbox enables you to estimate risk, analyze interest rate levels, price
equity and interest rate derivatives, and measure investment performance.
Time series analysis capabilities let you perform transformations or
regressions with missing data and convert between different trading
calendars and day-count conventions.

Key Features

• Asset allocation, cash flow analysis, object-oriented portfolio optimization,
and risk analysis

• Basic SIA-compliant fixed-income security analysis

• Basic Black-Scholes, Black, and binomial option pricing

• Financial time series, date math, and calendar math

• Basic GARCH estimation, simulation, and forecasting

• Regression and estimation with missing data

• Technical indicators and financial charts

1-2

Expected Users

Expected Users
In general, this guide assumes experience working with financial derivatives
and some familiarity with the underlying models.

In designing Financial Toolbox documentation, we assume that your title is
like one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Asset allocator

• Financial engineer

• Trader

• Student, professor, or other academic

We also assume your background, education, training, and responsibilities
match some aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Focus on quantitative approaches to financial problems

1-3

1 Getting Started

Using Matrix Functions for Finance

In this section...

“Introduction” on page 1-4

“Key Definitions” on page 1-4

“Referencing Matrix Elements” on page 1-5

“Transposing Matrices” on page 1-6

Introduction
Many financial analysis procedures involve sets of numbers; for example, a
portfolio of securities at various prices and yields. Matrices, matrix functions,
and matrix algebra are the most efficient ways to analyze sets of numbers
and their relationships. Spreadsheets focus on individual cells and the
relationships between cells. While you can think of a set of spreadsheet cells (a
range of rows and columns) as a matrix, a matrix-oriented tool like MATLAB®

software manipulates sets of numbers more quickly, easily, and naturally.

Key Definitions

Matrix. A rectangular array of numeric or algebraic quantities subject to
mathematical operations; the regular formation of elements into rows and
columns. Described as a “m-by-n” matrix, with m the number of rows and
n the number of columns. The description is always “row-by-column.” For
example, here is a 2-by-3 matrix of two bonds (the rows) with different par
values, coupon rates, and coupon payment frequencies per year (the columns)
entered using MATLAB notation:

Bonds = [1000 0.06 2
500 0.055 4]

Vector. A matrix with only one row or column. Described as a “1-by-n” or
“m-by-1” matrix. The description is always “row-by-column.” For example,
here is a 1-by-4 vector of cash flows in MATLAB notation:

Cash = [1500 4470 5280 -1299]

1-4

Using Matrix Functions for Finance

Scalar. A 1-by-1 matrix; that is, a single number.

Referencing Matrix Elements
To reference specific matrix elements, use (row, column) notation. For
example:

Bonds(1,2)

ans =

0.06

Cash(3)

ans =

5280.00

You can enlarge matrices using small matrices or vectors as elements. For
example,

AddBond = [1000 0.065 2];
Bonds = [Bonds; AddBond]

adds another row to the matrix and creates

Bonds =

1000 0.06 2
500 0.055 4

1000 0.065 2

Likewise,

Prices = [987.50
475.00
995.00]

Bonds = [Prices, Bonds]

1-5

1 Getting Started

adds another column and creates

Bonds =

987.50 1000 0.06 2
475.00 500 0.055 4
995.00 1000 0.065 2

Finally, the colon (:) is important in generating and referencing matrix
elements. For example, to reference the par value, coupon rate, and coupon
frequency of the second bond:

BondItems = Bonds(2, 2:4)

BondItems =

500.00 0.055 4

Transposing Matrices
Sometimes matrices are in the wrong configuration for an operation. In
MATLAB, the apostrophe or prime character (') transposes a matrix: columns
become rows, rows become columns. For example,

Cash = [1500 4470 5280 -1299]'

produces

Cash =

1500
4470
5280

-1299

1-6

Matrix Algebra Refresher

Matrix Algebra Refresher

In this section...

“Introduction” on page 1-7

“Adding and Subtracting Matrices” on page 1-7

“Multiplying Matrices” on page 1-8

“Dividing Matrices” on page 1-13

“Solving Simultaneous Linear Equations” on page 1-14

“Operating Element by Element” on page 1-17

Introduction
The explanations in the sections that follow should help refresh your skills for
using matrix algebra and using MATLAB functions.

In addition, William Sharpe’s Macro-Investment Analysis also provides an
excellent explanation of matrix algebra operations using MATLAB. It is
available on the Web at:

http://www.stanford.edu/~wfsharpe/mia/mia.htm

Tip When you are setting up a problem, it helps to “talk through” the units
and dimensions associated with each input and output matrix. In the
example under “Multiplying Matrices” on page 1-8, one input matrix has
“five days’ closing prices for three stocks,” the other input matrix has “shares
of three stocks in two portfolios,” and the output matrix therefore has “five
days’ closing values for two portfolios.” It also helps to name variables using
descriptive terms.

Adding and Subtracting Matrices
Matrix addition and subtraction operate element-by-element. The two input
matrices must have the same dimensions. The result is a new matrix of
the same dimensions where each element is the sum or difference of each
corresponding input element. For example, consider combining portfolios of

1-7

http://www.stanford.edu/~wfsharpe/mia/mia.htm

1 Getting Started

different quantities of the same stocks (“shares of stocks A, B, and C [the
rows] in portfolios P and Q [the columns] plus shares of A, B, and C in
portfolios R and S”).

Portfolios_PQ = [100 200
500 400
300 150];

Portfolios_RS = [175 125
200 200
100 500];

NewPortfolios = Portfolios_PQ + Portfolios_RS

NewPortfolios =

275 325
700 600
400 650

Adding or subtracting a scalar and a matrix is allowed and also operates
element-by-element.

SmallerPortf = NewPortfolios-10

SmallerPortf =
265.00 315.00
690.00 590.00
390.00 640.00

Multiplying Matrices
Matrix multiplication does not operate element-by-element. It operates
according to the rules of linear algebra. In multiplying matrices, it helps to
remember this key rule: the inner dimensions must be the same. That is, if
the first matrix is m-by-3, the second must be 3-by-n. The resulting matrix is
m-by-n. It also helps to “talk through” the units of each matrix, as mentioned
in “Using Matrix Functions for Finance” on page 1-4.

Matrix multiplication also is not commutative; that is, it is not independent of
order. A*B does not equal B*A. The dimension rule illustrates this property.

1-8

Matrix Algebra Refresher

If A is 1-by-3 matrix and B is 3-by-1 matrix, A*B yields a scalar (1-by-1)
matrix but B*A yields a 3-by-3 matrix.

Multiplying Vectors
Vector multiplication follows the same rules and helps illustrate the
principles. For example, a stock portfolio has three different stocks and their
closing prices today are:

ClosePrices = [42.5 15 78.875]

The portfolio contains these numbers of shares of each stock.

NumShares = [100
500
300]

To find the value of the portfolio, multiply the vectors

PortfValue = ClosePrices * NumShares

which yields:

PortfValue =

3.5413e+004

The vectors are 1-by-3 and 3-by-1; the resulting vector is 1-by-1, a scalar.
Multiplying these vectors thus means multiplying each closing price by its
respective number of shares and summing the result.

To illustrate order dependence, switch the order of the vectors

Values = NumShares * ClosePrices

Values =

1.0e+004 *

0.4250 0.1500 0.7887
2.1250 0.7500 3.9438

1-9

1 Getting Started

1.2750 0.4500 2.3663

which shows the closing values of 100, 500, and 300 shares of each stock, not
the portfolio value, and meaningless for this example.

Computing Dot Products of Vectors
In matrix algebra, if X and Y are vectors of the same length

Y y y y

X x x x
n

n

= []
= []

1 2

1 2

, , ,

, , ,

then the dot product

X Y x y x y x yn n= + + +1 1 2 2

is the scalar product of the two vectors. It is an exception to the commutative
rule. To compute the dot product in MATLAB, use sum(X .* Y) or sum(Y .*
X). Just be sure the two vectors have the same dimensions. To illustrate, use
the previous vectors.

Value = sum(NumShares .* ClosePrices')

Value =

3.5413e+004

Value = sum(ClosePrices .* NumShares')

Value =

3.5413e+004

As expected, the value in these cases matches the PortfValue computed
previously.

1-10

Matrix Algebra Refresher

Multiplying Vectors and Matrices
Multiplying vectors and matrices follows the matrix multiplication rules and
process. For example, a portfolio matrix contains closing prices for a week. A
second matrix (vector) contains the stock quantities in the portfolio.

WeekClosePr = [42.5 15 78.875
42.125 15.5 78.75
42.125 15.125 79
42.625 15.25 78.875
43 15.25 78.625];

PortQuan = [100
500
300];

To see the closing portfolio value for each day, simply multiply

WeekPortValue = WeekClosePr * PortQuan

WeekPortValue =

1.0e+004 *

3.5412
3.5587
3.5475
3.5550
3.5513

The prices matrix is 5-by-3, the quantity matrix (vector) is 3-by-1, so the
resulting matrix (vector) is 5-by-1.

Multiplying Two Matrices
Matrix multiplication also follows the rules of matrix algebra. In matrix
algebra notation, if A is an m-by-n matrix and B is an n-by-p matrix

1-11

1 Getting Started

A

a a a

a a a

a a a

B

n

i i in

m m mn

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

11 12 1

1 2

1 2

, ==

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

b b b
b b b

b b b

j p

j p

n nj np

11 1 1

21 2 2

1

then C = A*B is an m-by-p matrix; and the element cij in the ith row and
jth column of C is

c a b a b a bij i j i in nj= + + +1 1 2 12 .

To illustrate, assume there are two portfolios of the same three stocks above
but with different quantities.

Portfolios = [100 200
500 400
300 150];

Multiplying the 5-by-3 week’s closing prices matrix by the 3-by-2 portfolios
matrix yields a 5-by-2 matrix showing each day’s closing value for both
portfolios.

PortfolioValues = WeekClosePr * Portfolios

PortfolioValues =

1.0e+004 *

3.5412 2.6331
3.5587 2.6437
3.5475 2.6325
3.5550 2.6456
3.5513 2.6494

Monday’s values result from multiplying each Monday closing price by its
respective number of shares and summing the result for the first portfolio,
then doing the same for the second portfolio. Tuesday’s values result from
multiplying each Tuesday closing price by its respective number of shares and

1-12

Matrix Algebra Refresher

summing the result for the first portfolio, then doing the same for the second
portfolio. And so on through the rest of the week. With one simple command,
MATLAB quickly performs many calculations.

Multiplying a Matrix by a Scalar
Multiplying a matrix by a scalar is an exception to the dimension and
commutative rules. It just operates element-by-element.

Portfolios = [100 200
500 400
300 150];

DoublePort = Portfolios * 2

DoublePort =
200 400

1000 800
600 300

Dividing Matrices
Matrix division is useful primarily for solving equations, and especially for
solving simultaneous linear equations (see “Solving Simultaneous Linear
Equations” on page 1-14). For example, you want to solve for X in A*X = B.

In ordinary algebra, you would divide both sides of the equation by A, and X
would equal B/A. However, since matrix algebra is not commutative (A*X
≠ X*A), different processes apply. In formal matrix algebra, the solution
involves matrix inversion. MATLAB, however, simplifies the process by
providing two matrix division symbols, left and right (\ and /). In general,

X = A\B solves for X in A*X = B and

X = B/A solves for X in X*A = B.

In general, matrix A must be a nonsingular square matrix; that is, it must
be invertible and it must have the same number of rows and columns.
(Generally, a matrix is invertible if the matrix times its inverse equals the
identity matrix. To understand the theory and proofs, consult a textbook on
linear algebra such as Elementary Linear Algebra by Hill listed in Appendix

1-13

1 Getting Started

A, “Bibliography”.) MATLAB gives a warning message if the matrix is
singular or nearly so.

Solving Simultaneous Linear Equations
Matrix division is especially useful in solving simultaneous linear equations.
Consider this problem: Given two portfolios of mortgage-based instruments,
each with certain yields depending on the prime rate, how do you weight the
portfolios to achieve certain annual cash flows? The answer involves solving
two linear equations.

A linear equation is any equation of the form

a x a y b1 2+ = ,

where a1, a2, and b are constants (with a1 and a2 not both 0), and x and y are
variables. (It’s a linear equation because it describes a line in the xy-plane. For
example, the equation 2x + y = 8 describes a line such that if x = 2, then y = 4.)

A system of linear equations is a set of linear equations that you usually
want to solve at the same time; that is, simultaneously. A basic principle for
exact answers in solving simultaneous linear equations requires that there
be as many equations as there are unknowns. To get exact answers for x
and y, there must be two equations. For example, to solve for x and y in the
system of linear equations

2 13
3 18

x y
x y

+ =
− = − ,

there must be two equations, which there are. Matrix algebra represents this
system as an equation involving three matrices: A for the left-side constants,
X for the variables, and B for the right-side constants

A X
x
y

B=
−

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

2 1
1 3

13
18

, , ,

where A*X = B.

1-14

Matrix Algebra Refresher

Solving the system simultaneously means solving for X. Using MATLAB,

A = [2 1
1 -3];

B = [13
-18];

X = A \ B

solves for X in A * X = B.

X = [3 7]

So x = 3 and y = 7 in this example. In general, you can use matrix algebra to
solve any system of linear equations such as

a x a x a x b

a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ +

++ =a x bmn n m

by representing them as matrices

A

a a a
a a a

a a a

X

x
x

n

n

m m mn

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

11 12 1

21 22 2

1 2

1

, 22

1

2

x

B

b
b

bn m

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

and solving for X in A*X = B.

To illustrate, consider this situation. There are two portfolios of
mortgage-based instruments, M1 and M2. They have current annual cash
payments of $100 and $70 per unit, respectively, based on today’s prime rate.
If the prime rate moves down one percentage point, their payments would
be $80 and $40. An investor holds 10 units of M1 and 20 units of M2. The
investor’s receipts equal cash payments times units, or R = C * U, for each
prime-rate scenario. As word equations:

1-15

1 Getting Started

M1 M2

Prime flat: $100 * 10 units + $70 * 20 units = $2400
receipts

Prime down: $80 * 10 units + $40 * 20 units = $1600
receipts

As MATLAB matrices:

Cash = [100 70
80 40];

Units = [10
20];

Receipts = Cash * Units

Receipts =

2400
1600

Now the investor asks this question: Given these two portfolios and their
characteristics, how many units of each should I hold to receive $7000 if the
prime rate stays flat and $5000 if the prime drops one percentage point? Find
the answer by solving two linear equations.

M1 M2

Prime flat: $100 * x units + $70 * y units = $7000
receipts

Prime down: $80 * x units + $40 * y units = $5000
receipts

In other words, solve for U (units) in the equation R (receipts) = C (cash) * U
(units). Using MATLAB left division

Cash = [100 70
80 40];

1-16

Matrix Algebra Refresher

Receipts = [7000
5000];

Units = Cash \ Receipts
Units =

43.7500
37.5000

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio
M2 to achieve the annual receipts desired.

Operating Element by Element
Finally, element-by-element arithmetic operations are called array operations.
To indicate a MATLAB array operation, precede the operator with a period
(.). Addition and subtraction, and matrix multiplication and division by a
scalar, are already array operations so no period is necessary. When using
array operations on two matrices, the dimensions of the matrices must be the
same. For example, given vectors of stock dividends and closing prices

Dividends = [1.90 0.40 1.56 4.50];
Prices = [25.625 17.75 26.125 60.50];

Yields = Dividends ./ Prices

Yields =

0.0741 0.0225 0.0597 0.0744

1-17

1 Getting Started

Function Input and Output Arguments

In this section...

“Input Arguments” on page 1-18

“Output Arguments” on page 1-20

“Interest Rate Arguments” on page 1-21

Input Arguments

Matrix Input
MATLAB software was designed to be a large-scale array (vector or
matrix) processor. In addition to its linear algebra applications, the
general array-based processing facility can perform repeated operations on
collections of data. When MATLAB code is written to operate simultaneously
on collections of data stored in arrays, the code is said to be vectorized.
Vectorized code is not only clean and concise, but is also efficiently processed
by the underlying MATLAB engine.

Because MATLAB can process vectors and matrices easily, most Financial
Toolbox functions allow vector or matrix input arguments, rather than just
single (scalar) values. For example, the irr function computes the internal
rate of return of a cash flow stream. It accepts a vector of cash flows and
returns a scalar-valued internal rate of return. However, it also accepts a
matrix of cash flow streams, a column in the matrix representing a different
cash flow stream. In this case, irr returns a vector of internal rates of return,
each entry in the vector corresponding to a column of the input matrix. Many
other toolbox functions work similarly.

As an example, suppose you make an initial investment of $100, from which
you then receive by a series of annual cash receipts of $10, $20, $30, $40, and
$50. This cash flow stream may be stored in a vector

CashFlows = [-100 10 20 30 40 50]'

which MATLAB displays as

CashFlows =

1-18

Function Input and Output Arguments

-100
10
20
30
40
50

The irr function can compute the internal rate of return of this stream.

Rate = irr(CashFlows)

The internal rate of return of this investment is

Rate =

0.1201

or 12.01%.

In this case, a single cash flow stream (written as an input vector) produces a
scalar output – the internal rate of return of the investment.

Extending this example, if you process a matrix of identical cash flow streams

Rate = irr([CashFlows CashFlows CashFlows])

you should expect to see identical internal rates of return for each of the three
investments.

Rate =

0.1201 0.1201 0.1201

This simple example illustrates the power of vectorized programming. The
example shows how to collect data into a matrix and then use a toolbox
function to compute answers for the entire collection. This feature can be
useful in portfolio management, for example, where you might want to
organize multiple assets into a single collection. Place data for each asset in
a different column or row of a matrix, then pass the matrix to a Financial
Toolbox function. MATLAB performs the same computation on all of the
assets at once.

1-19

1 Getting Started

Matrices of String Input
Enter MATLAB strings surrounded by single quotes ('string').

Strings are stored as character arrays, one ASCII character per element.
Thus, the date string

DateString = '9/16/2001'

is actually a 1-by-9 vector. Strings making up the rows of a matrix or vector
all must have the same length. To enter several date strings, therefore, use
a column vector and be sure all strings are the same length. Fill in with
spaces or zeros. For example, to create a vector of dates corresponding to
irregular cash flows

DateFields = ['01/12/2001'
'02/14/2001'
'03/03/2001'
'06/14/2001'
'12/01/2001'];

DateFields actually becomes a 5-by-10 character array.

Don’t mix numbers and strings in a matrix. If you do, MATLAB treats all
entries as characters. For example,

Item = [83 90 99 '14-Sep-1999']

becomes a 1-by-14 character array, not a 1-by-4 vector, and it contains

Item =

SZc14-Sep-1999

Output Arguments
Some functions return no arguments, some return just one, and some return
multiple arguments. Functions that return multiple arguments use the
syntax

[A, B, C] = function(variables...)

1-20

Function Input and Output Arguments

to return arguments A, B, and C. If you omit all but one, the function returns
the first argument. Thus, for this example if you use the syntax

X = function(variables...)

function returns a value for A, but not for B or C.

Some functions that return vectors accept only scalars as arguments. Why
could such functions not accept vectors as arguments and return matrices,
where each column in the output matrix corresponds to an entry in the input
vector? The answer is that the output vectors can be variable length and
thus will not fit in a matrix without some convention to indicate that the
shorter columns are missing data.

Functions that require asset life as an input, and return values corresponding
to different periods over that life, cannot generally handle vectors or matrices
as input arguments. Those functions are:

amortize Amortization

depfixdb Fixed declining-balance depreciation

depgendb General declining-balance depreciation

depsoyd Sum of years’ digits depreciation

For example, suppose you have a collection of assets such as automobiles
and you want to compute the depreciation schedules for them. The function
depfixdb computes a stream of declining-balance depreciation values for an
asset. You might want to set up a vector where each entry is the initial value
of each asset. depfixdb also needs the lifetime of an asset. If you were to set
up such a collection of automobiles as an input vector, and the lifetimes of
those automobiles varied, the resulting depreciation streams would differ in
length according to the life of each automobile, and the output column lengths
would vary. A matrix must have the same number of rows in each column.

Interest Rate Arguments
One common argument, both as input and output, is interest rate. All
Financial Toolbox functions expect and return interest rates as decimal
fractions. Thus an interest rate of 9.5% is indicated as 0.095.

1-21

1 Getting Started

1-22

2

Performing Common
Financial Tasks

• “Introduction” on page 2-2

• “Handling and Converting Dates” on page 2-4

• “Formatting Currency” on page 2-12

• “Charting Financial Data” on page 2-13

• “Analyzing and Computing Cash Flows” on page 2-17

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

• “Term Structure of Interest Rates” on page 2-36

• “Pricing and Analyzing Equity Derivatives” on page 2-39

2 Performing Common Financial Tasks

Introduction
Financial Toolbox software contains functions that perform many common
financial tasks, including:

• “Handling and Converting Dates” on page 2-4

Calendar functions convert dates among different formats (including
Excel® formats), determine future or past dates, find dates of holidays and
business days, compute time differences between dates, find coupon dates
and coupon periods for coupon bonds, and compute time periods based on
360-, 365-, or 366-day years.

• “Formatting Currency” on page 2-12

The toolbox includes functions for handling decimal values in bank
(currency) formats and as fractional prices.

• “Charting Financial Data” on page 2-13

Charting functions produce a variety of financial charts including Bollinger
bands, high-low-close charts, candlestick plots, point and figure plots, and
moving-average plots.

• “Analyzing and Computing Cash Flows” on page 2-17

Cash-flow evaluation and financial accounting functions compute interest
rates, rates of return, payments associated with loans and annuities,
future and present values, depreciation, and other standard accounting
calculations associated with cash-flow streams.

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Securities Industry Association (SIA) compliant fixed-income functions
compute prices, yields, accrued interest, and sensitivities for securities
such as bonds, zero-coupon bonds, and Treasury bills. They handle odd
first and last periods in price/yield calculations, compute accrued interest
and discount rates, and calculate convexity and duration. Another set of
functions analyzes term structure of interest rates, including pricing bonds
from yield curves and bootstrapping yield curves from market prices.

• “Pricing and Analyzing Equity Derivatives” on page 2-39

Derivatives analysis functions compute prices, yields, and sensitivities for
derivative securities. They deal with both European and American options.

2-2

Introduction

Black-Scholes functions work with European options. They compute
delta, gamma, lambda, rho, theta, and vega, as well as values of call and
put options.

Binomial functions work with American options, computing put and call
prices.

• “Analyzing Portfolios” on page 3-2

Portfolio analysis functions provide basic utilities to compute variances and
covariance of portfolios, find combinations to minimize variance, compute
Markowitz efficient frontiers, and calculate combined rates of return.

• Modeling volatility in time series.

Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) functions model the volatility of univariate economic time series.
(Econometrics Toolbox™ software provides a more comprehensive and
integrated computing environment. For information, see the Econometrics
Toolbox User’s Guide documentation or the financial products Web page at
http://www.mathworks.com/products/finprod.)

2-3

http://www.mathworks.com/products/finprod

2 Performing Common Financial Tasks

Handling and Converting Dates

In this section...

“Date Formats” on page 2-4

“Date Conversions” on page 2-5

“Current Date and Time” on page 2-8

“Determining Dates” on page 2-9

Date Formats
Since virtually all financial data is dated or derives from a time series,
financial functions must have extensive date-handling capabilities. You most
often work with date strings (14-Sep-1999) when dealing with dates. Financial
Toolbox software works internally with serial date numbers (for example,
730377). A serial date number represents a calendar date as the number of
days that has passed since a fixed base date. In MATLAB software, serial date
number 1 is January 1, 0000 A.D. MATLAB also uses serial time to represent
fractions of days beginning at midnight; for example, 6 p.m. equals 0.75 serial
days. So 6:00 p.m. on 14-Sep-1999, in MATLAB, is date number 730377.75.

Note If you specify a two-digit year, MATLAB assumes that the year lies
within the 100-year period centered about the current year. See the function
datenum for specific information. MATLAB internal date handling and
calculations generate no ambiguous values. However, whenever possible,
programmers should use serial date numbers or date strings containing
four-digit years.

Many toolbox functions that require dates accept either date strings or
serial date numbers. If you are dealing with a few dates at the MATLAB
command-line level, date strings are more convenient. If you are using toolbox
functions on large numbers of dates, as in analyzing large portfolios or cash
flows, performance improves if you use date numbers.

The Financial Toolbox software provides functions that convert date strings
to serial date numbers, and vice versa.

2-4

Handling and Converting Dates

Date Conversions
Functions that convert between date formats are

datedisp Displays a numeric matrix with date entries formatted
as date strings

datenum Converts a date string to a serial date number

datestr Converts a serial date number to a date string

m2xdate Converts MATLAB serial date number to Excel serial
date number

x2mdate Converts Excel serial date number to MATLAB serial
date number

Another function, datevec, converts a date number or date string to a date
vector whose elements are [Year Month Day Hour Minute Second]. Date
vectors are mostly an internal format for some MATLAB functions; you would
not often use them in financial calculations.

Input Conversions
The datenum function is important for using Financial Toolbox software
efficiently. datenum takes an input string in any of several formats, with
'dd-mmm-yyyy', 'mm/dd/yyyy' or 'dd-mmm-yyyy, hh:mm:ss.ss' most
common. The input string can have up to six fields formed by letters and
numbers separated by any other characters:

• The day field is an integer from 1 through 31.

• The month field is either an integer from 1 through 12 or an alphabetical
string with at least three characters.

• The year field is a nonnegative integer: if only two numbers are specified,
then the year is assumed to lie within the 100-year period centered about
the current year; if the year is omitted, the current year is used as the
default.

• The hours, minutes, and seconds fields are optional. They are integers
separated by colons or followed by 'am' or 'pm'.

For example, if the current year is 1999, then these are all equivalent

2-5

2 Performing Common Financial Tasks

'17-May-1999'
'17-May-99'
'17-may'
'May 17, 1999'
'5/17/99'
'5/17'

and both of these represent the same time.

'17-May-1999, 18:30'
'5/17/99/6:30 pm'

Note that the default format for numbers-only input follows the American
convention. Thus 3/6 is March 6, not June 3.

With datenum you can convert dates into serial date format, store them in a
matrix variable, then later pass the variable to a function. Alternatively, you
can use datenum directly in a function input argument list.

For example, consider the function bndprice that computes the price of a bond
given the yield-to-maturity. First set up variables for the yield-to-maturity,
coupon rate, and the necessary dates.

Yield = 0.07;
CouponRate = 0.08;
Settle = datenum('17-May-2000');
Maturity = datenum('01-Oct-2000');

Then call the function with the variables

bndprice(Yield, CouponRate, Settle, Maturity)

Alternatively, convert date strings to serial date numbers directly in the
function input argument list.

bndprice(0.07, 0.08, datenum('17-May-2000'),...
datenum('01-Oct-2000'))

bndprice is an example of a function designed to detect the presence of date
strings and make the conversion automatically. For these functions date
strings may be passed directly.

2-6

Handling and Converting Dates

bndprice(0.07, 0.08, '17-May-2000', '01-Oct-2000')

The decision to represent dates as either date strings or serial date numbers
is often a matter of convenience. For example, when formatting data for
visual display or for debugging date-handling code, it is often much easier
to view dates as date strings because serial date numbers are difficult to
interpret. Alternatively, serial date numbers are just another type of numeric
data, and can be placed in a matrix along with any other numeric data for
convenient manipulation.

Remember that if you create a vector of input date strings, use a column
vector and be sure all strings are the same length. Fill with spaces or zeros.
See “Matrices of String Input” on page 1-20.

Output Conversions
The function datestr converts a serial date number to one of 19 different
date string output formats showing date, time, or both. The default output for
dates is a day-month-year string, for example, 24-Aug-2000. This function is
quite useful for preparing output reports.

Format Description

01-Mar-2000 15:45:17 day-month-year hour:minute:second

01-Mar-2000 day-month-year

03/01/00 month/day/year

Mar month, three letters

M month, single letter

3 month

03/01 month/day

1 day of month

Wed day of week, three letters

W day of week, single letter

2000 year, four numbers

99 year, two numbers

2-7

2 Performing Common Financial Tasks

Format Description

Mar01 month year

15:45:17 hour:minute:second

03:45:17 PM hour:minute:second AM or PM

15:45 hour:minute

03:45 PM hour:minute AM or PM

Q1-99 calendar quarter-year

Q1 calendar quarter

Current Date and Time
The functions today and now return serial date numbers for the current date,
and the current date and time, respectively.

today

ans =
730693

now

ans =

730693.48

The MATLAB function date returns a string for today’s date.

date

ans =

26-Jul-2000

2-8

Handling and Converting Dates

Determining Dates
The Financial Toolbox software provides many functions for determining
specific dates, including functions which account for holidays and other
nontrading days. For example, you schedule an accounting procedure for the
last Friday of every month. The lweekdate function returns those dates for
2000; the 6 specifies Friday.

Fridates = lweekdate(6, 2000, 1:12);

Fridays = datestr(Fridates)

Fridays =

28-Jan-2000
25-Feb-2000
31-Mar-2000
28-Apr-2000
26-May-2000
30-Jun-2000
28-Jul-2000
25-Aug-2000
29-Sep-2000
27-Oct-2000
24-Nov-2000
29-Dec-2000

Or your company closes on Martin Luther King Jr. Day, which is the third
Monday in January. The nweekdate function determines those dates for 2001
through 2004.

MLKDates = nweekdate(3, 2, 2001:2004, 1);

MLKDays = datestr(MLKDates)

MLKDays =

15-Jan-2001
21-Jan-2002
20-Jan-2003
19-Jan-2004

2-9

2 Performing Common Financial Tasks

Accounting for holidays and other nontrading days is important when
examining financial dates. The Financial Toolbox software provides the
holidays function, which contains holidays and special nontrading days for
the New York Stock Exchange between 1950 and 2030, inclusive. In addition,
you can use nyseclosures to evaluate all known or anticipated closures of
the New York Stock Exchange from January 1, 1885 to December 31, 2050.
nyseclosures returns a vector of serial date numbers corresponding to
market closures between the dates StartDate and EndDate, inclusive.

In this example, you can use holidays to determine the standard holidays in
the last half of 2000:

LHHDates = holidays('1-Jul-2000', '31-Dec-2000');

LHHDays = datestr(LHHDates)

LHHDays =

04-Jul-2000
04-Sep-2000
23-Nov-2000
25-Dec-2000

Now use the toolbox busdate function to determine the next business day
after these holidays.

LHNextDates = busdate(LHHDates);

LHNextDays = datestr(LHNextDates)

LHNextDays =

05-Jul-2000
05-Sep-2000
24-Nov-2000
26-Dec-2000

The toolbox also provides the cfdates function to determine cash-flow dates
for securities with periodic payments. This function accounts for the coupons
per year, the day-count basis, and the end-of-month rule. For example, to

2-10

Handling and Converting Dates

determine the cash-flow dates for a security that pays four coupons per year
on the last day of the month, on an actual/365 day-count basis, just enter the
settlement date, the maturity date, and the parameters.

PayDates = cfdates('14-Mar-2000', '30-Nov-2001', 4, 3, 1);

PayDays = datestr(PayDates)

PayDays =

31-May-2000
31-Aug-2000
30-Nov-2000
28-Feb-2001
31-May-2001
31-Aug-2001
30-Nov-2001

2-11

2 Performing Common Financial Tasks

Formatting Currency
Financial Toolbox software provides several functions to format currency and
chart financial data. The currency formatting functions are

cur2frac Converts decimal currency values to
fractional values

cur2str Converts a value to Financial Toolbox bank
format

frac2cur Converts fractional currency values to
decimal values

These examples show their use.

Dec = frac2cur('12.1', 8)

returns Dec = 12.125, which is the decimal equivalent of 12-1/8. The second
input variable is the denominator of the fraction.

Str = cur2str(-8264, 2)

returns the string ($8264.00). For this toolbox function, the output format
is a numerical format with dollar sign prefix, two decimal places, and
negative numbers in parentheses; for example, ($123.45) and $6789.01. The
standard MATLAB bank format uses two decimal places, no dollar sign, and a
minus sign for negative numbers; for example, -123.45 and 6789.01.

2-12

Charting Financial Data

Charting Financial Data

In this section...

“Introduction” on page 2-13

“High-Low-Close Chart Example” on page 2-14

“Bollinger Chart Example” on page 2-15

Introduction
The following toolbox financial charting functions plot financial data and
produce presentation-quality figures quickly and easily.

bolling Bollinger band chart

bollinger Time series Bollinger band

candle Candlestick chart

candle Time series candle plot

pointfig Point and figure chart

highlow High, low, open, close chart

highlow Time series High-Low plot

movavg Leading and lagging moving averages chart

These functions work with standard MATLAB functions that draw axes,
control appearance, and add labels and titles. The toolbox also provides a
comprehensive set of charting functions that work with financial time series
objects. For lists of these, see “Financial Data Charts” on page 15-8 and
“Financial Time Series Indicator” on page 15-34.

Here are two plotting examples: a high-low-close chart of sample IBM® stock
price data, and a Bollinger band chart of the same data. These examples load
data from an external file (ibm.dat), then call the functions using subsets of
the data. The MATLAB variable ibm , which is created by loading ibm.dat,
is a six-column matrix where each row is a trading day’s data and where
columns 2, 3, and 4 contain the high, low, and closing prices, respectively.

2-13

2 Performing Common Financial Tasks

Note The data in ibm.dat is fictional and for illustrative use only.

High-Low-Close Chart Example
First load the data and set up matrix dimensions. load and size are standard
MATLAB functions.

load ibm.dat;
[ro, co] = size(ibm);

Open a figure window for the chart. Use the Financial Toolbox highlow
function to plot high, low, and close prices for the last 50 trading days in
the data file.

figure;
highlow(ibm(ro-50:ro,2),ibm(ro-50:ro,3),ibm(ro-50:ro,4),[],'b');

Add labels and title, and set axes with standard MATLAB functions. Use the
Financial Toolbox dateaxis function to provide dates for the x-axis ticks.

xlabel('');
ylabel('Price ($)');
title('International Business Machines, 941231 - 950219');
axis([0 50 -inf inf]);
dateaxis('x',6,'31-Dec-1994')

MATLAB produces a figure like this. The plotted data and axes you see may
differ. Viewed online, the high-low-close bars are blue.

2-14

Charting Financial Data

Bollinger Chart Example
The bolling function in Financial Toolbox software produces a Bollinger
band chart using all the closing prices in the same IBM stock price matrix.
A Bollinger band chart plots actual data along with three other bands of
data. The upper band is two standard deviations above a moving average;
the lower band is two standard deviations below that moving average; and
the middle band is the moving average itself. This example uses a 15-day
moving average.

Assuming the previous IBM data is still loaded, execute the function.

bolling(ibm(:,4), 15, 0);

Specify the axes, labels, and titles. Again, use dateaxis to add the x-axis
dates.

axis([0 ro min(ibm(:,4)) max(ibm(:,4))]);
ylabel('Price ($)');

2-15

2 Performing Common Financial Tasks

title(['International Business Machines']);
dateaxis('x', 6,'31-Dec-1994')

For help using MATLAB plotting functions, see Creating Plots in the
MATLAB documentation. See the MATLAB documentation for details on the
axis, title, xlabel, and ylabel functions.

2-16

Analyzing and Computing Cash Flows

Analyzing and Computing Cash Flows

In this section...

“Introduction” on page 2-17

“Interest Rates/Rates of Return” on page 2-17

“Present or Future Values” on page 2-18

“Depreciation” on page 2-19

“Annuities” on page 2-19

Introduction
Financial Toolbox cash-flow functions compute interest rates and rates of
return, present or future values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment
of $20,000 followed by three annual return payments, a second investment of
$5,000, then four more returns. Investments are negative cash flows, return
payments are positive cash flows.

Stream = [-20000, 2000, 2500, 3500, -5000, 6500,...
9500, 9500, 9500];

Interest Rates/Rates of Return
Several functions calculate interest rates involved with cash flows. To
compute the internal rate of return of the cash stream, execute the toolbox
function irr

ROR = irr(Stream)

which gives a rate of return of 11.72%.

Note that the internal rate of return of a cash flow may not have a unique
value. Every time the sign changes in a cash flow, the equation defining irr
can give up to two additional answers. An irr computation requires solving a
polynomial equation, and the number of real roots of such an equation can
depend on the number of sign changes in the coefficients. The equation for
internal rate of return is

2-17

2 Performing Common Financial Tasks

cf
r

cf

r

cf

r
Investmentn

n
1 2

21 1 1
0

+() +
+()

+ +
+()

+ = ,

where Investment is a (negative) initial cash outlay at time 0, cfn is the cash
flow in the nth period, and n is the number of periods. irr finds the rate r such
that the present value of the cash flow equals the initial investment. If all of
the cfns are positive there is only one solution. Every time there is a change of
sign between coefficients, up to two additional real roots are possible.

Another toolbox rate function, effrr, calculates the effective rate of return
given an annual interest rate (also known as nominal rate or annual
percentage rate, APR) and number of compounding periods per year. To find
the effective rate of a 9% APR compounded monthly, enter

Rate = effrr(0.09, 12)

The answer is 9.38%.

A companion function nomrr computes the nominal rate of return given the
effective annual rate and the number of compounding periods.

Present or Future Values
The toolbox includes functions to compute the present or future value of cash
flows at regular or irregular time intervals with equal or unequal payments:
fvfix, fvvar, pvfix, and pvvar. The -fix functions assume equal cash flows
at regular intervals, while the -var functions allow irregular cash flows at
irregular periods.

Now compute the net present value of the sample income stream for which
you computed the internal rate of return. This exercise also serves as a
check on that calculation because the net present value of a cash stream at
its internal rate of return should be zero. Enter

NPV = pvvar(Stream, ROR)

which returns an answer very close to zero. The answer usually is not exactly
zero due to rounding errors and the computational precision of the computer.

2-18

Analyzing and Computing Cash Flows

Note Other toolbox functions behave similarly. The functions that compute
a bond’s yield, for example, often must solve a nonlinear equation. If you
then use that yield to compute the net present value of the bond’s income
stream, it usually does not exactly equal the purchase price, but the difference
is negligible for practical applications.

Depreciation
The toolbox includes functions to compute standard depreciation schedules:
straight line, general declining-balance, fixed declining-balance, and sum of
years’ digits. Functions also compute a complete amortization schedule for
an asset, and return the remaining depreciable value after a depreciation
schedule has been applied.

This example depreciates an automobile worth $15,000 over five years with
a salvage value of $1,500. It computes the general declining balance using
two different depreciation rates: 50% (or 1.5), and 100% (or 2.0, also known
as double declining balance). Enter

Decline1 = depgendb(15000, 1500, 5, 1.5)
Decline2 = depgendb(15000, 1500, 5, 2.0)

which returns

Decline1 =

4500.00 3150.00 2205.00 1543.50 2101.50

Decline2 =

6000.00 3600.00 2160.00 1296.00 444.00

These functions return the actual depreciation amount for the first four years
and the remaining depreciable value as the entry for the fifth year.

Annuities
Several toolbox functions deal with annuities. This first example shows
how to compute the interest rate associated with a series of loan payments
when only the payment amounts and principal are known. For a loan whose
original value was $5000.00 and which was paid back monthly over four years
at $130.00/month

2-19

2 Performing Common Financial Tasks

Rate = annurate(4*12, 130, 5000, 0, 0)

The function returns a rate of 0.0094 monthly, or about 11.28% annually.

The next example uses a present-value function to show how to compute the
initial principal when the payment and rate are known. For a loan paid at
$300.00/month over four years at 11% annual interest

Principal = pvfix(0.11/12, 4*12, 300, 0, 0)

The function returns the original principal value of $11,607.43.

The final example computes an amortization schedule for a loan or annuity.
The original value was $5000.00 and was paid back over 12 months at an
annual rate of 9%.

[Prpmt, Intpmt, Balance, Payment] = ...
amortize(0.09/12, 12, 5000, 0, 0);

This function returns vectors containing the amount of principal paid,

Prpmt = [399.76 402.76 405.78 408.82 411.89 414.97
418.09 421.22 424.38 427.56 430.77 434.00]

the amount of interest paid,

Intpmt = [37.50 34.50 31.48 28.44 25.37 22.28
19.17 16.03 12.88 9.69 6.49 3.26]

the remaining balance for each period of the loan,

Balance = [4600.24 4197.49 3791.71 3382.89 2971.01
2556.03 2137.94 1716.72 1292.34 864.77
434.00 0.00]

and a scalar for the monthly payment.

Payment = 437.26

2-20

Pricing and Computing Yields for Fixed-Income Securities

Pricing and Computing Yields for Fixed-Income Securities

In this section...

“Introduction” on page 2-21

“Fixed-Income Terminology” on page 2-21

“Framework” on page 2-26

“Default Parameter Values” on page 2-27

“Coupon Date Calculations” on page 2-30

“Yield Conventions” on page 2-31

“Pricing Functions” on page 2-31

“Yield Functions” on page 2-32

“Fixed-Income Sensitivities” on page 2-33

Introduction
The Financial Toolbox product provides functions for computing accrued
interest, price, yield, convexity, and duration of fixed-income securities.
Various conventions exist for determining the details of these computations.
The Financial Toolbox software supports conventions specified by the
Securities Industry and Financial Markets Association (SIFMA), used in
the US markets, the International Capital Market Association (ICMA),
used mainly in the European markets, and the International Swaps and
Derivatives Association (ISDA). Note that for historical reasons, SIFMA is
referred to in Financial Toolbox documentation as SIA and ICMA is referred
to as International Securities Market Association (ISMA).

Fixed-Income Terminology
Since terminology varies among texts on this subject, here are some basic
definitions that apply to these Financial Toolbox functions. The “Glossary” on
page Glossary-1 contains additional definitions.

The settlement date of a bond is the date when money first changes hands;
that is, when a buyer pays for a bond. It need not coincide with the issue date,
which is the date a bond is first offered for sale.

2-21

2 Performing Common Financial Tasks

The first coupon date and last coupon date are the dates when the first and
last coupons are paid, respectively. Although bonds typically pay periodic
annual or semiannual coupons, the length of the first and last coupon periods
may differ from the standard coupon period. The toolbox includes price and
yield functions that handle these odd first and/or last periods.

Successive quasi-coupon dates determine the length of the standard coupon
period for the fixed income security of interest, and do not necessarily coincide
with actual coupon payment dates. The toolbox includes functions that
calculate both actual and quasi-coupon dates for bonds with odd first and/or
last periods.

Fixed-income securities can be purchased on dates that do not coincide with
coupon payment dates. In this case, the bond owner is not entitled to the full
value of the coupon for that period. When a bond is purchased between coupon
dates, the buyer must compensate the seller for the pro-rata share of the
coupon interest earned from the previous coupon payment date. This pro-rata
share of the coupon payment is called accrued interest. The purchase price, the
price actually paid for a bond, is the quoted market price plus accrued interest.

The maturity date of a bond is the date when the issuer returns the final
face value, also known as the redemption value or par value, to the buyer.
The yield-to-maturity of a bond is the nominal compound rate of return that
equates the present value of all future cash flows (coupons and principal) to
the current market price of the bond.

The period of a bond refers to the frequency with which the issuer of a bond
makes coupon payments to the holder.

Period of a Bond

Period Value Payment Schedule

0 No coupons (Zero coupon bond)

1 Annual

2 Semiannual

3 Tri-annual

4 Quarterly

2-22

Pricing and Computing Yields for Fixed-Income Securities

Period of a Bond (Continued)

Period Value Payment Schedule

6 Bi-monthly

12 Monthly

The basis of a bond refers to the basis or day-count convention for a bond.
Basis is normally expressed as a fraction in which the numerator determines
the number of days between two dates, and the denominator determines the
number of days in the year. For example, the numerator of actual/actual
means that when determining the number of days between two dates, count
the actual number of days; the denominator means that you use the actual
number of days in the given year in any calculations (either 365 or 366 days
depending on whether the given year is a leap year).

The day count convention determines how accrued interest is calculated and
determines how cash flows for the bond are discounted, thereby effecting
price and yield calculations. Furthermore, the SIA convention is to use the
actual/actual day count convention for discounting cash flows in all cases.

Basis of a Bond

Basis Value Meaning Description

0 (default) actual/actual Actual days held over
actual days in coupon
period. Denominator is
365 in most years and
366 in a leap year.

1 30/360 (SIA) Each month contains
30 days; a year contains
360 days. Payments
are adjusted for bonds
that pay coupons on the
last day of February.

2-23

2 Performing Common Financial Tasks

Basis of a Bond (Continued)

Basis Value Meaning Description

2 actual/360 Actual days held over
360.

3 actual/365 Actual days held over
365, even in leap years.

4 30/360 BMA (Bond
Market Association)

Each month contains
30 days; a year contains
360 days. If the last
date of the period is the
last day of February,
the month is extended
to 30 days.

5 30/360 ISDA
(International Swap
Dealers Association)

Variant of 30/360 with
slight differences for
calculating number of
days in a month.

6 30/360 European Variant of 30/360 used
primarily in Europe.

7 actual/365 Japanese All years contain 365
days. Leap days are
ignored.

8 actual/actual (ICMA) Actual days held over
actual days in coupon
period. Denominator
is 365 in most years
and 366 in a leap year.
This basis assumes an
annual compounding
period.

9 actual/360 (ICMA) Actual days held
over 360. This basis
assumes an annual
compounding period.

2-24

Pricing and Computing Yields for Fixed-Income Securities

Basis of a Bond (Continued)

Basis Value Meaning Description

10 actual/365 (ICMA) Actual days held over
365, even in leap years.
This basis assumes an
annual compounding
period.

11 30/360E (ICMA) The number of days in
every month is set to 30.
If the start date or the
end date of the period
is the 31st of a month,
that date is set to the
30th. The number of
days in a year is 360.

12 actual/365 (ISDA) This day count fraction
is equal to the sum
of number of interest
accrual days falling
with a leap year divided
by 366 and the number
of interest accrual days
not falling within a leap
year divided by 365.

13 BUS/252 The number of business
days between the
previous coupon
payment and the
settlement data
divided by 252.
BUS/252 business
days are non-weekend,
non-holiday days. The
holidays.m file defines
holidays.

2-25

2 Performing Common Financial Tasks

Note Although the concept of day count sounds deceptively simple, the
actual calculation of day counts can be quite complex. You can find a good
discussion of day counts and the formulas for calculating them in Chapter 5
of Stigum and Robinson, Money Market and Bond Calculations in Appendix
A, “Bibliography”.

The end-of-month rule affects a bond’s coupon payment structure. When
the rule is in effect, a security that pays a coupon on the last actual day of
a month will always pay coupons on the last day of the month. This means,
for example, that a semiannual bond that pays a coupon on February 28 in
nonleap years will pay coupons on August 31 in all years and on February
29 in leap years.

End-of-Month Rule

End-of-Month Rule Value Meaning

1 (default) Rule in effect.

0 Rule not in effect.

Framework
Although not all Financial Toolbox functions require the same input
arguments, they all accept the following common set of input arguments.

Common Input Arguments

Input Meaning

Settle Settlement date

Maturity Maturity date

Period Coupon payment period

Basis Day-count basis

EndMonthRule End-of-month payment rule

2-26

Pricing and Computing Yields for Fixed-Income Securities

Common Input Arguments (Continued)

Input Meaning

IssueDate Bond issue date

FirstCouponDate First coupon payment date

LastCouponDate Last coupon payment date

Of the common input arguments, only Settle and Maturity are required.
All others are optional. They will be set to the default values if you do
not explicitly set them. Note that, by default, the FirstCouponDate and
LastCouponDate are nonapplicable. In other words, if you do not specify
FirstCouponDate and LastCouponDate, the bond is assumed to have no odd
first or last coupon periods. In this case, the bond is a standard bond with a
coupon payment structure based solely on the maturity date.

Default Parameter Values
To illustrate the use of default values in Financial Toolbox functions, consider
the cfdates function, which computes actual cash flow payment dates for a
portfolio of fixed income securities regardless of whether the first and/or last
coupon periods are normal, long, or short.

The complete calling syntax with the full input argument list is

CFlowDates = cfdates(Settle, Maturity, Period, Basis, ...
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

while the minimal calling syntax requires only settlement and maturity dates

CFlowDates = cfdates(Settle, Maturity)

Single Bond Example
As an example, suppose you have a bond with these characteristics

Settle = '20-Sep-1999'
Maturity = '15-Oct-2007'
Period = 2

2-27

2 Performing Common Financial Tasks

Basis = 0
EndMonthRule = 1
IssueDate = NaN
FirstCouponDate = NaN
LastCouponDate = NaN

Note that Period, Basis, and EndMonthRule are set to their default values,
and IssueDate, FirstCouponDate, and LastCouponDate are set to NaN.

Formally, a NaN is an IEEE® arithmetic standard for Not-a-Number and
is used to indicate the result of an undefined operation (for example, zero
divided by zero). However, NaN is also a very convenient placeholder. In the
SIA functions of Financial Toolbox software, NaN indicates the presence of a
nonapplicable value. It tells the Financial Toolbox functions to ignore the
input value and apply the default. Setting IssueDate, FirstCouponDate, and
LastCouponDate to NaN in this example tells cfdates to assume that the
bond has been issued before settlement and that no odd first or last coupon
periods exist.

Having set these values, all these calls to cfdates produce the same result.

cfdates(Settle, Maturity)
cfdates(Settle, Maturity, Period)
cfdates(Settle, Maturity, Period, [])
cfdates(Settle, Maturity, [], Basis)
cfdates(Settle, Maturity, [], [])
cfdates(Settle, Maturity, Period, [], EndMonthRule)
cfdates(Settle, Maturity, Period, [], NaN)
cfdates(Settle, Maturity, Period, [], [], IssueDate)
cfdates(Settle, Maturity, Period, [], [], IssueDate, [], [])
cfdates(Settle, Maturity, Period, [], [], [], [],LastCouponDate)
cfdates(Settle, Maturity, Period, Basis, EndMonthRule, ...
IssueDate, FirstCouponDate, LastCouponDate)

Thus, leaving a particular input unspecified has the same effect as passing
an empty matrix ([]) or passing a NaN – all three tell cfdates (and other
Financial Toolbox functions) to use the default value for a particular input
parameter.

2-28

Pricing and Computing Yields for Fixed-Income Securities

Bond Portfolio Example
Since the previous example included only a single bond, there was no
difference between passing an empty matrix or passing a NaN for an optional
input argument. For a portfolio of bonds, however, using NaN as a placeholder
is the only way to specify default acceptance for some bonds while explicitly
setting nondefault values for the remaining bonds in the portfolio.

Now suppose you have a portfolio of two bonds.

Settle = '20-Sep-1999'
Maturity = ['15-Oct-2007'; '15-Oct-2010']

These calls to cfdates all set the coupon period to its default value
(Period = 2) for both bonds.

cfdates(Settle, Maturity, 2)
cfdates(Settle, Maturity, [2 2])
cfdates(Settle, Maturity, [])
cfdates(Settle, Maturity, NaN)
cfdates(Settle, Maturity, [NaN NaN])
cfdates(Settle, Maturity)

The first two calls explicitly set Period = 2. Since Maturity is a 2-by-1 vector
of maturity dates, cfdates knows you have a two-bond portfolio.

The first call specifies a single (that is, scalar) 2 for Period. Passing a scalar
tells cfdates to apply the scalar-valued input to all bonds in the portfolio.
This is an example of implicit scalar-expansion. Note that the settlement date
has been implicit scalar-expanded as well.

The second call also applies the default coupon period by explicitly passing
a two-element vector of 2’s. The third call passes an empty matrix, which
cfdates interprets as an invalid period, for which the default value will be
used. The fourth call is similar, except that a NaN has been passed. The fifth
call passes two NaN’s, and has the same effect as the third. The last call
passes the minimal input set.

Finally, consider the following calls to cfdates for the same two-bond
portfolio.

2-29

2 Performing Common Financial Tasks

cfdates(Settle, Maturity, [4 NaN])
cfdates(Settle, Maturity, [4 2])

The first call explicitly sets Period = 4 for the first bond and implicitly sets
the default Period = 2 for the second bond. The second call has the same
effect as the first but explicitly sets the periodicity for both bonds.

The optional input Period has been used for illustrative purpose only. The
default-handling process illustrated in the examples applies to any of the
optional input arguments.

Coupon Date Calculations
Calculating coupon dates, either actual or quasi dates, is notoriously
complicated. Financial Toolbox software follows the SIA conventions in
coupon date calculations.

The first step in finding the coupon dates associated with a bond is to
determine the reference, or synchronization date (the sync date). Within the
SIA framework, the order of precedence for determining the sync date is:

1 The first coupon date

2 The last coupon date

3 The maturity date

In other words, a Financial Toolbox function first examines the
FirstCouponDate input. If FirstCouponDate is specified, coupon
payment dates and quasi-coupon dates are computed with respect to
FirstCouponDate; if FirstCouponDate is unspecified, empty ([]), or NaN,
then the LastCouponDate is examined. If LastCouponDate is specified,
coupon payment dates and quasi-coupon dates are computed with respect
to LastCouponDate. If both FirstCouponDate and LastCouponDate are
unspecified, empty ([]), or NaN, the Maturity (a required input argument)
serves as the sync date.

2-30

Pricing and Computing Yields for Fixed-Income Securities

Yield Conventions
There are two yield and time factor conventions that are used in the Financial
Toolbox software – these are determined by the input basis. Specifically,
bases 0 to 7 are assumed to have semiannual compounding, while bases 8
to 12 are assumed to have annual compounding regardless of the period of
the bond’s coupon payments (including zero-coupon bonds). In addition, any
yield-related sensitivity (that is, duration and convexity), when quoted on
a periodic basis, follows this same convention. (See bndconvp, bndconvy,
bnddurp, bnddury, and bndkrdur.)

Pricing Functions
This example shows how easily you can compute the price of a bond with an
odd first period using the function bndprice. Assume you have a bond with
these characteristics:

Settle = '11-Nov-1992';
Maturity = '01-Mar-2005';
IssueDate = '15-Oct-1992';
FirstCouponDate = '01-Mar-1993';
CouponRate = 0.0785;
Yield = 0.0625;

Allow coupon payment period (Period = 2), day-count basis (Basis = 0), and
end-of-month rule (EndMonthRule = 1) to assume the default values. Also,
assume there is no odd last coupon date and that the face value of the bond is
$100. Calling the function

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, ...
Maturity, [], [], [], IssueDate, FirstCouponDate)

returns a price of $113.60 and accrued interest of $0.59.

Similar functions compute prices with regular payments, odd first and
last periods, and prices of Treasury bills and discounted securities such as
zero-coupon bonds.

2-31

2 Performing Common Financial Tasks

Note bndprice and other functions use nonlinear formulas to compute the
price of a security. For this reason, Financial Toolbox software uses Newton’s
method when solving for an independent variable within a formula. See any
elementary numerical methods textbook for the mathematics underlying
Newton’s method.

Yield Functions
To illustrate toolbox yield functions, compute the yield of a bond that has odd
first and last periods and settlement in the first period. First set up variables
for settlement, maturity date, issue, first coupon, and a last coupon date.

Settle = '12-Jan-2000';
Maturity = '01-Oct-2001';
IssueDate = '01-Jan-2000';
FirstCouponDate = '15-Jan-2000';
LastCouponDate = '15-Apr-2000';

Assume a face value of $100. Specify a purchase price of $95.70, a coupon
rate of 4%, quarterly coupon payments, and a 30/360 day-count convention
(Basis = 1).

Price = 95.7;
CouponRate = 0.04;
Period = 4;
Basis = 1;
EndMonthRule = 1;

Calling the function

Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,...

Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

returns

Yield = 0.0659 (6.60%).

2-32

Pricing and Computing Yields for Fixed-Income Securities

Fixed-Income Sensitivities
Financial Toolbox software supports the following options for managing
interest-rate risk for one or more bonds:

• bnddurp and bnddury support duration and convexity analysis based on
market quotes and assume parallel shifts in the bond yield curve.

• bndkrdur supports key rate duration based on a market yield curve and
can model nonparallel shifts in the bond yield curve.

Calculating Duration and Convexity for Bonds
The toolbox includes functions to perform sensitivity analysis such as
convexity and the Macaulay and modified durations for fixed-income
securities. The Macaulay duration of an income stream, such as a coupon
bond, measures how long, on average, the owner waits before receiving a
payment. It is the weighted average of the times payments are made, with the
weights at time T equal to the present value of the money received at time T.
The modified duration is the Macaulay duration discounted by the per-period
interest rate; that is, divided by (1+rate/frequency).

To illustrate, the following example computes the annualized Macaulay and
modified durations, and the periodic Macaulay duration for a bond with
settlement (12-Jan-2000) and maturity (01-Oct-2001) dates as above, a 5%
coupon rate, and a 4.5% yield to maturity. For simplicity, any optional
input arguments assume default values (that is, semiannual coupons, and
day-count basis = 0 (actual/actual), coupon payment structure synchronized
to the maturity date, and end-of-month payment rule in effect).

CouponRate = 0.05;
Yield = 0.045;

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,...
CouponRate, Settle, Maturity)

The durations are

ModDuration = 1.6107 (years)
YearDuration = 1.6470 (years)
PerDuration = 3.2940 (semiannual periods)

2-33

2 Performing Common Financial Tasks

Note that the semiannual periodic Macaulay duration (PerDuration) is twice
the annualized Macaulay duration (YearDuration).

Calculating Key Rate Durations for Bonds
Key rate duration enables you to evaluate the sensitivity and price of a
bond to nonparallel changes in the spot or zero curve by decomposing the
interest rate risk along the spot or zero curve. Key rate duration refers to
the process of choosing a set of key rates and computing a duration for each
rate. Specifically, for each key rate, while the other rates are held constant,
the key rate is shifted up and down (and intermediate cash flow dates are
interpolated), and then the present value of the security given the shifted
curves is computed.

The calculation of bndkrdur supports:

krdur
PV PV

PV ShiftValuei
down up

=

× ×
(-)

()2

Where PV is the current value of the instrument, PV_up and PV_down are
the new values after the discount curve has been shocked, and ShiftValue is
the change in interest rate. For example, if key rates of 3 months, 1, 2, 3,
5, 7, 10, 15, 20, 25, 30 years were chosen, then a 30-year bond might have
corresponding key rate durations of:

3M 1Y 2Y 3Y 5Y 7Y 10Y 15Y 20Y 25Y 30Y

.01 .04 .09 .21 .4 .65 1.27 1.71 1.68 1.83 7.03

The key rate durations add up to approximately equal the duration of the
bond.

For example, compute the key rate duration of the U.S. Treasury Bond with
maturity date of August 15, 2028 and coupon rate of 5.5%. (For further
information on this bond, refer to .)

Settle = datenum('18-Nov-2008');
CouponRate = 5.500/100;
Maturity = datenum('15-Aug-2028');
Price = 114.83;

For the ZeroData information on the current spot curve for this bond, refer to :

2-34

Pricing and Computing Yields for Fixed-Income Securities

ZeroDates = daysadd(Settle ,[30 90 180 360 360*2 360*3 360*5 ...

360*7 360*10 360*20 360*30]);

ZeroRates = ([0.06 0.12 0.81 1.08 1.22 1.53 2.32 2.92 3.68 4.42 4.20]/100)';

Compute the key rate duration for a specific set of rates (choose this based on
the maturities of the available hedging instruments):

krd = bndkrdur([ZeroDates ZeroRates],CouponRate,Settle,Maturity,'keyrates',[2 5 10 20])

krd =

0.2865 0.8729 2.6451 8.5778

Note, the sum of the key rate durations approximately equals the duration
of the bond:

[sum(krd) bnddurp(Price,CouponRate,Settle,Maturity)]

ans =

12.3823 12.3919

2-35

2 Performing Common Financial Tasks

Term Structure of Interest Rates

In this section...

“Introduction” on page 2-36

“Deriving an Implied Zero Curve” on page 2-37

Introduction
The Financial Toolbox product contains several functions to derive and
analyze interest rate curves, including data conversion and extrapolation,
bootstrapping, and interest-rate curve conversion functions.

One of the first problems in analyzing the term structure of interest rates is
dealing with market data reported in different formats. Treasury bills, for
example, are quoted with bid and asked bank-discount rates. Treasury notes
and bonds, on the other hand, are quoted with bid and asked prices based
on $100 face value. To examine the full spectrum of Treasury securities,
analysts must convert data to a single format. Financial Toolbox functions
ease this conversion. This brief example uses only one security each; analysts
often use 30, 100, or more of each.

First, capture Treasury bill quotes in their reported format

% Maturity Days Bid Ask AskYield
TBill = [datenum('12/26/2000') 53 0.0503 0.0499 0.0510];

then capture Treasury bond quotes in their reported format

% Coupon Maturity Bid Ask AskYield

TBond = [0.08875 datenum(2001,11,5) 103+4/32 103+6/32 0.0564];

and note that these quotes are based on a November 3, 2000 settlement date.

Settle = datenum('3-Nov-2000');

Next use the toolbox tbl2bond function to convert the Treasury bill data to
Treasury bond format.

TBTBond = tbl2bond(TBill)

2-36

Term Structure of Interest Rates

TBTBond =
0 730846 99.26 99.27 0.05

(The second element of TBTBond is the serial date number for December 26,
2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data
to set up the overall term structure.

TBondsAll = [TBTBond; TBond]

TBondsAll =
0 730846 99.26 99.27 0.05

0.09 731160 103.13 103.19 0.06

The Financial Toolbox software provides a second data-preparation
function,tr2bonds, to convert the bond data into a form ready for the
bootstrapping functions. tr2bonds generates a matrix of bond information
sorted by maturity date, plus vectors of prices and yields.

[Bonds, Prices, Yields] = tr2bonds(TBondsAll);

Deriving an Implied Zero Curve
Using this market data, you can use one of the Financial Toolbox
bootstrapping functions to derive an implied zero curve. Bootstrapping is a
process whereby you begin with known data points and solve for unknown
data points using an underlying arbitrage theory. Every coupon bond can
be valued as a package of zero-coupon bonds which mimic its cash flow and
risk characteristics. By mapping yields-to-maturity for each theoretical
zero-coupon bond, to the dates spanning the investment horizon, you can
create a theoretical zero-rate curve. The Financial Toolbox software provides
two bootstrapping functions: zbtprice derives a zero curve from bond data
and prices, and zbtyield derives a zero curve from bond data and yields.
Using zbtprice

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)

ZeroRates =

2-37

2 Performing Common Financial Tasks

0.05
0.06

CurveDates =

730846
731160

CurveDates gives the investment horizon.

datestr(CurveDates)

ans =

26-Dec-2000
05-Nov-2001

Additional Financial Toolbox functions construct discount, forward, and par
yield curves from the zero curve, and vice versa.

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...

Settle);

[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);

[PYldRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...

Settle);

2-38

Pricing and Analyzing Equity Derivatives

Pricing and Analyzing Equity Derivatives

In this section...

“Introduction” on page 2-39

“Sensitivity Measures” on page 2-39

“Analysis Models” on page 2-40

Introduction
These toolbox functions compute prices, sensitivities, and profits for portfolios
of options or other equity derivatives. They use the Black-Scholes model
for European options and the binomial model for American options. Such
measures are useful for managing portfolios and for executing collars, hedges,
and straddles.

Sensitivity Measures
There are six basic sensitivity measures associated with option pricing: delta,
gamma, lambda, rho, theta, and vega — the “greeks.” The toolbox provides
functions for calculating each sensitivity and for implied volatility.

Delta
Delta of a derivative security is the rate of change of its price relative to the
price of the underlying asset. It is the first derivative of the curve that relates
the price of the derivative to the price of the underlying security. When delta
is large, the price of the derivative is sensitive to small changes in the price
of the underlying security.

Gamma
Gamma of a derivative security is the rate of change of delta relative to the
price of the underlying asset; that is, the second derivative of the option price
relative to the security price. When gamma is small, the change in delta is
small. This sensitivity measure is important for deciding how much to adjust
a hedge position.

2-39

2 Performing Common Financial Tasks

Lambda
Lambda, also known as the elasticity of an option, represents the percentage
change in the price of an option relative to a 1% change in the price of the
underlying security.

Rho
Rho is the rate of change in option price relative to the risk-free interest rate.

Theta
Theta is the rate of change in the price of a derivative security relative to
time. Theta is usually very small or negative since the value of an option
tends to drop as it approaches maturity.

Vega
Vega is the rate of change in the price of a derivative security relative to
the volatility of the underlying security. When vega is large the security is
sensitive to small changes in volatility. For example, options traders often
must decide whether to buy an option to hedge against vega or gamma. The
hedge selected usually depends upon how frequently one rebalances a hedge
position and also upon the standard deviation of the price of the underlying
asset (the volatility). If the standard deviation is changing rapidly, balancing
against vega is usually preferable.

Implied Volatility
The implied volatility of an option is the standard deviation that makes an
option price equal to the market price. It helps determine a market estimate
for the future volatility of a stock and provides the input volatility (when
needed) to the other Black-Scholes functions.

Analysis Models
Toolbox functions for analyzing equity derivatives use the Black-Scholes
model for European options and the binomial model for American options.
The Black-Scholes model makes several assumptions about the underlying
securities and their behavior. The binomial model, on the other hand, makes
far fewer assumptions about the processes underlying an option. For further

2-40

Pricing and Analyzing Equity Derivatives

explanation, see Options, Futures, and Other Derivatives by John Hull in
Appendix A, “Bibliography”.

Black-Scholes Model
Using the Black-Scholes model entails several assumptions:

• The prices of the underlying asset follow an Ito process. (See Hull, page
222.)

• The option can be exercised only on its expiration date (European option).

• Short selling is permitted.

• There are no transaction costs.

• All securities are divisible.

• There is no riskless arbitrage.

• Trading is a continuous process.

• The risk-free interest rate is constant and remains the same for all
maturities.

If any of these assumptions is untrue, Black-Scholes may not be an
appropriate model.

To illustrate toolbox Black-Scholes functions, this example computes the
call and put prices of a European option and its delta, gamma, lambda, and
implied volatility. The asset price is $100.00, the exercise price is $95.00, the
risk-free interest rate is 10%, the time to maturity is 0.25 years, the volatility
is 0.50, and the dividend rate is 0. Simply executing the toolbox functions

[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0);
[CallVal, PutVal] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0);
GammaVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0);
VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0);
[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0);

yields:

• The option call price OptCall = $13.70

2-41

2 Performing Common Financial Tasks

• The option put price OptPut = $6.35

• delta for a call CallVal = 0.6665 and delta for a put PutVal = -0.3335

• gamma GammaVal = 0.0145

• vega VegaVal = 18.1843

• lambda for a call LamCall = 4.8664 and lambda for a put LamPut = –5.2528

Now as a computation check, find the implied volatility of the option using
the call option price from blsprice.

Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall);

The function returns an implied volatility of 0.500, the original blsprice
input.

Binomial Model
The binomial model for pricing options or other equity derivatives assumes
that the probability over time of each possible price follows a binomial
distribution. The basic assumption is that prices can move to only two values,
one up and one down, over any short time period. Plotting the two values,
and then the subsequent two values each, and then the subsequent two
values each, and so on over time, is known as “building a binomial tree.” This
model applies to American options, which can be exercised any time up to
and including their expiration date.

This example prices an American call option using a binomial model. Again,
the asset price is $100.00, the exercise price is $95.00, the risk-free interest
rate is 10%, and the time to maturity is 0.25 years. It computes the tree in
increments of 0.05 years, so there are 0.25/0.05 = 5 periods in the example.
The volatility is 0.50, this is a call (flag = 1), the dividend rate is 0, and it
pays a dividend of $5.00 after three periods (an ex-dividend date). Executing
the toolbox function

[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,...
0.05, 0.50, 1, 0, 5.0, 3);

returns the tree of prices of the underlying asset

StockPrice =

2-42

Pricing and Analyzing Equity Derivatives

100.00 111.27 123.87 137.96 148.69 166.28
0 89.97 100.05 111.32 118.90 132.96
0 0 81.00 90.02 95.07 106.32
0 0 0 72.98 76.02 85.02
0 0 0 0 60.79 67.98
0 0 0 0 0 54.36

and the tree of option values.

OptionPrice =

12.10 19.17 29.35 42.96 54.17 71.28
0 5.31 9.41 16.32 24.37 37.96
0 0 1.35 2.74 5.57 11.32
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The output from the binomial function is a binary tree. Read the StockPrice
matrix this way: column 1 shows the price for period 0, column 2 shows the
up and down prices for period 1, column 3 shows the up-up, up-down, and
down-down prices for period 2, and so on. Ignore the zeros. The OptionPrice
matrix gives the associated option value for each node in the price tree. Ignore
the zeros that correspond to a zero in the price tree.

2-43

2 Performing Common Financial Tasks

2-44

3

Portfolio Analysis

• “Analyzing Portfolios” on page 3-2

• “Portfolio Optimization Functions” on page 3-3

• “Portfolio Construction Examples” on page 3-5

• “Portfolio Selection and Risk Aversion” on page 3-8

• “Constraint Specification” on page 3-12

• “Active Returns and Tracking Error Efficient Frontier” on page 3-20

3 Portfolio Analysis

Analyzing Portfolios
Portfolio managers concentrate their efforts on achieving the best possible
trade-off between risk and return. For portfolios constructed from a fixed
set of assets, the risk/return profile varies with the portfolio composition.
Portfolios that maximize the return, given the risk, or, conversely, minimize
the risk for the given return, are called optimal. Optimal portfolios define a
line in the risk/return plane called the efficient frontier.

A portfolio may also have to meet additional requirements to be considered.
Different investors have different levels of risk tolerance. Selecting the
adequate portfolio for a particular investor is a difficult process. The portfolio
manager can hedge the risk related to a particular portfolio along the efficient
frontier with partial investment in risk-free assets. The definition of the
capital allocation line, and finding where the final portfolio falls on this line, if
at all, is a function of:

• The risk/return profile of each asset

• The risk-free rate

• The borrowing rate

• The degree of risk aversion characterizing an investor

Financial Toolbox software includes a set of portfolio optimization functions
designed to find the portfolio that best meets investor requirements.

3-2

Portfolio Optimization Functions

Portfolio Optimization Functions
The portfolio optimization functions assist portfolio managers in constructing
portfolios that optimize risk and return.

Capital
Allocation Description

portalloc Computes the optimal risky portfolio on the efficient
frontier, based on the risk-free rate, the borrowing rate,
and the investor’s degree of risk aversion. Also generates
the capital allocation line, which provides the optimal
allocation of funds between the risky portfolio and the
risk-free asset.

Efficient
Frontier
Computation Description

frontcon Computes portfolios along the efficient frontier for a
given group of assets. The computation is based on sets
of constraints representing the maximum and minimum
weights for each asset, and the maximum and minimum
total weight for specified groups of assets.

frontier Computes portfolios along the efficient frontier for a
given group of assets. Generates a surface of efficient
frontiers showing how asset allocation influences risk
and return over time.

portopt Computes portfolios along the efficient frontier for a
given group of assets. The computation is based on
a set of user-specified linear constraints. Typically,
these constraints are generated using the constraint
specification functions described below.

3-3

3 Portfolio Analysis

Constraint
Specification Description

portcons Generates the portfolio constraints matrix for a portfolio
of asset investments using linear inequalities. The
inequalities are of the type A*Wts' <= b, where Wts is a
row vector of weights.

portvrisk Portfolio value at risk (VaR) returns the maximum
potential loss in the value of a portfolio over one period of
time, given the loss probability level RiskThreshold.

pcalims Asset minimum and maximum allocation. Generates a
constraint set to fix the minimum and maximum weight
for each individual asset.

pcgcomp Group-to-group ratio constraint. Generates a constraint
set specifying the maximum and minimum ratios
between pairs of groups.

pcglims Asset group minimum and maximum allocation.
Generates a constraint set to fix the minimum and
maximum total weight for each defined group of assets.

pcpval Total portfolio value. Generates a constraint set to fix the
total value of the portfolio.

Constraint
Conversion Description

abs2active Transforms a constraint matrix expressed in absolute
weight format to an equivalent matrix expressed in active
weight format.

active2abs Transforms a constraint matrix expressed in active
weight format to an equivalent matrix expressed in
absolute weight format.

3-4

Portfolio Construction Examples

Portfolio Construction Examples

In this section...

“Introduction” on page 3-5

“Efficient Frontier Example” on page 3-5

Introduction
The efficient frontier computation functions require information about each
asset in the portfolio. This data is entered into the function via two matrices:
an expected return vector and a covariance matrix. The expected return
vector contains the average expected return for each asset in the portfolio.
The covariance matrix is a square matrix representing the interrelationships
between pairs of assets. This information can be directly specified or can be
estimated from an asset return time series with the function ewstats.

Efficient Frontier Example
This example computes the efficient frontier of portfolios consisting of three
different assets using the function frontcon. To visualize the efficient frontier
curve clearly, consider 10 different evenly spaced portfolios.

Assume that the expected return of the first asset is 10%, the second is 20%,
and the third is 15%. The covariance is defined in the matrix ExpCovariance.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004;
-0.010 0.040 -0.002;
0.004 -0.002 0.023];

NumPorts = 10;

Since there are no constraints, you can call frontcon directly with the
data you already have. If you call frontcon without specifying any output
arguments, you get a graph representing the efficient frontier curve.

frontcon (ExpReturn, ExpCovariance, NumPorts);

3-5

3 Portfolio Analysis

Calling frontcon while specifying the output arguments returns the
corresponding vectors and arrays representing the risk, return, and weights
for each of the 10 points computed along the efficient frontier.

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts)

PortRisk =
0.0392
0.0445
0.0559
0.0701
0.0858
0.1023
0.1192
0.1383
0.1661
0.2000

PortReturn =

3-6

Portfolio Construction Examples

0.1231
0.1316
0.1402
0.1487
0.1573
0.1658
0.1744
0.1829
0.1915
0.2000

PortWts =

0.7692 0.2308 0.0000
0.6667 0.2991 0.0342
0.5443 0.3478 0.1079
0.4220 0.3964 0.1816
0.2997 0.4450 0.2553
0.1774 0.4936 0.3290
0.0550 0.5422 0.4027

0 0.6581 0.3419
0 0.8291 0.1709
0 1.0000 0.0000

The output data is represented row-wise. Each portfolio’s risk, rate of return,
and associated weights are identified as corresponding rows in the vectors
and matrix.

For example, you can see from these results that the second portfolio has a
risk of 0.0445, an expected return of 13.16%, and allocations of about 67% in
the first asset, 30% in the second, and 3% in the third.

3-7

3 Portfolio Analysis

Portfolio Selection and Risk Aversion

In this section...

“Introduction” on page 3-8

“Optimal Risky Portfolio Example” on page 3-9

Introduction
One of the factors to consider when selecting the optimal portfolio for a
particular investor is degree of risk aversion. This level of aversion to risk
can be characterized by defining the investor’s indifference curve. This curve
consists of the family of risk/return pairs defining the trade-off between
the expected return and the risk. It establishes the increment in return
that a particular investor will require in order to make an increment in risk
worthwhile. Typical risk aversion coefficients range between 2.0 and 4.0, with
the higher number representing lesser tolerance to risk. The equation used to
represent risk aversion in Financial Toolbox software is

U = E(r) - 0.005*A*sig^2

where:

U is the utility value.

E(r) is the expected return.

A is the index of investor’s aversion.

sig is the standard deviation.

3-8

Portfolio Selection and Risk Aversion

Optimal Risky Portfolio Example
This example computes the optimal risky portfolio on the efficient frontier
based upon the risk-free rate, the borrowing rate, and the investor’s degree of
risk aversion. You do this with the function portalloc.

First generate the efficient frontier data using either portopt or frontcon.
This example uses portopt and the same asset data from the previous
example.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004;
-0.010 0.040 -0.002;
0.004 -0.002 0.023];

This time consider 20 different points along the efficient frontier.

NumPorts = 20;

3-9

3 Portfolio Analysis

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, NumPorts);

As with frontcon, calling portopt while specifying output arguments returns
the corresponding vectors and arrays representing the risk, return, and
weights for each of the portfolios along the efficient frontier. Use them as the
first three input arguments to the function portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds
between the risky portfolio and the risk-free asset, using these values for the
risk-free rate, borrowing rate and investor’s degree of risk aversion.

RisklessRate = 0.08
BorrowRate = 0.12
RiskAversion = 3

Calling portalloc without specifying any output arguments gives a graph
displaying the critical points.

portalloc (PortRisk, PortReturn, PortWts, RisklessRate,...
BorrowRate, RiskAversion);

3-10

Portfolio Selection and Risk Aversion

Calling portalloc while specifying the output arguments returns the
variance (RiskyRisk), the expected return (RiskyReturn), and the weights
(RiskyWts) allocated to the optimal risky portfolio. It also returns the fraction
(RiskyFraction) of the complete portfolio allocated to the risky portfolio,
and the variance (OverallRisk) and expected return (OverallReturn) of the
optimal overall portfolio. The overall portfolio combines investments in the
risk-free asset and in the risky portfolio. The actual proportion assigned to
each of these two investments is determined by the degree of risk aversion
characterizing the investor.

[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,...

OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,...

RisklessRate, BorrowRate, RiskAversion)

RiskyRisk = 0.1288

RiskyReturn = 0.1791

RiskyWts = 0.0057 0.5879 0.4064

RiskyFraction = 1.1869

OverallRisk = 0.1529

OverallReturn = 0.1902

The value of RiskyFraction exceeds 1 (100%), implying that the risk
tolerance specified allows borrowing money to invest in the risky portfolio, and
that no money will be invested in the risk-free asset. This borrowed capital is
added to the original capital available for investment. In this example the
customer will tolerate borrowing 18.69% of the original capital amount.

3-11

3 Portfolio Analysis

Constraint Specification

In this section...

“Example” on page 3-12

“Linear Constraint Equations” on page 3-14

“Specifying Additional Constraints” on page 3-17

Example
This example computes the efficient frontier of portfolios consisting of three
different assets, INTC, XON, and RD, given a list of constraints. The expected
returns for INTC, XON, and RD are respectively as follows:

ExpReturn = [0.1 0.2 0.15];

The covariance matrix is

ExpCovariance = [0.005 -0.010 0.004;
-0.010 0.040 -0.002;
0.004 -0.002 0.023];

• Constraint 1

- Allow short selling up to 10% of the portfolio value in any asset, but limit
the investment in any one asset to 110% of the portfolio value.

• Constraint 2

- Consider two different sectors, technology and energy, with the following
table indicating the sector each asset belongs to.

Asset INTC XON RD

Sector Technology Energy Energy

Constrain the investment in the Energy sector to 80% of the portfolio
value, and the investment in the Technology sector to 70%.

To solve this problem, use frontcon, passing in a list of asset constraints.
Consider eight different portfolios along the efficient frontier:

3-12

Constraint Specification

NumPorts = 8;

To introduce the asset bounds constraints specified in Constraint 1,
create the matrix AssetBounds, where each column represents an
asset. The upper row represents the lower bounds, and the lower row
represents the upper bounds.

AssetBounds = [-0.10, -0.10, -0.10;
1.10, 1.10, 1.10];

Constraint 2 needs to be entered in two parts, the first part defining the
groups, and the second part defining the constraints for each group.
Given the information above, you can build a matrix of 1s and 0s
indicating whether a specific asset belongs to a group. Each column
represents an asset, and each row represents a group. This example has
two groups: the technology group, and the energy group. Create the
matrix Groups as follows.

Groups = [0 1 1;
1 0 0];

The GroupBounds matrix allows you to specify an upper and lower
bound for each group. Each row in this matrix represents a group.
The first column represents the minimum allocation, and the second
column represents the maximum allocation to each group. Since the
investment in the Energy sector is capped at 80% of the portfolio value,
and the investment in the Technology sector is capped at 70%, create
the GroupBounds matrix using this information.

GroupBounds = [0 0.80;
0 0.70];

Now use frontcon to obtain the vectors and arrays representing the
risk, return, and weights for each of the eight portfolios computed along
the efficient frontier.

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts, [], AssetBounds, Groups, GroupBounds)

PortRisk =

3-13

3 Portfolio Analysis

0.0416
0.0499
0.0624
0.0767
0.0920
0.1100
0.1378
0.1716

PortReturn =

0.1279
0.1361
0.1442
0.1524
0.1605
0.1687
0.1768
0.1850

PortWts =

0.7000 0.2582 0.0418
0.6031 0.3244 0.0725
0.4864 0.3708 0.1428
0.3696 0.4172 0.2132
0.2529 0.4636 0.2835
0.2000 0.5738 0.2262
0.2000 0.7369 0.0631
0.2000 0.9000 -0.1000

The output data is represented row-wise, where each portfolio’s risk,
rate of return, and associated weight is identified as corresponding rows
in the vectors and matrix.

Linear Constraint Equations
While frontcon allows you to enter a fixed set of constraints related to
minimum and maximum values for groups and individual assets, you often
need to specify a larger and more general set of constraints when finding

3-14

Constraint Specification

the optimal risky portfolio. The function portopt addresses this need, by
accepting an arbitrary set of constraints as an input matrix.

The auxiliary function portcons can be used to create the matrix of
constraints, with each row representing an inequality. These inequalities are
of the type A*Wts' <= b, where A is a matrix, b is a vector, and Wts is a row
vector of asset allocations. The number of columns of the matrix A, and the
length of the vector Wts correspond to the number of assets. The number of
rows of the matrix A, and the length of vector b correspond to the number
of constraints. This method allows you to specify any number of linear
inequalities to the function portopt.

In actuality, portcons is an entry point to a set of functions that generate
matrices for specific types of constraints. portcons allows you to specify all
the constraints data at once, while the specific portfolio constraint functions
allow you to build the constraints incrementally. These constraint functions
are pcpval, pcalims, pcglims, and pcgcomp.

Consider an example to help understand how to specify constraints to portopt
while bypassing the use of portcons. This example requires specifying the
minimum and maximum investment in various groups.

Maximum and Minimum Group Exposure

Group Minimum Exposure Maximum Exposure

North America 0.30 0.75

Europe 0.10 0.55

Latin America 0.20 0.50

Asia 0.50 0.50

Note that the minimum and maximum exposure in Asia is the same. This
means that you require a fixed exposure for this group.

Also assume that the portfolio consists of three different funds. The
correspondence between funds and groups is shown in the table below.

3-15

3 Portfolio Analysis

Group Membership

Group Fund 1 Fund 2 Fund 3

North America X X

Europe X

Latin America X

Asia X X

Using the information in these two tables, build a mathematical
representation of the constraints represented. Assume that the vector of
weights representing the exposure of each asset in a portfolio is called
Wts = [W1 W2 W3].

Specifically

1. W1 + W2 ≥ 0.30

2. W1 + W2 ≤ 0.75

3. W3 ≥ 0.10

4. W3 ≤ 0.55

5. W1 ≥ 0.20

6. W1 ≤ 0.50

7. W2 + W3 = 0.50

Since you need to represent the information in the form A*Wts <= b,
multiply equations 1, 3 and 5 by –1. Also turn equation 7 into a set of two
inequalities: W2 + W3 ≥ 0.50 and W2 + W3 ≤ 0.50. (The intersection of these
two inequalities is the equality itself.) Thus

1. -W1 - W2 ≤ -0.30

2. W1 + W2 ≤ 0.75

3. -W3 ≤ -0.10

3-16

Constraint Specification

4. W3 ≤ 0.55

5. -W1 ≤ -0.20

6. W1 ≤ 0.50

7. -W2 - W3 ≤ -0.50

8. W2 + W3 ≤ 0.50

Bringing these equations into matrix notation gives

A = [-1 -1 0;
1 1 0;
0 0 -1;
0 0 1;

-1 0 0;
1 0 0;
0 -1 -1;
0 1 1]

b = [-0.30;
0.75;

-0.10;
0.55;

-0.20;
0.50;

-0.50;
0.50]

Build the constraint matrix ConSet by concatenating the matrix A to the
vector b.

ConSet = [A, b]

Specifying Additional Constraints
The example above defined a constraints matrix that specified a set of typical
scenarios. It defined groups of assets, specified upper and lower bounds for
total allocation in each of these groups, and it set the total allocation of one of
the groups to a fixed value. Constraints like these are common occurrences.

3-17

3 Portfolio Analysis

The function portcons was created to simplify the creation of the constraint
matrix for these and other common portfolio requirements. portcons takes
as input arguments a list of constraint-specifier strings, followed by the data
necessary to build the constraint specified by the strings.

Assume that you need to add more constraints to the previous example.
Specifically, add a constraint indicating that the sum of weights in any
portfolio should be equal to 1, and another set of constraints (one per
asset) indicating that the weight for each asset must greater than 0. This
translates into five more constraint rows: two for the new equality, and three
indicating that each weight must be greater or equal to 0. The total number
of inequalities in the example is now 13. Clearly, creating the constraint
matrix can turn into a tedious task.

To create the new constraint matrix using portcons, use two separate
constraint-specifier strings:

• 'Default', which indicates that each weight is greater than 0 and that the
total sum of the weights adds to 1

• 'GroupLims', which defines the minimum and maximum allocation on
each group

The only data requirement for the constraint-specifier string 'Default'
is NumAssets (the total number of assets). The constraint-specifier string
'GroupLims' requires three different arguments: a Groups matrix indicating
the assets that belong to each group, the GroupMin vector indicating the
minimum bounds for each group, and the GroupMax vector indicating the
maximum bounds for each group. Based on the table Group Membership on
page 3-16, build the Group matrix, with each row representing a group, and
each column representing an asset.

Group = [1 1 0;
0 0 1;
1 0 0;
0 1 1]

The table Maximum and Minimum Group Exposure on page 3-15 has the
information to build GroupMin and GroupMax.

GroupMin = [0.30 0.10 0.20 0.50];

3-18

Constraint Specification

GroupMax = [0.75 0.55 0.50 0.50];

Given that the number of assets is three, build the constraint matrix by
calling portcons.

ConSet = portcons('Default', 3, 'GroupLims', Group, GroupMin,...

GroupMax);

In most cases, portcons('Default') returns the minimal set of constraints
required for calling portopt. If ConSet is not specified in the call to portopt,
the function calls portcons passing 'Default' as its only specifier.

Now use portopt to obtain the vectors and arrays representing the risk,
return, and weights for the portfolios computed along the efficient frontier.

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, [], [], ConSet)

PortRisk = 0.0586
Port Return = 0.1375
PortWts = 0.5 0.25 0.25

In this case, the constraints allow only one optimum portfolio.

3-19

3 Portfolio Analysis

Active Returns and Tracking Error Efficient Frontier
Suppose you want to identify an efficient set of portfolios that minimize
the variance of the difference in returns with respect to a given target
portfolio, subject to a given expected excess return. The mean and standard
deviation of this excess return are often called the active return and active
risk, respectively. Active risk is sometimes referred to as the tracking error.
Since the objective is to track a given target portfolio as closely as possible,
the resulting set of portfolios is sometimes referred to as the tracking error
efficient frontier.

Specifically, assume that the target portfolio is expressed as an index weight
vector, such that the index return series may be expressed as a linear
combination of the available assets. This example illustrates how to construct
a frontier that minimizes the active risk (tracking error) subject to attaining a
given level of return. That is, it computes the tracking error efficient frontier.

One way to construct the tracking error efficient frontier is to explicitly form
the target return series and subtract it from the return series of the individual
assets. In this manner, you specify the expected mean and covariance of
the active returns, and compute the efficient frontier subject to the usual
portfolio constraints.

This example works directly with the mean and covariance of the absolute
(unadjusted) returns but converts the constraints from the usual absolute
weight format to active weight format.

Consider a portfolio of five assets with the following expected returns,
standard deviations, and correlation matrix based on absolute weekly asset
returns.

NumAssets = 5;

ExpReturn = [0.2074 0.1971 0.2669 0.1323 0.2535]/100;

Sigmas = [2.6570 3.6297 3.9916 2.7145 2.6133]/100;

Correlations = [1.0000 0.6092 0.6321 0.5833 0.7304
0.6092 1.0000 0.8504 0.8038 0.7176
0.6321 0.8504 1.0000 0.7723 0.7236

3-20

Active Returns and Tracking Error Efficient Frontier

0.5833 0.8038 0.7723 1.0000 0.7225
0.7304 0.7176 0.7236 0.7225 1.0000];

Convert the correlations and standard deviations to a covariance matrix
using corr2cov.

ExpCovariance = corr2cov(Sigmas, Correlations);

Next, assume that the target index portfolio is an equally-weighted portfolio
formed from the five assets. Note that the sum of index weights equals 1,
satisfying the standard full investment budget equality constraint.

Index = ones(NumAssets, 1)/NumAssets;

Generate an asset constraint matrix using portcons. The constraint matrix
AbsConSet is expressed in absolute format (unadjusted for the index), and is
formatted as [A b], corresponding to constraints of the form A*w <= b. Each
row of AbsConSet corresponds to a constraint, and each column corresponds to
an asset. Allow no short-selling and full investment in each asset (lower and
upper bounds of each asset are 0 and 1, respectively). In particular, note that
the first two rows correspond to the budget equality constraint; the remaining
rows correspond to the upper/lower investment bounds.

AbsConSet = portcons('PortValue', 1, NumAssets, ...
'AssetLims', zeros(NumAssets,1), ones(NumAssets,1));

Now transform the absolute constraints to active constraints with
abs2active.

ActiveConSet = abs2active(AbsConSet, Index);

An examination of the absolute and active constraint matrices reveals that
they are differ only in the last column (the columns corresponding to the
b in A*w <= b).

[AbsConSet(:,end) ActiveConSet(:,end)]

ans =

1.0000 0
-1.0000 0

3-21

3 Portfolio Analysis

1.0000 0.8000
1.0000 0.8000
1.0000 0.8000
1.0000 0.8000
1.0000 0.8000

0 0.2000
0 0.2000
0 0.2000
0 0.2000
0 0.2000

In particular, note that the sum-to-one absolute budget constraint becomes
a sum-to-zero active budget constraint. The general transformation is as
follows:

b b A Indexactive absolute= − × .

Now construct and plot the tracking error efficient frontier with 21 portfolios.

[ActiveRisk, ActiveReturn, ActiveWeights] = ...
portopt(ExpReturn,ExpCovariance, 21, [], ActiveConSet);
ActiveRisk = real(ActiveRisk);
plot(ActiveRisk*100, ActiveReturn*100, 'blue')
grid('on')
xlabel('Active Risk (Standard Deviation in Percent)')
ylabel('Active Return (Percent)')
title('Tracking Error Efficient Frontier')

3-22

Active Returns and Tracking Error Efficient Frontier

Of particular interest is the lower-left portfolio along the frontier. This
zero-risk/zero-return portfolio has a practical economic significance. It
represents a full investment in the index portfolio itself. Note that each
tracking error efficient portfolio (each row in the array ActiveWeights)
satisfies the active budget constraint, and thus represents portfolio investment
allocations with respect to the index portfolio. To convert these allocations to
absolute investment allocations, add the index to each efficient portfolio.

AbsoluteWeights = ActiveWeights + repmat(Index', 21, 1);

3-23

3 Portfolio Analysis

3-24

4

Portfolio Optimization Tools

• “Portfolio Optimization Theory” on page 4-2

• “Portfolio Object” on page 4-13

• “Constructing the Portfolio Object” on page 4-23

• “Common Operations on the Portfolio Object” on page 4-30

• “Working with Asset Returns and Moments of Asset Returns” on page 4-37

• “Working with Portfolio Constraints” on page 4-53

• “Validating the Portfolio Problem” on page 4-78

• “Estimate Efficient Portfolios” on page 4-82

• “Estimate Efficient Frontiers” on page 4-96

• “Post-Processing” on page 4-103

• “Asset Allocation Example” on page 4-108

4 Portfolio Optimization Tools

Portfolio Optimization Theory

In this section...

“Portfolio Optimization Problems” on page 4-2

“Portfolio Problem Specification” on page 4-2

“Return Proxy” on page 4-3

“Risk Proxy” on page 4-5

“Portfolio Set for Mean-Variance Portfolio Optimization” on page 4-5

“Default Portfolio Problem” on page 4-12

Portfolio Optimization Problems
Portfolio optimization problems involve identifying portfolios that satisfy
three criteria: minimize a proxy for risk, match or exceed a proxy for return,
and satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset
universe. A portfolio specifies either holdings or weights in each individual
asset in the asset universe. The convention is to specify portfolios in terms of
weights, although the portfolio object tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded
set. The proxy for risk is a function that characterizes either the variability
or losses associated with portfolio choices. The proxy for return is a function
that characterizes either the gross or net benefits associated with portfolio
choices. The terms "risk" and "risk proxy" and "return" and "return proxy"
are interchangeable. The fundamental insight of Markowitz (see “Portfolio
Optimization” on page A-12) is that the goal of the portfolio choice problem
is to seek minimum risk for a given level of return and to seek maximum
return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms
a curve called the efficient frontier.

Portfolio Problem Specification
To specify a portfolio optimization problem, you need:

4-2

Portfolio Optimization Theory

• Proxy for portfolio return (μ)

• Proxy for portfolio risk (Σ)

• Set of feasible portfolios (X), called a portfolio set.

Financial Toolbox software supports a portfolio object for mean-variance
portfolio optimization. The portfolio object has either gross or net portfolio
returns as the return proxy, the variance of portfolio returns as the risk
proxy, and a portfolio set that is any combination of the specified constraints
to form a portfolio set.

Return Proxy

The proxy for portfolio return is a function : X R on a portfolio set

X Rn that characterizes the rewards associated with portfolio choices. In
most cases, the proxy for portfolio return has two general forms, gross and net
portfolio returns. Both portfolio return models separate the risk-free rate r0 so

that the portfolio x X contains only risky assets.

Regardless of the underlying distribution of asset returns, a collection of S
asset returns y1, ... ,yS has a mean of asset returns

m
S

ys
s

S

1

1

and (sample) covariance of asset returns

C
S

y m y ms s
T

s

S

1

1 1
()()

These moments (or alternative estimators that characterize these moments)
are used directly in mean-variance portfolio optimization to form proxies
for portfolio risk and return.

Gross Portfolio Returns
The gross portfolio return for a portfolio x X is

4-3

4 Portfolio Optimization Tools

() ()x r m r xT 0 01

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The
properties in the portfolio object to specify gross portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m

Net Portfolio Returns
The net portfolio return for a portfolio x X is

() () max{ , } max{ , }x r m r x b x x s x xT T T 0 0 0 01 0 0

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

b is the proportional cost to purchase assets (n vector).

s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also, although in
this case, it is necessary to incorporate prices into such costs. The properties
in the portfolio object to specify net portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m

4-4

Portfolio Optimization Theory

• InitPort forx0

• BuyCost for b

• SellCost for s.

Risk Proxy

The proxy for portfolio risk is a function : X R on a portfolio set X Rn
that characterizes the risks associated with portfolio choices.

Variance of Portfolio Returns
The variance of portfolio returns for a portfolio x X is:

 x x CxT

where C is covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the portfolio object to specify the variance of portfolio returns
is AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the
variance of portfolio returns, the square root, which is the standard deviation
of portfolio returns, is often reported and displayed. Moreover, this quantity
is often called the "risk" of the portfolio. For details, see Markowitz (“Portfolio
Optimization” on page A-12).

Portfolio Set for Mean-Variance Portfolio
Optimization
The final element for a complete specification of a portfolio optimization
problem is the set of feasible portfolios, which is called a portfolio set. A

portfolio set X Rn is specified by construction as the intersection of sets
formed by a collection of constraints on portfolio weights. A portfolio set
necessarily and sufficiently must be a nonempty, closed, and bounded set.

When you set up your portfolio set, you need to ensure that the portfolio set
satisfies these conditions. The most basic or "default" portfolio set requires
portfolio weights to be nonnegative (using the lower-bound constraint) and to

4-5

4 Portfolio Optimization Tools

sum to 1 (using the budget constraint). The most general portfolio set handled
by the portfolio optimization tools can have any of the following constraints:

• Linear inequality constraints

• Linear equality constraints

• Bound constraints

• Budget constraints

• Group constraints

• Group ratio constraints

• Average turnover constraints

• One-way turnover constraints

Linear Inequality Constraints
Linear inequality constraints are general linear constraints that model
relationships among portfolio weights that satisfy a system of inequalities.
Linear inequality constraints take the form

A x bI I

where:

x is the portfolio (n vector).

AI is the linear inequality constraint matrix (nI-by-n matrix).

bI is the linear inequality constraint vector (nI vector).

n is the number of assets in the universe and nI is the number of constraints.

Portfolio object properties to specify linear inequality constraints are:

• AInequality for AI

• bInequality for bI

The default is to ignore these constraints.

4-6

Portfolio Optimization Theory

Linear Equality Constraints
Linear equality constraints are general linear constraints that model
relationships among portfolio weights that satisfy a system of equalities.
Linear equality constraints take the form

A x bE E

where:

x is the portfolio (n vector).

AE is the linear equality constraint matrix (nE-by-n matrix).

bI is the linear equality constraint vector (nE vector).

n is the number of assets in the universe and nE is the number of constraints.

Portfolio object properties to specify linear equality constraints are:

• AEquality for AE

• bEquality for bE

The default is to ignore these constraints.

Bound Constraints
Bound constraints are specialized linear constraints that confine portfolio
weights to fall either above or below specific bounds. Since every portfolio set
must be bounded, it is often a good practice, albeit not necessary, to set explicit
bounds for the portfolio problem. To obtain explicit bounds for a given portfolio
set, use the method estimateBounds. Bound constraints take the form

l x uB B

where:

x is the portfolio (n vector).

lB is the lower-bound constraint (n vector).

4-7

4 Portfolio Optimization Tools

uB is the upper-bound constraint (n vector).

n is the number of assets in the universe.

Portfolio object properties to specify bound constraints are:

• LowerBound for lB

• UpperBound for uB

The default is to ignore these constraints.

Note, the default portfolio optimization problem (see “Default Portfolio
Problem” on page 4-12) has lB = 0 with uB set implicitly through a budget
constraint.

Budget Constraints
Budget constraints are specialized linear constraints that confine the sum of
portfolio weights to fall either above or below specific bounds. The constraints
take the form

l x uS
T

S 1

where:

x is the portfolio (n vector).

lS is the lower-bound budget constraint (scalar).

uS is the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify budget constraints are:

• LowerBudget for lS

• UpperBudget for uS

The default is to ignore this constraint.

4-8

Portfolio Optimization Theory

The default portfolio optimization problem (see “Default Portfolio Problem”
on page 4-12) has lS = uS= 1, which means that the portfolio weights sum to
1. If the portfolio optimization problem includes possible movements in and
out of cash, the budget constraint is used to specify how far portfolios can go
into cash. For example, if lS = 0 and uS = 1, then the portfolio can have 0% to
100% invested in cash. If cash is to be a portfolio choice, set RiskFreeRate
(r0) to a suitable value (see “Return Proxy” on page 4-3 and “Working with a
Riskless Asset” on page 4-49).

Group Constraints
Group constraints are specialized linear constraints that provide a useful
way to enforce "membership" among groups of assets. The constraints take
the form

l Gx uG G

where:

x is the portfolio (n vector).

lG is the lower-bound group constraint (nG vector).

uG is the upper-bound group constraint (nG vector).

G is the matrix of group membership indexes (nG-by-n matrix).

Each row of G identifies which assets belong to a group associated with that
row. Each row contains either 0s or 1s with 1 indicating that an asset is part
of the group or 0 indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:

• GroupMatrix for G

• LowerGroup for lG

• UpperGroup for uG

The default is to ignore these constraints.

4-9

4 Portfolio Optimization Tools

Group Ratio Constraints
Group ratio constraints are specialized linear constraints that provide a
useful way to enforce relationships among groups of assets. The constraints
take the form

l G x G x u G xRi B i A i Ri B i() () ()

for i = 1, ... , nR where:

x is the portfolio (n vector).

lR is the vector of lower-bound group ratio constraints (nR vector).

uR is the vector matrix of upper-bound group ratio constraints (nR vector).

GA is the matrix of base group membership indexes (nR-by-n matrix).

GB is the matrix of comparison group membership indexes (nR-by-n matrix).

n is the number of assets in the universe and nR is the number of constraints.
Each row of GA and GB identify which assets belong to a base and comparison
group associated with that row. Each row contains either 0s or 1s with 1
indicating that an asset is part of the group or 0 indicating that the asset is
not part of the group.

Portfolio object properties to specify group ratio constraints are:

• GroupA for GA

• GroupB for GB

• LowerRatio for lR

• UpperRatio for uR

The default is to ignore these constraints.

Average Turnover Constraints
Turnover constraint is a linear absolute value constraint that ensures
estimated optimal portfolios differ from an initial portfolio by no more than a

4-10

Portfolio Optimization Theory

specified amount. Although portfolio turnover is defined in many ways, the
turnover constraints implemented in Financial Toolbox software computes
portfolio turnover as the average of purchases and sales. Average turnover
constraints takes the form

1
2

1 0
T x x| |

where:

x is the portfolio (n vector).

x0 is the initial portfolio (n vector).

τ is the upper-bound for turnover (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify the average turnover constraint are:

• Turnover for τ

• InitPort for x0

The default is to ignore this constraint.

One-Way Turnover Constraints
One-way turnover constraints ensure that estimated optimal portfolios differ
from an initial portfolio by no more than specified amounts according to
whether the differences are purchases or sales. The constraints take the form

1 0 0T
Bx x max ,

1 0 0T
Sx x max ,

with

• x — The portfolio (n vector)

• x0 — Initial portfolio (n vector)

4-11

4 Portfolio Optimization Tools

• τB— Upper-bound for turnover constraint on purchases (scalar)

• τS— Upper-bound for turnover constraint on sales (scalar)

where n is the number of assets in the universe.

To specify one-way turnover constraints, use the following properties in the
portfolio object: BuyTurnover for τB, SellTurnover for τS, and InitPort for
x0.

Note The average turnover constraint with τ is not a combination of the
one-way turnover constraints with τ = τB = τS.

Default Portfolio Problem
The default portfolio optimization problem has a risk and return proxy
associated with a given problem, and a portfolio set that specifies portfolio
weights to be nonnegative and to sum to 1. The lower bound combined with
the budget constraint is sufficient to ensure that the portfolio set is nonempty,
closed, and bounded. The default portfolio optimization problem characterizes
a long-only investor who is fully invested in a collection of assets.

4-12

Portfolio Object

Portfolio Object

In this section...

“Portfolio Object Properties and Methods” on page 4-13

“Working with Portfolio Objects” on page 4-18

“Setting and Getting Properties” on page 4-19

“Displaying Portfolio Objects” on page 4-20

“Saving and Loading Portfolio Objects” on page 4-20

“Estimating Efficient Portfolios and Frontiers” on page 4-20

“Arrays of Portfolio Objects” on page 4-21

“Subclassing Portfolio Objects” on page 4-21

“Conventions for Representation of Data” on page 4-22

Portfolio Object Properties and Methods
The portfolio object implements mean-variance portfolio optimization and is
derived from the abstract class AbstractPortfolio. Every property and
method of the portfolio object is public, although some properties and methods
are hidden. See Portfolio Object Properties on page 4-13 and Portfolio Object
Methods on page 4-15 for the properties and methods of a portfolio object. The
portfolio object is a value object where every instance of the object is a distinct
version of the object. Since the portfolio object is also a MATLAB object, it
inherits the default methods associated with MATLAB objects.

Portfolio Object Properties

Property Description Characteristics

AEquality Matrix for equality
constraints

Matrix

AInequality Matrix for inequality
constraints

Matrix

4-13

4 Portfolio Optimization Tools

Portfolio Object Properties (Continued)

Property Description Characteristics

AssetCovar Covariance of asset returns Symmetric
positive-semidefinite
matrix

AssetList List of asset names or
identifiers

Vector cell array of strings

AssetMean Mean of asset returns Vector

bEquality Vector for equality
constraints

Vector

bInequality Vector for inequality
constraints

Vector

BuyCost Cost to purchase assets Vector

BuyTurnover Turnover constraint on
purchases

Scalar

GroupA Base group ratio constraint
matrix

Boolean matrix or matrix

GroupB Comparison group ratio
constraint matrix

Boolean matrix or matrix

GroupMatrix Group membership matrix Boolean matrix or matrix

InitPort Initial or current portfolio Vector

LowerBound Lower bound constraint Vector

LowerBudget Lower budget constraint Scalar

LowerGroup Lower group constraint Vector

LowerRatio Lower group ratio constraint
ratio

Vector

Name Name for instance of
portfolio object

String

NumAssets Number of assets in universe Scalar positive integer

4-14

Portfolio Object

Portfolio Object Properties (Continued)

Property Description Characteristics

RiskFreeRate Period return of riskless
asset

Scalar

SellCost Cost to sell assets Vector

SellTurnover Turnover constraint on sales Scalar

Turnover Upper bound portfolio
turnover

Scalar

UpperBound Upper bound constraint Vector

UpperBudget Upper budget constraint Scalar

UpperGroup Upper group constraint Vector

UpperRatio Upper group ratio constraint
ratio

Vector

Portfolio Object Methods

Method Description

addEquality Add equality constraints for portfolio
weights to existing constraints.

addGroupRatio Add group ratio constraints for
portfolio weights to existing
constraints.

addGroups Add group constraints for portfolio
weights to existing constraints.

addInequality Add inequality constraints for portfolio
weights to existing constraints.

checkFeasibility Determine if portfolios are members of
the set of feasible portfolios.

estimateAssetMoments Estimate mean and covariance of asset
returns from price or return data.

4-15

4 Portfolio Optimization Tools

Portfolio Object Methods (Continued)

Method Description

estimateBounds Determine if set of feasible portfolios
is nonempty and bounded.

estimateFrontier Estimate portfolios on the entire
efficient frontier.

estimateFrontierByReturn Estimate portfolios on the efficient
frontier with targeted returns or
return proxies.

estimateFrontierByRisk Estimate portfolios on the efficient
frontier with targeted risks or risk
proxies.

estimateFrontierLimits Estimate portfolios at the extreme
ends of the efficient frontier (minimum
risk and maximum return).

estimateMaxSharpeRatio Estimate efficient portfolio that
maximizes the Sharpe ratio.

estimatePortMoments Estimate mean and standard
deviation of portfolio returns for
specified portfolios.

estimatePortReturn Estimate return or return proxy for
specified portfolios.

estimatePortRisk Estimate risk or risk proxy for
specified portfolios.

getAssetMoments Get mean and covariance of asset
returns from object.

getBounds Get lower and upper bounds from
object.

getBudget Get lower and upper budget
constraints from object.

getCosts Get purchase and sales proportional
transaction costs from object.

4-16

Portfolio Object

Portfolio Object Methods (Continued)

Method Description

getEquality Get equality constraint matrix and
vector from object.

getGroupRatio Get base matrix, comparison matrix,
and lower and upper bounds for group
ratio constraints from object.

getGroups Get group matrix and lower and upper
bounds for group constraints from
object.

getInequality Get inequality constraint matrix and
vector from object.

getOneWayTurnover Get one-way portfolio turnover
constraints.

plotFrontier Plot efficient frontier and optionally
obtain risks and returns for portfolios
on the efficient frontier.

setAssetList Set up a list of asset names and
symbols to be associated with assets
in universe.

setAssetMoments Set up mean and covariance of asset
returns.

setBounds Set up lower and upper bounds for
portfolio weights.

setBudget Set up lower and upper budget
constraints for portfolio weights.

setCosts Set up purchase and sale proportional
transaction costs for assets in universe.

setDefaultConstraints Set up default constraints for portfolio
weights (nonnegative weights that
must sum to 1).

4-17

4 Portfolio Optimization Tools

Portfolio Object Methods (Continued)

Method Description

setEquality Set up equality constraints for portfolio
weights.

setGroupRatio Set up group ratio constraints for
portfolio weights.

setGroups Set up group constraints for portfolio
weights.

setInequality Set up inequality constraints for
portfolio weights.

setInitPort Set up initial portfolio weights.

setOneWayTurnover Set up one-way portfolio turnover
constraints.

setOptions Set up hidden control properties in
object (not implemented).

setSolver Set up solver to estimate efficient
portfolios.

setTurnover Set up average turnover constraints
for portfolio weights.

Working with Portfolio Objects
The portfolio object and its methods are an interface for mean-variance
portfolio optimization. Consequently, almost everything you do with the
portfolio object can be done using the methods. The basic workflow is:

1 Design your portfolio problem.

2 Use the portfolio constructor (Portfolio.) to create the portfolio object or
use the various set methods to set up your portfolio problem.

3 Use estimate methods to solve your portfolio problem.

4-18

Portfolio Object

In addition, methods are available to help you view intermediate results and
to diagnose your computations. Since MATLAB features are part of a portfolio
object, you can save and load objects from your workspace and create and
manipulate arrays of objects. After settling upon a problem, which, in the case
of mean-variance portfolio optimization, means that you have either data or
moments for asset returns and a collection of constraints on your portfolios,
use the portfolio constructor to set the properties for the portfolio object. The
portfolio constructor lets you create an object from scratch or update an
existing object. Since the portfolio object is a value object, it is easy to create a
basic object, then use methods to build upon the basic object to create new
versions of the basic object. This is useful to compare a basic problem with
alternatives derived from the basic problem. For details, see “Constructing
the Portfolio Object” on page 4-23.

Setting and Getting Properties
You can set properties of a portfolio object with either the constructor
(Portfolio.) or various set methods.

Note Although you can also set properties directly, it is not recommended
since error-checking is not performed when you set a property directly.

The portfolio constructor supports setting properties with parameter name
and value pairs such that each parameter name is a property and each value
is the value to assign to that property. For example, to set the AssetMean
and AssetCovar properties in an existing portfolio object p with the values m
and C, use the syntax:

p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);

In addition to the portfolio constructor, which lets you set individual
properties one at a time, groups of properties are set in a portfolio object with
various "set" and "add" methods. For example, to set up an average turnover
constraint, use the setTurnover method to specify the bound on portfolio
average turnover and the initial portfolio. To get individual properties from
a portfolio object, obtain properties directly or use an assortment of "get"
methods that obtain groups of properties from a portfolio object. The portfolio
object constructor and set methods have several useful features:

4-19

4 Portfolio Optimization Tools

• The constructor and set methods try to determine the dimensions of your
problem with either explicit or implicit inputs.

• The constructor and set methods try to resolve ambiguities with default
choices.

• The constructor and set methods perform scalar expansion on arrays when
possible.

• The methods try to diagnose and warn about problems.

Displaying Portfolio Objects
The portfolio object uses the default display method provided by MATLAB,
where display and disp display a portfolio object and its properties with
or without the object variable name.

Saving and Loading Portfolio Objects
Save and load portfolio objects with the MATLAB save and load commands.

Estimating Efficient Portfolios and Frontiers
Estimating efficient portfolios and efficient frontiers is the primary purpose of
the portfolio optimization tools. A collection of "estimate" and "plot" methods
provides ways to explore the efficient frontier. The "estimate" methods obtain
either efficient portfolios or risk and return proxies to form efficient frontiers.
At the portfolio level, a collection of methods estimates efficient portfolios on
the efficient frontier with methods to obtain efficient portfolios:

• At the endpoints of the efficient frontier

• That attain targeted values for return proxies

• That attain targeted values for risk proxies

• Along the entire efficient frontier

These methods also provide purchases and sales needed to shift from an
initial or current portfolio to each efficient portfolio. At the efficient frontier
level, a collection of methods plot the efficient frontier and estimate either risk
or return proxies for efficient portfolios on the efficient frontier. The resultant

4-20

Portfolio Object

efficient portfolios or risk and return proxies can be used in subsequent
analyses.

Arrays of Portfolio Objects
Although all methods associated with a portfolio object are designed to work
on a scalar portfolio object, the array capabilities of MATLAB enables you to
set up and work with arrays of portfolio objects. The easiest way to do this is
with the repmat function. For example, to create a 3-by-2 array of portfolio
objects:

p = repmat(Portfolio, 3, 2);
disp(p)

Once you have set up an array of portfolio objects, you can work on individual
portfolio objects in the array by indexing. For example:

p(i,j) = Portfolio(p(i,j), ...);

This example calls the portfolio object constructor for the (i, j) element of a
matrix of portfolio objects in the variable p.

If you set up an array of portfolio objects, you can access properties of a
particular portfolio object in the array by indexing so that you can set the
lower and upper bounds lb and ub for the (i,j,k) element of a 3-D array of
portfolio objects with

p(i,j,k) = p(i,j,k).setBounds(lb, ub);

and, once set, you can access these bounds with

[lb, ub] = p(i,j,k).getBounds;

Portfolio object methods work on only one portfolio object at a time.

Subclassing Portfolio Objects
You can subclass the portfolio object to override existing methods or to
add new properties or methods. To do so, create a derived class from the
Portfolio class. This gives you all the properties and methods of the
Portfolio class along with any new features that you choose to add to your
subclassed object. Since the Portfolio class is derived from an abstract

4-21

4 Portfolio Optimization Tools

class called AbstractPortfolio, you can also create a derived class from
AbstractPortfolio that implements an entirely different form of portfolio
optimization using the properties and methods of the AbstractPortfolio
class.

Conventions for Representation of Data
The portfolio optimization tools follow these conventions regarding the
representation of different quantities associated with portfolio optimization:

• Asset returns or prices are in matrix form with samples for a given asset
going down the rows and assets going across the columns. In the case of
prices, the earliest dates must be at top of the matrix, with increasing
dates going down.

• The mean and covariance of asset returns are stored in a vector and a
matrix and the tools have no requirement that the mean must be either a
column or row vector.

• Portfolios are in vector or matrix form with weights for a given portfolio
going down the rows and distinct portfolios going across the columns.

• Constraints on portfolios are formed in such a way that a portfolio is a
column vector.

• Portfolio risks and returns are either scalars or column vectors (for multiple
portfolio risks and returns).

.

4-22

Constructing the Portfolio Object

Constructing the Portfolio Object

In this section...

“Syntax” on page 4-23

“Portfolio Problem Sufficiency” on page 4-24

“Constructor Examples” on page 4-24

To create a fully specified mean-variance portfolio optimization problem,
instantiate the portfolio object using the portfolio constructor.

Syntax
Use the portfolio constructor Portfolio. to create an instance of an object
of the Portfolio. class. The portfolio constructor can be used in several
ways. To set up a portfolio optimization problem in a portfolio object, the
simplest syntax is:

p = Portfolio;

This syntax creates a portfolio object p such that all object properties are
empty.

The constructor also accepts collections of parameter name-value pairs
for properties and their values. The constructor accepts inputs for public
properties (see Portfolio Object Properties on page 4-13) with the general
syntax:

p = Portfolio('property1', value1, 'property2', value2, ...);

If a portfolio object already exists, the syntax permits the first (and only
the first argument) of the portfolio constructor to be an existing object
with subsequent parameter name-value pairs for properties to be added or
modified. For example, given an existing portfolio object in p, the general
syntax is:

p = Portfolio(p, 'property1', value1, 'property2', value2, ...);

Input parameter names are not case sensitive, but must be completely
specified. In addition, several properties can be specified with alternative

4-23

4 Portfolio Optimization Tools

parameter names (see “Shortcuts for Property Names” on page 4-27). The
constructor Portfolio tries to detect problem dimensions from the inputs
and, once set, subsequent inputs can undergo various scalar or matrix
expansion operations that simplify the overall process to formulate a problem.
In addition, a portfolio object is a value object so that, given portfolio p, the
following code creates two objects,p and q, that are distinct:

q = Portfolio(p, ...)

Portfolio Problem Sufficiency
A mean-variance portfolio optimization is completely specified with the
portfolio object if these two conditions are met:

• The moments of asset returns must be specified such that the property
AssetMean contains a valid finite mean vector of asset returns and the
property AssetCovar contains a valid symmetric positive-semidefinite
matrix for the covariance of asset returns.

The first condition is satisfied by setting the properties associated with the
moments of asset returns.

• The set of feasible portfolios must be a nonempty compact set, where a
compact set is closed and bounded.

The second condition is satisfied by an extensive collection of properties
that define different types of constraints to form a set of feasible portfolios.
Since such sets must be bounded, either explicit or implicit constraints can
be imposed, and several methods, such as estimateBounds, provide ways
to ensure that your problem is properly formulated.

Although the general sufficiency conditions for mean-variance portfolio
optimization go beyond these two conditions, the portfolio object implemented
in Financial Toolbox software implicitly handles all these additional
conditions. For more information on the Markowitz model for mean-variance
portfolio optimization, see “Portfolio Optimization” on page A-12.

Constructor Examples
If you create a portfolio object p with no input arguments, you can display it
using disp:

p = Portfolio;

4-24

Constructing the Portfolio Object

disp(p); Portfolio

Properties:
BuyCost: []

SellCost: []
RiskFreeRate: []

AssetMean: []
AssetCovar: []

Turnover: []
Name: []

NumAssets: []
AssetList: []
InitPort: []

AInequality: []
bInequality: []

AEquality: []
bEquality: []

LowerBound: []
UpperBound: []

LowerBudget: []
UpperBudget: []
GroupMatrix: []
LowerGroup: []
UpperGroup: []

GroupA: []
GroupB: []

LowerRatio: []
UpperRatio: []

Methods, Superclasses

The approaches listed provide a way to set up a portfolio optimization problem
with the portfolio constructor. The custom set methods offer additional ways
to set and modify collections of properties in the portfolio object.

Using the Constructor for a Single Step Setup
You can use the constructor to directly set up a "standard" portfolio
optimization problem, given a mean and covariance of asset returns in the
variables m and C:

4-25

4 Portfolio Optimization Tools

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio('assetmean', m, 'assetcovar', C, ...
'lowerbudget', 1, 'upperbudget', 1, 'lowerbound', 0);

Note, the LowerBound property value undergoes scalar expansion since
AssetMean and AssetCovar provide the dimensions of the problem.

You can use dot notation with the method plotFrontier:

p.plotFrontier;

4-26

Constructing the Portfolio Object

Using the Constructor with a Sequence of Steps
An alternative way to accomplish the same task of setting up a "standard"
portfolio optimization problem, given a mean and covariance of asset returns
in the variables m and C (which also illustrates that parameter names are
not case sensitive):

p = Portfolio;
p = Portfolio(p, 'assetmean', m, 'assetcovar', C);
p = Portfolio(p, 'lowerbudget', 1, 'upperbudget', 1);
p = Portfolio(p, 'lowerbound', 0);

p.plotFrontier;

This alternative works because the calls to the constructor are in this
particular order. In this case, the call to initialize AssetMean and AssetCovar
provides the dimensions for the problem. If you were to do this step last, you
would have to explicitly dimension the LowerBound property as follows:

p = Portfolio;
p = Portfolio(p, 'LowerBound', zeros(size(m)));
p = Portfolio(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);

p.plotFrontier;

If you did not specify the size of LowerBound but, instead, input a scalar
argument, the constructor assumes that you are defining a single-asset
problem and produces an error at the call to set asset moments with four
assets.

Shortcuts for Property Names
The portfolio constructor has shorter parameter names that replace longer
parameter names associated with specific properties of the portfolio object.
For example, rather than enter 'assetcovar', the constructor accepts the
case-insensitive name 'covar' to set the AssetCovar property in a portfolio
object. Although every parameter name corresponds with a single property in
the portfolio constructor, one exception exists with the alternative parameter
name 'budget', which signifies that both the LowerBudget and UpperBudget
properties are set to the same value to form an equality budget constraint.

4-27

4 Portfolio Optimization Tools

(Continued)

Shortcut Parameter
Name Equivalent Parameter / Property Name

ae AEquality

ai AInequality

covar AssetCovar

assetnames or assets AssetList

mean AssetMean

be bEquality

bi bInequality

group GroupMatrix

lb LowerBound

budget LowerBudget

n or num NumAssets

rfr RiskFreeRate

ub UpperBound

budget UpperBudget and LowerBudget

For example, this call to the constructor uses these shortcuts for properties
and is equivalent to the previous examples:

p = Portfolio('mean', m, 'covar', C, 'budget', 1, 'lb', 0);
p.plotFrontier;

Direct Setting of Portfolio Object Properties
Although not recommended, you can set properties directly, however no
error-checking is done on your inputs:

p = Portfolio;
p.NumAssets = numel(m);
p.AssetMean = m;

4-28

Constructing the Portfolio Object

p.AssetCovar = C;
p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));

p.plotFrontier;

4-29

4 Portfolio Optimization Tools

Common Operations on the Portfolio Object

In this section...

“Naming a Portfolio Object” on page 4-30

“Setting Up the Number of Assets in the Asset Universe” on page 4-30

“Setting Up a List of Asset Identifiers” on page 4-31

“Truncating and Padding Asset Lists” on page 4-32

“Setting Up an Initial or Current Portfolio” on page 4-33

Naming a Portfolio Object
To name a portfolio object, use the Name property. Name is informational and
has no effect on any portfolio calculations. If the Name property is nonempty,
Name is the title for the efficient frontier plot generated by plotFrontier. For
example, if you set up an asset allocation fund, you could name the portfolio
object Asset Allocation Fund:

p = Portfolio('Name','Asset Allocation Fund');
disp(p.Name);
Asset Allocation Fund

Setting Up the Number of Assets in the Asset Universe
The fundamental quantity in the portfolio object is the number of assets in
the asset universe. This quantity is maintained in the NumAssets property .
Although you can set this property directly, it is usually derived from other
properties such as the mean of asset returns and the initial portfolio. In some
instances, the number of assets may need to be set directly. This example
shows how to set up a portfolio object that has four assets:

p = Portfolio('NumAssets', 4);
disp(p.NumAssets);
4

Once the NumAssets property is set, you cannot modify it (unless no other
properties are set that depend upon NumAssets). The only way to change
the number of assets in an existing portfolio object with a known number of
assets is to create a new portfolio object.

4-30

Common Operations on the Portfolio Object

Setting Up a List of Asset Identifiers
When working with portfolios, you must specify a universe of assets. Although
you can perform a complete analysis without naming the assets in your
universe, it is helpful to have an identifier associated with each asset as you
create and work with portfolios. You can create a list of asset identifiers as
a cell vector of strings in the property AssetList. You can set up the list
using two methods.

Setting Up Asset Lists Using the Constructor
Suppose you have a portfolio object p with assets with symbols 'AA'’, 'BA',
'CAT', 'DD', and 'ETR'. You can create a list of these asset symbols in the
object using the constructor:

p = Portfolio('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList);
'AA' 'BA' 'CAT' 'DD' 'ETR'

Notice that the property AssetList is maintained as a cell array that contains
strings, and that it is necessary to pass a cell array into the constructor to set
AssetList. In addition, notice that the property NumAssets is set to 5 based
on the number of symbols used to create the asset list:

disp(p.NumAssets);
5

Setting Up Asset Lists Using the setAssetList Method
You can also specify a list of assets using the method setAssetList. Given
the list of asset symbols 'AA', 'BA', 'CAT', 'DD', and'ETR', you can use
setAssetList with:

p = Portfolio;
p = p.setAssetList({ 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList);
'AA' 'BA' 'CAT' 'DD' 'ETR'

setAssetList also enables you enter symbols directly as a comma-separated
list without creating a cell array of strings. For example, given the list of
assets symbols 'AA', 'BA', 'CAT', 'DD', and 'ETR', use setAssetList:

4-31

4 Portfolio Optimization Tools

p = Portfolio;
p = p.setAssetList('AA', 'BA', 'CAT', 'DD', 'ETR');
disp(p.AssetList);
'AA' 'BA' 'CAT' 'DD' 'ETR'

setAssetList has many additional features to create lists of asset identifiers.
If you use setAssetList with just a portfolio object, it creates a default
asset list according to the name specified in the hidden public property
defaultforAssetList (which is 'Asset' by default). The number of asset
names created depends on the number of assets in the property NumAssets. If
NumAssets is not set, then NumAssets is assumed to be 1.

For example, if a portfolio object p is created with NumAssets = 5, then this
code fragment demonstrates the default naming behavior:

p = Portfolio('numassets',5);
p = p.setAssetList;
disp(p.AssetList);
'Asset1' 'Asset2' 'Asset3' 'Asset4' 'Asset5'

Suppose that your assets are, for example, ETFs and you change the hidden
property defaultforAssetList to 'ETF', you can then create a default list
for ETFs:

p = Portfolio('numassets',5);
p.defaultforAssetList = 'ETF';
p = p.setAssetList;
disp(p.AssetList);
'ETF1' 'ETF2' 'ETF3' 'ETF4' 'ETF5'

Truncating and Padding Asset Lists
If the NumAssets property is already set and you pass in too many or too few
identifiers, the portfolio constructor, and the setAssetList method truncate
or pad the list with numbered default asset names that use the name specified
in the hidden public property defaultforAssetList. If the list is truncated
or padded, a warning message indicates the discrepancy. For example,
assume you have a portfolio object with five ETFs and you only know the
first three CUSIPs '921937835', '922908769', and '922042775'. Use this

4-32

Common Operations on the Portfolio Object

syntax to create an asset list that pads the remaining asset identifiers with
numbered "UnknownCUSIP" placeholders:

p = Portfolio('numassets',5);

p.defaultforAssetList = 'UnknownCUSIP';

p = p.setAssetList('921937835', '922908769', '922042775');

disp(p.AssetList);

Warning: Input list of assets has 2 too few identifiers. Padding with numbered assets.

> In Portfolio.setAssetList at 130

'921937835' '922908769' '922042775' 'UnknownCUSIP4' 'UnknownCUSIP5'

Alternatively, suppose you have too many identifiers and need only the first
four assets. This example illustrates truncation of the asset list using the
portfolio constructor:

p = Portfolio('numassets',4);

p = Portfolio(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });

disp(p.AssetList);

Warning: AssetList has 1 too many identifiers. Using first 4 assets.

> In Portfolio.checkarguments at 477

In Portfolio.Portfolio>Portfolio.Portfolio at 180

'AGG' 'EEM' 'MDY' 'SPY'

The hidden public property uppercaseAssetList is a Boolean flag to specify
whether to convert asset names to uppercase letters. The default value
for uppercaseAssetList is false. This example shows how to use the
uppercaseAssetList flag to force identifiers to be uppercase letters:

p = Portfolio;
p.uppercaseAssetList = true;
p = p.setAssetList({ 'aa', 'ba', 'cat', 'dd', 'etr' });
disp(p.AssetList);
'AA' 'BA' 'CAT' 'DD' 'ETR'

Setting Up an Initial or Current Portfolio
In many applications, creating a new optimal portfolio requires comparing
the new portfolio with an initial or current portfolio to form lists of purchases
and sales. The portfolio object property InitPort lets you identify an initial
or current portfolio. The initial portfolio also plays an essential role if you
have either transaction costs or an average turnover constraint. The initial
portfolio need not be feasible within the constraints of the problem. This can

4-33

4 Portfolio Optimization Tools

happen if the weights in a portfolio have shifted such that some constraints
become violated. To check if your initial portfolio is feasible, use the method
checkFeasibility described in “Validating Portfolios” on page 4-80. Suppose
you have an initial portfolio in x0, then use the portfolio object constructor
to set up an initial portfolio:

x0 = [0.3; 0.2; 0.2; 0.0];
p = Portfolio('InitPort', x0);
disp(p.InitPort);

0.3000
0.2000
0.2000

0

As with all array properties, InitPort can be set with scalar expansion. This
is helpful to set up an equally weighted initial portfolio of, for example, 10
assets:

p = Portfolio('NumAssets', 10, 'InitPort', 1/10);
disp(p.InitPort);
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

To clear an initial portfolio from your portfolio object, use either the
constructor or the setInitPort method with an empty input for the InitPort
property. If transaction costs or average turnover constraints are set, it is not
possible to clear the InitPort property in this way. In this case, to clear
InitPort, first clear the dependent properties and then clear theInitPort
property.

The InitPort property can also be set with setInitPort which lets you
specify the number of assets if you want to use scalar expansion. For example,
given an initial portfolio in x0, use setInitPort to set the InitPort property:

4-34

Common Operations on the Portfolio Object

p = Portfolio;
x0 = [0.3; 0.2; 0.2; 0.0];
p = p.setInitPort(x0);
disp(p.InitPort);
0.3000
0.2000
0.2000

0

To create, an equally weighted portfolio of four assets, use setInitPort:

p = Portfolio;
p = p.setInitPort(1/4, 4);
disp(p.InitPort);
0.2500
0.2500
0.2500
0.2500

Portfolio object methods that work with either transaction costs or average
turnover constraints also depend on the InitPort property. Consequently,
the set methods for transaction costs or average turnover constraints
permit the assignment of a value for the InitPort property as part of
their implementation. For details, see “Working with Average Turnover
Constraints” on page 4-71 and “Working with Transaction Costs” on page
4-50 for details. If either transaction costs or average turnover constraints
are used, then the InitPort property must have a nonempty value. Absent
a specific value assigned through the constructor or various set methods,
the portfolio object sets InitPort to 0 and warns if BuyCost, SellCost, or
Turnover properties are set. The following example illustrates what happens
if an average turnover constraint is specified with an initial portfolio:

p = Portfolio('Turnover', 0.3, 'InitPort', [0.3; 0.2; 0.2; 0.0]);
disp(p.InitPort);
0.3000
0.2000
0.2000

0

In contrast, this example shows what happens if an average turnover
constraint is specified without an initial portfolio:

4-35

4 Portfolio Optimization Tools

p = Portfolio('Turnover', 0.3);

disp(p.InitPort);

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints

specified. Will set NumAssets = 1 and InitPort = 0.

> In Portfolio.checkarguments at 403

In Portfolio.Portfolio>Portfolio.Portfolio at 180

0

4-36

Working with Asset Returns and Moments of Asset Returns

Working with Asset Returns and Moments of Asset Returns

In this section...

“Assignment Using the Portfolio Constructor” on page 4-37

“Assignment Using the setAssetMoments Method” on page 4-39

“Scalar Expansion of Arguments” on page 4-40

“Estimating Asset Moments from Asset Prices or Returns” on page 4-41

“Estimating Asset Moments from Asset Returns or Prices with Missing
Data” on page 4-45

“Estimating Asset Moments from Financial Time Series Data” on page 4-47

“Working with a Riskless Asset” on page 4-49

“Working with Transaction Costs” on page 4-50

Since mean-variance portfolio optimization problems require estimates for
the mean and covariance of asset returns, the portfolio object has several
ways to set and get the properties AssetMean (for the mean) and AssetCovar
(for the covariance). In addition, the return for a riskless asset is kept in
the property RiskFreeRate so that all assets in AssetMean and AssetCovar
are risky assets.

Assignment Using the Portfolio Constructor
Suppose you have a mean and covariance of asset returns in variables m and C.
The properties for the moments of asset returns are set using the constructor:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;
p = Portfolio('AssetMean', m, 'AssetCovar', C);
disp(p.NumAssets);
disp(p.AssetMean);
disp(p.AssetCovar);

4-37

4 Portfolio Optimization Tools

4
0.0042
0.0083
0.0100
0.0150

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

Notice that the portfolio object determines the number of assets in NumAssets
from the moments. The portfolio constructor enables separate initialization of
the moments, for example:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;

p = Portfolio;
p = Portfolio(p, 'AssetMean', m);
p = Portfolio(p, 'AssetCovar', C);
[assetmean, assetcovar] = p.getAssetMoments

assetmean =

0.0042
0.0083
0.0100
0.0150

assetcovar =

4-38

Working with Asset Returns and Moments of Asset Returns

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

The getAssetMoments method lets you get the values for AssetMean and
AssetCovar properties at the same time.

Assignment Using the setAssetMoments Method
You can also set asset moment properties using the setAssetMomentsmethod.
For example, given the mean and covariance of asset returns in the variables
m and C, the asset moment properties can be set:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;

p = Portfolio;
p = p.setAssetMoments(m, C);
[assetmean, assetcovar] = p.getAssetMoments

assetmean =

0.0042
0.0083
0.0100
0.0150

assetcovar =

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

4-39

4 Portfolio Optimization Tools

Scalar Expansion of Arguments
Both the constructor Portfolio. and the setAssetMoments method perform
scalar expansion on arguments for the moments of asset returns. When using
the constructor, the number of assets must be already specified in the variable
NumAssets. If NumAssets has not already been set, a scalar argument is
interpreted as a scalar with NumAssets set to 1. setAssetMoments provides
an additional optional argument to specify the number of assets so that scalar
expansion works with the correct number of assets. In addition, if either a
scalar or vector is input for the covariance of asset returns, a diagonal matrix
is formed such that a scalar expands along the diagonal and a vector becomes
the diagonal. This example demonstrates scalar expansion for four jointly
independent assets with a common mean 0.1 and common variance 0.03:

p = Portfolio;
p = p.setAssetMoments(0.1, 0.03, 4);
[assetmean, assetcovar] = p.getAssetMoments
assetmean =

0.1000
0.1000
0.1000
0.1000

assetcovar =

0.0300 0 0 0
0 0.0300 0 0
0 0 0.0300 0
0 0 0 0.0300

If at least one argument is properly dimensioned, you don’t need to include the
additional NumAssets argument. This example illustrates a constant-diagonal
covariance matrix and a mean of asset returns for four assets:

p = Portfolio;
p = p.setAssetMoments([0.05; 0.06; 0.04; 0.03], 0.03);
[assetmean, assetcovar] = p.getAssetMoments

assetmean =

4-40

Working with Asset Returns and Moments of Asset Returns

0.0500
0.0600
0.0400
0.0300

assetcovar =

0.0300 0 0 0
0 0.0300 0 0
0 0 0.0300 0
0 0 0 0.0300

In addition, scalar expansion works with the portfolio constructor if
NumAssets is known, or is deduced from the inputs.

Estimating Asset Moments from Asset Prices or
Returns
Another way to set the moments of asset returns is to use the method
estimateAssetMoments which accepts either prices or returns and estimates
the mean and covariance of asset returns. Either prices or returns are stored
as matrices with samples going down the rows and assets going across the
columns. In addition, prices or returns can be stored in a financial time series
(fints) object (see “Estimating Asset Moments from Financial Time Series
Data” on page 4-47). To illustrate using estimateAssetMoments, generate
random samples of 120 observations of asset returns for four assets from the
mean and covariance of asset returns in the variables m and C with portsim.
The default behavior of portsim creates simulated data with estimated mean
and covariance identical to the input moments m and C. In addition to a
return series created by portsim in the variable X, a price series is created
in the variable Y:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;
X = portsim(m', C, 120);

4-41

4 Portfolio Optimization Tools

Y = ret2tick(X);

Note Portfolio optimization requires that you use total returns and not just
price returns. Consequently, "returns" should be total returns and "prices"
should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence
of examples demonstrates equivalent ways to estimate asset moments for the
portfolio object. A portfolio object is created in p with the moments of asset
returns set directly in the constructor, and a second portfolio object is created
in q to obtain the mean and covariance of asset returns from asset return data
in X using estimateAssetMoments:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;

X = portsim(m', C, 120);
p = Portfolio('mean', m, 'covar', C);
q = Portfolio;
q = q.estimateAssetMoments(X);

[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments

passetmean =

0.0042
0.0083
0.0100
0.0150

passetcovar =

4-42

Working with Asset Returns and Moments of Asset Returns

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

qassetmean =

0.0042
0.0083
0.0100
0.0150

qassetcovar =

0.0005 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0.0000 0.0010 0.0028 0.0102

Notice how either approach has the same moments. The default behavior of
estimateAssetMoments is to work with asset returns. If, instead, you have
asset prices in the variable Y, estimateAssetMoments accepts a parameter
name 'DataFormat' with a corresponding value set to 'prices' to indicate
that the input to the method is in the form of asset prices and not returns
(the default parameter value for 'DataFormat' is 'returns'). This example
compares direct assignment of moments in the portfolio object p with
estimated moments from asset price data in Y in the portfolio object q:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;

X = portsim(m', C, 120);
Y = ret2tick(X);

4-43

4 Portfolio Optimization Tools

p = Portfolio('mean',m,'covar',C);

q = Portfolio;
q = q.estimateAssetMoments(Y, 'dataformat', 'prices');

[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments

passetmean =

0.0042
0.0083
0.0100
0.0150

passetcovar =

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

qassetmean =

0.0042
0.0083
0.0100
0.0150

qassetcovar =

0.0005 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0.0000 0.0010 0.0028 0.0102

4-44

Working with Asset Returns and Moments of Asset Returns

Estimating Asset Moments from Asset Returns or
Prices with Missing Data
Often when working with multiple assets, you have missing data indicated
by NaN values in your return or price data. Although Chapter 7, “Regression
with Missing Data” goes into detail about regression with missing data, the
method estimateAssetMoments has a parameter name 'MissingData' that
indicates with a Boolean value whether to use the missing data capabilities of
Financial Toolbox software. The default value for 'MissingData' is false
which removes all samples with NaN values. If, however, 'MissingData' is
set to true, estimateAssetMoments uses the ECM algorithm to estimate
asset moments. This example illustrates how this works on price data with
missing values:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

m = m/12;

C = C/12;

X = portsim(m', C, 120);

Y = ret2tick(X);

Y(1:20,1) = NaN;

Y(1:12,4) = NaN;

p = Portfolio('mean',m,'covar',C);

q = Portfolio;

q = q.estimateAssetMoments(Y, 'dataformat', 'prices');

r = Portfolio;

r = r.estimateAssetMoments(Y, 'dataformat', 'prices', 'missingdata', true);

[passetmean, passetcovar] = p.getAssetMoments

[qassetmean, qassetcovar] = q.getAssetMoments

[rassetmean, rassetcovar] = r.getAssetMoments

passetmean =

4-45

4 Portfolio Optimization Tools

0.0042

0.0083

0.0100

0.0150

passetcovar =

0.0005 0.0003 0.0002 0

0.0003 0.0024 0.0017 0.0010

0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

qassetmean =

0.0046

0.0104

0.0157

0.0159

qassetcovar =

0.0005 0.0004 0.0003 0.0001

0.0004 0.0023 0.0015 0.0009

0.0003 0.0015 0.0044 0.0027

0.0001 0.0009 0.0027 0.0106

rassetmean =

0.0043

0.0083

0.0100

0.0125

rassetcovar =

0.0007 0.0005 0.0004 0.0001

0.0005 0.0032 0.0022 0.0012

0.0004 0.0022 0.0063 0.0037

0.0001 0.0012 0.0037 0.0135

4-46

Working with Asset Returns and Moments of Asset Returns

The portfolio object p contains raw moments, the object q contains estimated
moments in which NaN values are discarded, and the object r contains raw
moments that accommodate missing values. Each time you run this example,
you will get different estimates for the moments in q and r and these will
also differ from the moments in p.

Estimating Asset Moments from Financial Time Series
Data
The estimateAssetMoments method also accepts asset returns or prices
stored in financial time series (fints) objects. estimateAssetMoments
implicitly works with matrices of data or data in a fints object using the
same rules for whether the data are returns or prices.

To illustrate, use fints to create a fints objects Xfts that contains asset
returns generated with portsim (see “Estimating Asset Moments from Asset
Prices or Returns” on page 4-41) and add series labels:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

m = m/12;

C = C/12;

X = portsim(m', C, 120);

d = (datenum('31-jan-2001'):datenum('31-dec-2010'))';

Xfts = fints(d, zeros(numel(d),4), {'Bonds', 'LargeCap', 'SmallCap', 'Emerging'});

Xfts = tomonthly(Xfts);

Xfts.Bonds = X(:,1);

Xfts.LargeCap = X(:,2);

Xfts.SmallCap = X(:,3);

Xfts.Emerging = X(:,4);

p = Portfolio('mean',m,'covar',C);

q = Portfolio;

4-47

4 Portfolio Optimization Tools

q = q.estimateAssetMoments(Xfts);

[passetmean, passetcovar] = p.getAssetMoments

[qassetmean, qassetcovar] = q.getAssetMoments

passetmean =

0.0042

0.0083

0.0100

0.0150

passetcovar =

0.0005 0.0003 0.0002 0

0.0003 0.0024 0.0017 0.0010

0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

qassetmean =

0.0042

0.0083

0.0100

0.0150

qassetcovar =

0.0005 0.0003 0.0002 0.0000

0.0003 0.0024 0.0017 0.0010

0.0002 0.0017 0.0048 0.0028

0.0000 0.0010 0.0028 0.0102

As you can see, the moments match. The parameter name-value inputs
'DataFormat' to handle return or price data and 'MissingData' to ignore
or use samples with missing values also work for fints data. In addition,
estimateAssetMoments also extracts asset names or identifiers from a fints
object with the parameter name 'GetAssetList' set to true (its default value
is false). If the 'GetAssetList' value is true, the identifiers are used to set
the AssetList property of the object. Thus, repeating the formation of the

4-48

Working with Asset Returns and Moments of Asset Returns

portfolio object q from the previous example with the 'GetAssetList' flag set
to true extracts the series labels from the fints object:

q = q.estimateAssetMoments(Xfts, 'getassetlist', true);
disp(q.AssetList)
'Bonds' 'LargeCap' 'SmallCap' 'Emerging'

Note if you set the 'GetAssetList' flag set to true and your input data is
in a matrix, estimateAssetMoments uses the default labeling scheme from
setAssetList described in “Setting Up a List of Asset Identifiers” on page
4-31.

Working with a Riskless Asset
You can specify a riskless asset with the mean and covariance of asset returns
in the AssetMean and AssetCovar properties such that the riskless asset has
variance of 0 and is completely uncorrelated with all other assets. In this
case, the portfolio object uses a separate RiskFreeRate property that stores
the rate of return of a riskless asset. Thus, you can separate your universe
into a riskless asset and a collection of risky assets. For example, assume that
your riskless asset has a return in the scalar variable r0, then the property
for the RiskFreeRate is set using the constructor:

r0 = 0.01/12;

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

p = Portfolio('RiskFreeRate', r0, 'AssetMean', m, 'AssetCovar', C);

disp(p.RiskFreeRate);

8.3333e-004

Note If your problem has a budget constraint such that your portfolio
weights must sum to 1, then the riskless asset is irrelevant.

4-49

4 Portfolio Optimization Tools

Working with Transaction Costs
The difference between net and gross portfolio returns is transaction costs.
The net portfolio return proxy has distinct proportional costs to purchase and
to sell assets which are maintained in the portfolio object properties BuyCost
and SellCost. Transaction costs are in units of total return and, as such,
are proportional to the price of an asset so that they enter the model for net
portfolio returns in return form. For example, suppose you have a stock
currently priced $40 and your usual transaction costs are 5 cents per share.
Then the transaction cost for the stock is 0.05/40 = 0.00125 (as defined in “Net
Portfolio Returns” on page 4-4). Costs are entered as positive values and
credits are entered as negative values.

Setting Transaction Costs Using the Constructor
To set up transaction costs, you must specify an initial or current portfolio
in the InitPort property . If the initial portfolio is not set at the time that
you set up the transaction cost properties, InitPort is 0. The properties for
transaction costs can be set through the constructor Portfolio. For example,
assume that purchase and sale transaction costs are in the variables bc and
sc and an initial portfolio is in the variable x0, then transaction costs are set:

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);
disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

5

0.0013
0.0013
0.0013
0.0013
0.0013

0.0013
0.0070

4-50

Working with Asset Returns and Moments of Asset Returns

0.0013
0.0013
0.0024

0.4000
0.2000
0.2000
0.1000
0.1000

Setting Transaction Costs Using setCosts Method
You can also set the properties for transaction costs using the setCosts
method. Assume that you have the same costs and initial portfolio as in the
previous example. Given a portfolio object p with an initial portfolio already
set, use setCosts to set up transaction costs:

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];

p = Portfolio('InitPort', x0);
p = p.setCosts(bc, sc);

disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

You can also set up the initial portfolio’s InitPort value as an optional
argument to setCosts so that the following is an equivalent way to set up
transaction costs:

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];

p = Portfolio;
p = p.setCosts(bc, sc, x0);

disp(p.NumAssets);

4-51

4 Portfolio Optimization Tools

disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

Using the Constructor or Method to Set Bounds
Both the constructor Portfolio and setCosts method implement scalar
expansion on the arguments for transaction costs and the initial portfolio.
If the NumAssets property is already set in the portfolio object, scalar
arguments for these properties are expanded to have the same value across all
dimensions. In addition, setCosts lets you specify NumAssets as an optional
final argument. For example, assume that you have an initial portfolio x0 and
you want to set common transaction costs on all assets in your universe. You
can set these costs in any of these equivalent ways:

x0 = [0.4; 0.2; 0.2; 0.1; 0.1];

p = Portfolio('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);

or

x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio('InitPort', x0);
p = p.setCosts(0.002, 0.002);

or

x0 = [0.4; 0.2; 0.2; 0.1; 0.1];
p = Portfolio;
p = p.setCosts(0.002, 0.002, x0);

To clear costs from your portfolio object, use either the constructor or
setCosts with empty inputs for the properties to be cleared. For example,
you can clear sales costs from the portfolio object p in the previous example:

p = Portfolio(p, 'SellCost', []);

4-52

Working with Portfolio Constraints

Working with Portfolio Constraints

In this section...

“Setting Default Constraints for Portfolio Weights” on page 4-53

“Working with Bound Constraints” on page 4-56

“Working with Budget Constraints” on page 4-59

“Working with Group Constraints” on page 4-60

“Working with Group Ratio Constraints” on page 4-64

“Working with Linear Equality Constraints” on page 4-67

“Working with Linear Inequality Constraints” on page 4-69

“Working with Average Turnover Constraints” on page 4-71

“Working with One-Way Turnover Constraints” on page 4-74

Setting Default Constraints for Portfolio Weights
The "default" portfolio problem has two constraints on portfolio weights:

• Portfolio weights must be nonnegative.

• Portfolio weights must sum to 1.

Implicitly, these constraints imply that portfolio weights are no greater than
1, although this is a superfluous constraint to impose on the problem.

Setting Default Constraints Using Constructor
Given a portfolio optimization problem with NumAssets = 20 assets, use the
constructor Portfolio to set up a default problem and explicitly set bounds
and budget constraints:

p = Portfolio('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);
disp(p);

Portfolio

Properties:

4-53

4 Portfolio Optimization Tools

BuyCost: []
SellCost: []

RiskFreeRate: []
AssetMean: []

AssetCovar: []
Turnover: []

Name: []
NumAssets: 20
AssetList: []
InitPort: []

AInequality: []
bInequality: []

AEquality: []
bEquality: []

LowerBound: [20x1 double]
UpperBound: []

LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []

GroupA: []
GroupB: []

LowerRatio: []
UpperRatio: []

Methods, Superclasses

Setting Default Constraints Using setDefaultConstraints Method
An alternative approach is to use the setDefaultConstraints method.
If the number of assets is already known in a portfolio object, use
setDefaultConstraints with no arguments to set up the necessary bound
and budget constraints. Suppose you have 20 assets to set up the portfolio set
for a default problem:

p = Portfolio('NumAssets', 20);
p = p.setDefaultConstraints;
disp(p);

4-54

Working with Portfolio Constraints

Portfolio

Properties:
BuyCost: []

SellCost: []
RiskFreeRate: []

AssetMean: []
AssetCovar: []

Turnover: []
Name: []

NumAssets: 20
AssetList: []
InitPort: []

AInequality: []
bInequality: []

AEquality: []
bEquality: []

LowerBound: [20x1 double]
UpperBound: []

LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []

GroupA: []
GroupB: []

LowerRatio: []
UpperRatio: []

Methods, Superclasses

If the number of assets is unknown, setDefaultConstraints accepts
NumAssets as an optional argument to form a portfolio set for a default
problem. Suppose you have 20 assets:

p = Portfolio;
p = p.setDefaultConstraints(20);
disp(p);
Portfolio

4-55

4 Portfolio Optimization Tools

Properties:
BuyCost: []

SellCost: []
RiskFreeRate: []

AssetMean: []
AssetCovar: []

Turnover: []
Name: []

NumAssets: 20
AssetList: []
InitPort: []

AInequality: []
bInequality: []

AEquality: []
bEquality: []

LowerBound: [20x1 double]
UpperBound: []

LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []

GroupA: []
GroupB: []

LowerRatio: []
UpperRatio: []

Methods, Superclasses

Working with Bound Constraints
Bound constraints are optional linear constraints that maintain upper
and lower bounds on portfolio weights (see “Bound Constraints” on page
4-7). Although every portfolio set must be bounded, it is not necessary to
specify a portfolio set with explicit bound constraints. For example, you can
create a portfolio set with an implicit upper bound constraint or a portfolio
set with just average turnover constraints. The bound constraints have
properties LowerBound for the lower-bound constraint and UpperBound for
the upper-bound constraint. Set default values for these constraints using

4-56

Working with Portfolio Constraints

the setDefaultConstraints method (see “Setting Default Constraints for
Portfolio Weights” on page 4-53).

Setting Bounds Using the Constructor
The properties for bound constraints are set through the constructor
Portfolio.. Suppose you have a balanced fund with stocks that can range
from 50% to 75% of your portfolio and bonds that can range from 25% to 50%
of your portfolio. The bound constraints for a balanced fund are set with:

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = Portfolio('LowerBound', lb, 'UpperBound', ub);
disp(p.NumAssets);
disp(p.LowerBound);
disp(p.UpperBound);
2

0.5000
0.2500

0.7500
0.5000

To continue with this example, you must set up a budget constraint. For
details, see “Working with Budget Constraints” on page 4-59.

Setting Bounds Using the setBounds Method
You can also set the properties for bound constraints using the setBounds
method. Suppose you have a balanced fund with stocks that can range from
50% to 75% of your portfolio and bonds that can range from 25% to 50% of
your portfolio. Given a portfolio object p, use setBounds to set the bound
constraints:

lb = [0.5; 0.25];
ub = [0.75; 0.5];
p = Portfolio;
p = p.setBounds(lb, ub);
disp(p.NumAssets);
disp(p.LowerBound);

4-57

4 Portfolio Optimization Tools

disp(p.UpperBound);

2

0.5000
0.2500

0.7500
0.5000

Setting Bounds Using the Constructor or setBounds Method
Both the constructor Portfolio. and setBounds method implement scalar
expansion on either the LowerBound or UpperBound properties. If the
NumAssets property is already set in the portfolio object, scalar arguments for
either property are expanded to have the same value across all dimensions.
In addition, setBounds lets you specify NumAssets as an optional argument.
Suppose you have a universe of 500 assets and you want to set common bound
constraints on all assets in your universe. Specifically, you are a long-only
investor and want to hold no more than 5% of your portfolio in any single
asset. You can set these bound constraints in any of these equivalent ways:

p = Portfolio('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05);

or

p = Portfolio('NumAssets', 500);
p = p.setBounds(0, 0.05);

or

p = Portfolio;
p = p.setBounds(0, 0.05, 500);

To clear bound constraints from your portfolio object, use either the
constructor Portfolio. or setBounds with empty inputs for the properties
to be cleared. For example, to clear the upper bound constraint from the
portfolio object p in the previous example:

p = Portfolio(p, 'UpperBound', []);

4-58

Working with Portfolio Constraints

Working with Budget Constraints
The budget constraint is an optional linear constraint that maintains upper
and lower bounds on the sum of portfolio weights (see “Budget Constraints”
on page 4-8). Budget constraints have properties LowerBudget for the lower
budget constraint and UpperBudget for the upper budget constraint. If you
set up a portfolio optimization problem that requires portfolios to be fully
invested in your universe of assets, you can set LowerBudget to be equal
to UpperBudget. These budget constraints can be set with default values
equal to 1 using setDefaultConstraints (see “Setting Default Constraints
for Portfolio Weights” on page 4-53).

Setting Budget Constraints Using the Constructor
The properties for the budget constraint can also be set using the constructor
Portfolio. Suppose you have an asset universe with many risky assets and a
riskless asset and you want to ensure that your portfolio never holds more
than 1% cash, that is, you want to ensure that you are 99% to 100% invested
in risky assets. The budget constraint for this portfolio can be set with:

p = Portfolio('LowerBudget', 0.99, 'UpperBudget', 1);
disp(p.LowerBudget);
disp(p.UpperBudget);

0.9900

1

Setting Budget Constraints Using setBudget Method
You can also set the properties for a budget constraint using the setBudget
method. Suppose you have a fund that permits up to 10% leverage which
means that your portfolio can be between 100% and 110% invested in risky
assets. Given a portfolio object p, use setBudget to set the budget constraints:

p = Portfolio;
p = p.setBudget(1, 1.1);
disp(p.LowerBudget);
disp(p.UpperBudget);

1

4-59

4 Portfolio Optimization Tools

1.1000

If you were to continue with this example, then set the RiskFreeRate property
to the borrowing rate to finance possible leveraged positions. For details on
the RiskFreeRate property, see “Working with a Riskless Asset” on page 4-49.
To clear either bound for the budget constraint from your portfolio object, use
either the constructor Portfolio. or setBudget with empty inputs for the
properties to be cleared. For example, clear the upper budget constraint from
the portfolio object p in the previous example with:

p = Portfolio(p, 'UpperBudget', []);

Working with Group Constraints
Group constraints are optional linear constraints that group assets together
and enforce bounds on the group weights (see “Group Constraints” on page
4-9). Although the constraints are implemented as general constraints, the
usual convention is to form a group matrix that identifies membership of each
asset within a specific group with Boolean indicators (either true or false
or with 1 or 0) for each element in the group matrix. Group constraints have
properties GroupMatrix for the group membership matrix, LowerGroup for
the lower-bound constraint on groups, and UpperGroup for the upper-bound
constraint on groups.

Setting Group Constraints Using the Constructor
The properties for group constraints are set through the constructor
Portfolio.. Suppose you have a portfolio of five assets and want to ensure
that the first three assets constitute no more than 30% of your portfolio, then
you can set group constraints:

G = [1 1 1 0 0];
p = Portfolio('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

5

1 1 1 0 0

4-60

Working with Portfolio Constraints

0.3000

The group matrix G can also be a logical matrix so that the following code
achieves the same result:

G = [true true true false false];
p = Portfolio('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

5

1 1 1 0 0

0.3000

Setting Group Constraints Using setGroups and addGroups
Methods
You can also set the properties for group constraints using the setGroups
method. Suppose you have a portfolio of five assets and want to ensure that
the first three assets constitute no more than 30% of your portfolio. Given a
portfolio object p, use setGroups to set the group constraints:

G = [true true true false false];
p = Portfolio;
p = p.setGroups(G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

5

1 1 1 0 0

0.3000

In this example, you would set the LowerGroup property to be empty ([]).

4-61

4 Portfolio Optimization Tools

Suppose you want to add another group constraint to make odd-numbered
assets constitute at least 20% of your portfolio. Set up an augmented group
matrix and introduce infinite bounds for unconstrained group bounds or use
the addGroups method to build up group constraints. For this example, create
another group matrix for the second group constraint:

p = Portfolio;

G = [true true true false false]; % group matrix for first group constraint

p = p.setGroups(G, [], 0.3);

G = [true false true false true]; % group matrix for second group constraint

p = p.addGroups(G, 0.2);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

5

1 1 1 0 0

1 0 1 0 1

-Inf

0.2000

0.3000

Inf

addGroups determines which bounds are unbounded so you only need to focus
on the constraints that you want to set.

Both the constructor Portfolio. and setGroups and addGroups implement
scalar expansion on either the LowerGroup or UpperGroup properties based on
the dimension of the group matrix in the property GroupMatrix. Suppose you
have a universe of 30 assets with 6 asset classes such that assets 1-5, assets
6-12, assets 13-18, assets 19-22, assets 23-27, and assets 28-30 constitute each
of your asset classes and you want each asset class to fall between 0% and
25% of your portfolio. Let the following group matrix define your groups and
scalar expansion define the common bounds on each group:

p = Portfolio;

G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));

4-62

Working with Portfolio Constraints

p = p.setGroups(G, 0, 0.25);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

30

Columns 1 through 16

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 17 through 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1

0

0

0

0

0

0

0.2500

0.2500

0.2500

0.2500

0.2500

0.2500

4-63

4 Portfolio Optimization Tools

Working with Group Ratio Constraints
Group ratio constraints are optional linear constraints that maintain bounds
on proportional relationships among groups of assets (see “Group Ratio
Constraints” on page 4-10). Although the constraints are implemented as
general constraints, the usual convention is to specify a pair of group matrices
that identify membership of each asset within specific groups with Boolean
indicators (either true or false or with 1 or 0) for each element in each of
the group matrices. The goal is to ensure that the ratio of a base group to
a comparison group fall within specified bounds. Group ratio constraints
have properties:

• GroupA for the base membership matrix.

• GroupB for the comparison membership matrix.

• LowerRatio for the lower-bound constraint on the ratio of groups.

• UpperRatio, for the upper-bound constraint on the ratio of groups.

Setting Group Ratio Constraints Using the Constructor
The properties for group ratio constraints are set using constructor
Portfolio.. For example, assume you want the ratio of financial to
nonfinancial companies in your portfolios to never go above 50%. Suppose
you have 6 assets with 3 financial companies (assets 1-3) and 3 nonfinanical
companies (assets 4-6). To set group ratio constraints:

GA = [1 1 1 0 0 0]; % financial companies

GB = [0 0 0 1 1 1]; % nonfinancial companies

p = Portfolio('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1 1 1 0 0 0

0 0 0 1 1 1

4-64

Working with Portfolio Constraints

0.5000

Group matrices GA and GB in this example can be logical matrices with true
and false elements that yield the same result:

GA = [true true true false false false]; % financial companies

GB = [false false false true true true]; % nonfinancial companies

p = Portfolio('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1 1 1 0 0 0

0 0 0 1 1 1

0.5000

Setting Group Ratio Constraints Using the setGroupRatio and
addGroupRatio Methods
You can also set the properties for group ratio constraints using the
setGroupRatio method. For example, assume that you want the ratio of
financial to nonfinancial companies in your portfolios to never go above
50%. Suppose you have 6 assets with 3 financial companies (assets 1-3)
and 3 nonfinanical companies (assets 4-6). Given a portfolio object p, use
setGroupRatio to set the group constraints:

GA = [true true true false false false]; % financial companies

GB = [false false false true true true]; % nonfinancial companies

p = Portfolio;

p = p.setGroupRatio(GA, GB, [], 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

4-65

4 Portfolio Optimization Tools

6

1 1 1 0 0 0

0 0 0 1 1 1

0.5000

In this example, you would set the LowerRatio property to be empty ([]).

Suppose you want to add another group ratio constraint to ensure that the
weights in odd-numbered assets constitute at least 20% of the weights in
nonfinancial assets your portfolio. You can set up augmented group ratio
matrices and introduce infinite bounds for unconstrained group ratio bounds,
or you can use the addGroupRatio method to build up group ratio constraints.
For this example, create another group matrix for the second group constraint:

p = Portfolio;

GA = [true true true false false false]; % financial companies

GB = [false false false true true true]; % nonfinancial companies

p = p.setGroupRatio(GA, GB, [], 0.5);

GA = [true false true false true false]; % odd-numbered companies

GB = [false false false true true true]; % nonfinancial companies

p = p.addGroupRatio(GA, GB, 0.2);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.LowerRatio);

disp(p.UpperRatio);

6

1 1 1 0 0 0

1 0 1 0 1 0

0 0 0 1 1 1

0 0 0 1 1 1

4-66

Working with Portfolio Constraints

-Inf

0.2000

0.5000

Inf

Notice that addGroupRatio determines which bounds are unbounded so you
only need to focus on the constraints you want to set.

Both the constructor Portfolio., setGroupRatio, and addGroupRatio
implement scalar expansion on either the LowerRatio or UpperRatio
properties based on the dimension of the group matrices in GroupA and
GroupB properties.

Working with Linear Equality Constraints
Linear equality constraints are optional linear constraints that impose
systems of equalities on portfolio weights (see “Linear Equality Constraints”
on page 4-7). Linear equality constraints have properties AEquality, for the
equality constraint matrix, and bEquality, for the equality constraint vector.

Setting Linear Equality Constraints Using the Constructor
The properties for linear equality constraints are set using the constructor
Portfolio.. Suppose you have a portfolio of five assets and want to ensure
that the first three assets are exactly 50% of your portfolio. To set this
constraint:

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio('AEquality', A, 'bEquality', b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

5

1 1 1 0 0

0.5000

4-67

4 Portfolio Optimization Tools

Setting Linear Equality Constraints Using the setEquality and
addEquality Methods
You can also set the properties for linear equality constraints using the
setEquality method. Suppose you have a portfolio of five assets and want to
ensure that the first three assets are exactly 50% of your portfolio. Given a
portfolio object p, use setEquality to set the linear equality constraints:

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

5

1 1 1 0 0

0.5000

Suppose you want to add another linear equality constraint to ensure that
the last three assets also constitute 50% of your portfolio. You can set up an
augmented system of linear equalities or use the addEquality method to
build up linear equality constraints. For this example, create another system
of equalities:

p = Portfolio;
A = [1 1 1 0 0]; % first equality constraint
b = 0.5;
p = p.setEquality(A, b);

A = [0 0 1 1 1]; % second equality constraint
b = 0.5;
p = p.addEquality(A, b);

disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

4-68

Working with Portfolio Constraints

5

1 1 1 0 0
0 0 1 1 1

0.5000
0.5000

Both the constructor Portfolio. and setEquality and addEquality
implement scalar expansion on the bEquality property based on the
dimension of the matrix in the AEquality property.

Working with Linear Inequality Constraints
Linear inequality constraints are optional linear constraints that impose
systems of inequalities on portfolio weights (see “Linear Inequality
Constraints” on page 4-6). Linear inequality constraints have properties
AInequality for the inequality constraint matrix, and bInequality for the
inequality constraint vector.

Setting Linear Inequality Constraints Using the Constructor
The properties for linear inequality constraints are set using the constructor
Portfolio.. Suppose you have a portfolio of five assets and you want to
ensure that the first three assets are no more than 50% of your portfolio.
To set up these constraints:

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio('AInequality', A, 'bInequality', b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

5

1 1 1 0 0

0.5000

4-69

4 Portfolio Optimization Tools

Setting Linear Inequality Constraints Using setInequality and
addInequality Methods
You can also set the properties for linear inequality constraints using the
setInequality method. Suppose you have a portfolio of five assets and you
want to ensure that the first three assets constitute no more than 50% of
your portfolio. Given a portfolio object p, use setInequality to set the linear
inequality constraints:

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

5

1 1 1 0 0

0.5000

Suppose you want to add another linear inequality constraint to ensure that
the last three assets constitute at least 50% of your portfolio. You can set up
an augmented system of linear inequalities or use the addInequality method
to build up linear inequality constraints. For this example, create another
system of inequalities:

p = Portfolio;
A = [1 1 1 0 0]; % first inequality constraint
b = 0.5;
p = p.setInequality(A, b);

A = [0 0 -1 -1 -1]; % second inequality constraint
b = -0.5;
p = p.addInequality(A, b);

disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

4-70

Working with Portfolio Constraints

5

1 1 1 0 0
0 0 -1 -1 -1

0.5000
-0.5000

Both the constructor Portfolio. and setInequality and addInequality
implement scalar expansion on the bInequality property based on the
dimension of the matrix in the AInequality property.

Working with Average Turnover Constraints
The turnover constraint is an optional linear absolute value constraint (see
“Average Turnover Constraints” on page 4-10) that enforces an upper bound
on the average of purchases and sales. The turnover constraint can be set
through either the portfolio constructor Portfolio. or the setTurnover
method. The turnover constraint depends upon an initial or current portfolio,
which is assumed to be zero if not set when the turnover constraint is set. The
turnover constraint has properties Turnover, for the upper bound on average
turnover, and InitPort, for the portfolio against which turnover is computed.

Setting Average Turnover Constraints Using the Constructor
The properties for the turnover constraint are set using the constructor
Portfolio.. Suppose you have an initial portfolio 10 assets in a variable
x0 and you want to ensure that average turnover is no more than 30%. To
set this turnover constraint:

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];

p = Portfolio('Turnover', 0.3, 'InitPort', x0);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

4-71

4 Portfolio Optimization Tools

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

Note if the NumAssets or InitPort properties are not set before or when the
turnover constraint is set, various rules are applied to assign default values
to these properties (see “Setting Up an Initial or Current Portfolio” on page
4-33 for details).

Setting Average Turnover Constraints Using setTurnover
Method
You can also set properties for portfolio turnover using the setTurnover
method to specify both the upper bound for average turnover and an initial
portfolio. Suppose you have an initial portfolio of 10 assets in a variable x0
and want to ensure that average turnover is no more than 30%. Given a
portfolio object p, use setTurnover to set the turnover constraint with and
without the initial portfolio being set previously:

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];

p = Portfolio('InitPort', x0);

p = p.setTurnover(0.3);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

0.1200

0.0900

4-72

Working with Portfolio Constraints

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

or

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];

p = Portfolio;

p = p.setTurnover(0.3, x0);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

setTurnover implements scalar expansion on the argument for the initial
portfolio. If the NumAssets property is already set in the portfolio object, a
scalar argument for InitPort is expanded to have the same value across
all dimensions. In addition, setTurnover lets you specify NumAssets as an
optional argument. To clear turnover from your portfolio object, use the
constructor Portfolio. or setTurnover with empty inputs for the properties
to be cleared.

4-73

4 Portfolio Optimization Tools

Working with One-Way Turnover Constraints
One-way turnover constraints are optional constraints (see “One-Way
Turnover Constraints” on page 4-11) that enforce upper bounds on
net purchases or net sales. One-way turnover constraints can be set
through either through either the portfolio constructor Portfolio. or the
setOneWayTurnover method. One-way turnover constraints depends upon an
initial or current portfolio, which is assumed to be zero if not set when the
turnover constraints are set. One-way turnover constraints have properties
BuyTurnover, for the upper bound on net purchases, SellTurnover, for the
upper bound on net sales, and InitPort, for the portfolio against which
turnover is computed.

Setting One-Way Turnover Constraints Using the Constructor
The properties for the one-way turnover constraint are set using the
constructor Portfolio.. Suppose you have an initial portfolio with 10 assets
in a variable x0 and you want to ensure that turnover on purchases is no more
than 30% and turnover on sales is no more than 20% of the initial portfolio.
To set these turnover constraints:

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];

p = Portfolio('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);

10

0.3000

0.2000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

4-74

Working with Portfolio Constraints

0.1100

0.0800

0.1000

Note if the NumAssets or InitPort properties are not set before or when the
turnover constraint is set, various rules are applied to assign default values
to these properties (see “Setting Up an Initial or Current Portfolio” on page
4-33 for details).

Setting Turnover Constraints Using setOneWayTurnover
Method
You can also set properties for portfolio turnover using the setOneWayTurnover
method to specify to specify the upper bounds for turnover on purchases
(BuyTurnover) and sales (SellTurnover) and an initial portfolio. Suppose
you have an initial portfolio of 10 assets in a variable x0 and want to ensure
that turnover on purchases is no more than 30% and that turnover on sales
is no more than 20% of the initial portfolio. Given a portfolio object p, use
setOneWayTurnover to set the turnover constraints with and without the
initial portfolio being set previously:

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];

p = Portfolio('InitPort', x0);

p = p.setOneWayTurnover(0.3, 0.2);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);

10

0.3000

0.2000

0.1200

0.0900

0.0800

0.0700

4-75

4 Portfolio Optimization Tools

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

or

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];

p = Portfolio;

p = p.setOneWayTurnover(0.3, 0.2, x0);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);

10

0.3000

0.2000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

setOneWayTurnover implements scalar expansion on the argument for the
initial portfolio. If the NumAssets property is already set in the portfolio
object, a scalar argument for InitPort is expanded to have the same value
across all dimensions. In addition, setOneWayTurnover lets you specify
NumAssets as an optional argument. To remove one-way turnover from your

4-76

Working with Portfolio Constraints

portfolio object, use the constructor Portfolio. or setOneWayTurnover with
empty inputs for the properties to be cleared.

4-77

4 Portfolio Optimization Tools

Validating the Portfolio Problem

In this section...

“Validating a Portfolio Set” on page 4-78

“Validating Portfolios” on page 4-80

In some cases, you may want to validate either your inputs to, or outputs
from, a portfolio optimization problem. Although most of the error-checking
that occurs during the problem setup phase catches most difficulties with a
portfolio optimization problem, the processes to validate portfolio sets and
portfolios are time consuming and are best done offline. Consequently, the
portfolio optimization tools have specialized methods to validate portfolio
sets and portfolios.

Validating a Portfolio Set
Since it is necessary and sufficient that your portfolio set must be a nonempty,
closed, and bounded set to have a valid portfolio optimization problem, the
method estimateBounds lets you examine your portfolio set to determine if it
is nonempty and, if nonempty, whether it is bounded. Suppose you have the
following portfolio set which is an empty set because the initial portfolio at 0
is too far from a portfolio that satisfies the budget and turnover constraint:

p = Portfolio('NumAssets', 3, 'Budget', 1);
p = p.setTurnover(0.3, 0);

If a portfolio set is empty, estimateBounds returns NaN bounds and sets the
isbounded flag to []:

[lb, ub, isbounded] = p.estimateBounds

lb =

NaN
NaN
NaN

ub =

4-78

Validating the Portfolio Problem

NaN
NaN
NaN

isbounded =

[]

Suppose you create an unbounded portfolio set as follows:

p = Portfolio('AInequality', [1 -1; 1 1], 'bInequality', 0);
[lb, ub, isbounded] = p.estimateBounds

lb =

-Inf
-Inf

ub =

1.0e-008 *

-0.3712
Inf

isbounded =

0

In this case, estimateBounds returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded so
that you can apply bound constraints as necessary.

Finally, suppose you created a portfolio set that is both nonempty and
bounded. estimateBounds not only validates the set, but also obtains tighter
bounds which is useful if you are concerned with the actual range of portfolio
choices for individual assets in your portfolio set:

p = Portfolio;

p = p.setBudget(1,1);

p = p.setBounds([-0.1; 0.2; 0.3; 0.2], [0.5; 0.3; 0.9; 0.8]);

4-79

4 Portfolio Optimization Tools

[lb, ub, isbounded] = p.estimateBounds

lb =

-0.1000

0.2000

0.3000

0.2000

ub =

0.3000

0.3000

0.7000

0.6000

isbounded =

1

In this example, all but the second asset have tighter upper bounds than the
input upper bound implies.

Validating Portfolios
Given a portfolio set specified in a portfolio object, often you want to check
if specific portfolios are feasible with respect to the portfolio set. This can
occur with, for example, initial portfolios and with portfolios obtained from
other procedures. The checkFeasibility method determines whether a
collection of portfolios is feasible. Suppose you perform the following portfolio
optimization and want to determine if the resultant efficient portfolios are
feasible relative to a modified problem.

First, set up a problem in the portfolio object p, estimate efficient portfolios
in pwgt, and then confirm that these portfolios are feasible relative to the
initial problem:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

4-80

Validating the Portfolio Problem

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;

p.checkFeasibility(pwgt)

ans =

1 1 1 1 1 1 1 1 1 1

Next, set up a different portfolio problem that starts with the initial problem
with an additional a turnover constraint and an equally weighted initial
portfolio:

q = p.setTurnover(0.3, 0.25);
q.checkFeasibility(pwgt)

ans =

0 0 0 1 1 0 0 0 0 0

In this case, only two of the ten efficient portfolios from the initial problem are
feasible relative to the new problem in portfolio object q. Solving the second
problem using checkFeasibility demonstrates that the efficient portfolio for
portfolio object q is feasible relative to the initial problem:

qwgt = q.estimateFrontier;
p.checkFeasibility(qwgt)

ans =

1 1 1 1 1 1 1 1 1 1

4-81

4 Portfolio Optimization Tools

Estimate Efficient Portfolios

In this section...

“Obtaining Portfolios Along the Entire Efficient Frontier” on page 4-82

“Obtaining Endpoints of the Efficient Frontier” on page 4-84

“Obtaining Efficient Portfolios for Target Returns” on page 4-86

“Obtaining Efficient Portfolios for Target Risks” on page 4-89

“Obtaining an Efficient Portfolio that Maximizes the Sharpe Ratio” on page
4-91

“Choosing and Controlling the Solver” on page 4-93

There are two ways to look at a portfolio optimization problem that depends
upon what you are trying to do. One goal is to estimate efficient portfolios
and the other is to estimate efficient frontiers. This section focuses on the
former goal and the subsequent section (“Estimate Efficient Frontiers” on
page 4-96) focuses on the latter goal.

Obtaining Portfolios Along the Entire Efficient Frontier
The most basic way to obtain optimal portfolios is to obtain points over the
entire range of the efficient frontier. Given a portfolio optimization problem in
a portfolio object, the estimateFrontier method computes efficient portfolios
spaced evenly according to the return proxy from the minimum to maximum
return efficient portfolios. The number of portfolios estimated is controlled by
the hidden property defaultNumPorts which is set to 10. A different value for
the number of portfolios estimated is specified as input to estimateFrontier.
This example shows the default number of efficient portfolios over the entire
range of the efficient frontier:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

p = Portfolio;

p = p.setAssetMoments(m, C);

4-82

Estimate Efficient Portfolios

p = p.setDefaultConstraints;

pwgt = p.estimateFrontier;

disp(pwgt);

0.8891 0.7215 0.5540 0.3865 0.2190 0.0515 0 0 0 0

0.0369 0.1289 0.2209 0.3129 0.4049 0.4969 0.4049 0.2314 0.0579 0

0.0404 0.0567 0.0730 0.0893 0.1056 0.1219 0.1320 0.1394 0.1468 0

0.0336 0.0929 0.1521 0.2113 0.2705 0.3297 0.4630 0.6292 0.7953 1.0000

If you want only four portfolios in the previous example:

pwgt = p.estimateFrontier(4);

disp(pwgt);
0.8891 0.3865 0 0
0.0369 0.3129 0.4049 0
0.0404 0.0893 0.1320 0
0.0336 0.2113 0.4630 1.0000

Starting from the initial portfolio, estimateFrontier also returns purchases
and sales to get from your initial portfolio to each efficient portfolio on the
efficient frontier. For example, given an initial portfolio in pwgt0, you can
obtain purchases and sales:

pwgt0 = [0.3; 0.3; 0.2; 0.1];

p = p.setInitPort(pwgt0);

[pwgt, pbuy, psell] = p.estimateFrontier;

display(pwgt);

display(pbuy);

display(psell);

pwgt =

0.8891 0.7215 0.5540 0.3865 0.2190 0.0515 0 0 0 0

0.0369 0.1289 0.2209 0.3129 0.4049 0.4969 0.4049 0.2314 0.0579 0

0.0404 0.0567 0.0730 0.0893 0.1056 0.1219 0.1320 0.1394 0.1468 0

0.0336 0.0929 0.1521 0.2113 0.2705 0.3297 0.4630 0.6292 0.7953 1.0000

pbuy =

4-83

4 Portfolio Optimization Tools

0.5891 0.4215 0.2540 0.0865 0 0 0 0 0 0

0 0 0 0.0129 0.1049 0.1969 0.1049 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0.0521 0.1113 0.1705 0.2297 0.3630 0.5292 0.6953 0.9000

psell =

0 0 0 0 0.0810 0.2485 0.3000 0.3000 0.3000 0.3000

0.2631 0.1711 0.0791 0 0 0 0 0.0686 0.2421 0.3000

0.1596 0.1433 0.1270 0.1107 0.0944 0.0781 0.0680 0.0606 0.0532 0.2000

0.0664 0.0071 0 0 0 0 0 0 0 0

If you do not specify an initial portfolio, the purchase and sale weights assume
that your initial portfolio is 0.

Obtaining Endpoints of the Efficient Frontier
In many cases, you might be interested in the endpoint portfolios for the
efficient frontier. Suppose you want to determine the range of returns from
minimum to maximum to refine a search for a portfolio with a specific target
return. Use the estimateFrontierLimits method to obtain the endpoint
portfolios:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;

disp(pwgt);

disp(pwgt);
0.8891 0

4-84

Estimate Efficient Portfolios

0.0369 0
0.0404 0
0.0336 1.0000

The estimatePortMoments method shows the range of risks and returns
for efficient portfolios:

[prsk, pret] = p.estimatePortMoments(pwgt);
disp([prsk, pret]);

0.0769 0.0590
0.3500 0.1800

Starting from an initial portfolio, estimateFrontierLimits also returns
purchases and sales to get from the initial portfolio to the endpoint portfolios
on the efficient frontier. For example, given an initial portfolio in pwgt0,
you can obtain purchases and sales:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontierLimits;

display(pwgt);
display(pbuy);
display(psell);

pwgt =

0.8891 0
0.0369 0
0.0404 0
0.0336 1.0000

4-85

4 Portfolio Optimization Tools

pbuy =

0.5891 0
0 0
0 0
0 0.9000

psell =

0 0.3000
0.2631 0.3000
0.1596 0.2000
0.0664 0

If you do not specify an initial portfolio, the purchase and sale weights assume
that your initial portfolio is 0.

Obtaining Efficient Portfolios for Target Returns
To obtain efficient portfolios that have targeted portfolio returns, the
estimateFrontierByReturn method accepts one or more target portfolio
returns and obtains efficient portfolios with the specified returns. For
example, assume that you have a universe of four assets where you want to
obtain efficient portfolios with target portfolio returns of 6%, 9%, and 12%:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByReturn([0.06, 0.09, 0.12]);

display(pwgt);
pwgt =

4-86

Estimate Efficient Portfolios

0.8772 0.5032 0.1293
0.0434 0.2488 0.4541
0.0416 0.0780 0.1143
0.0378 0.1700 0.3022

In some cases, you can request a return for which no efficient portfolio exists.
Based on the previous example, suppose you want a portfolio with a 5%
return (which is the return of the first asset). A portfolio that is fully invested
in the first asset, however, is inefficient. estimateFrontierByReturn warns
if your target returns are outside the range of efficient portfolio returns and
replaces it with the endpoint portfolio of the efficient frontier closest to your
target return:

Warning: One or more target return values are outside the feasible range [0.0590468, 0.18].

Will return portfolios associated with endpoints of the range for these values.

> In Portfolio.estimateFrontierByReturn at 74

pwgt =

0.8891

0.0369

0.0404

0.0336

The best way to avoid this situation is to bracket your target portfolio returns
with estimateFrontierLimits and estimatePortReturns (see “Obtaining
Endpoints of the Efficient Frontier” on page 4-84 and “Obtaining Portfolio
Risks and Returns” on page 4-96).

pret = p.estimatePortReturn(p.estimateFrontierLimits);

display(pret);
pret =

0.0590
0.1800

This result indicates that efficient portfolios have returns that range between
5.9% and 18%.

4-87

4 Portfolio Optimization Tools

If you have an initial portfolio, estimateFrontierByReturn also returns
purchases and sales to get from your initial portfolio to the target portfolios
on the efficient frontier. For example, given an initial portfolio in pwgt0, to
obtain purchases and sales with target returns of 6%, 9%, and 12%:

pwgt0 = [0.3; 0.3; 0.2; 0.1];

p = p.setInitPort(pwgt0);

[pwgt, pbuy, psell] = p.estimateFrontierByReturn([0.06, 0.09, 0.12]);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

0.8772 0.5032 0.1293

0.0434 0.2488 0.4541

0.0416 0.0780 0.1143

0.0378 0.1700 0.3022

pbuy =

0.5772 0.2032 0

0 0 0.1541

0 0 0

0 0.0700 0.2022

psell =

0 0 0.1707

0.2566 0.0512 0

0.1584 0.1220 0.0857

0.0622 0 0

If you do not have an initial portfolio, the purchase and sale weights assume
that your initial portfolio is 0.

4-88

Estimate Efficient Portfolios

Obtaining Efficient Portfolios for Target Risks
To obtain efficient portfolios that have targeted portfolio risks, the
estimateFrontierByRisk method accepts one or more target portfolio risks
and obtains efficient portfolios with the specified risks. Suppose you have a
universe of four assets where you want to obtain efficient portfolios with
target portfolio risks of 12%, 14%, and 16%:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);

display(pwgt);

pwgt =

0.3984 0.2659 0.1416
0.3064 0.3791 0.4474
0.0882 0.1010 0.1131
0.2071 0.2540 0.2979

In some cases, you can request a risk for which no efficient portfolio exists.
Based on the previous example, suppose you want a portfolio with 7% risk
(individual assets in this universe have risks ranging from 8% to 35%). It
turns out that a portfolio with 7% risk cannot be formed with these four
assets. estimateFrontierByRisk warns if your target risks are outside the
range of efficient portfolio risks and replaces it with the endpoint of the
efficient frontier closest to your target risk:

pwgt = p.estimateFrontierByRisk(0.07)

Warning: One or more target risk values are outside the feasible range [0.0769288, 0.35].

Will return portfolios associated with endpoints of the range for these values.

> In Portfolio.estimateFrontierByRisk at 87

4-89

4 Portfolio Optimization Tools

pwgt =

0.8891

0.0369

0.0404

0.0336

The best way to avoid this situation is to bracket your target portfolio risks
with estimateFrontierLimits and estimatePortRisk (see “Obtaining
Endpoints of the Efficient Frontier” on page 4-84 and “Obtaining Portfolio
Risks and Returns” on page 4-96).

prsk = p.estimatePortRisk(p.estimateFrontierLimits);

display(prsk);
prsk =

0.0769
0.3500

This result indicates that efficient portfolios have risks that range between
7.7% and 35%.

Starting with an initial portfolio, estimateFrontierByRisk also returns
purchases and sales to get from your initial portfolio to the target portfolios
on the efficient frontier. For example, given an initial portfolio in pwgt0,
you can obtain purchases and sales from the example with target risks of
12%, 14%, and 16%:

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);

display(pwgt);
display(pbuy);
display(psell);

pwgt =

0.3984 0.2659 0.1416
0.3064 0.3791 0.4474

4-90

Estimate Efficient Portfolios

0.0882 0.1010 0.1131
0.2071 0.2540 0.2979

pbuy =

0.0984 0 0
0.0064 0.0791 0.1474

0 0 0
0.1071 0.1540 0.1979

psell =

0 0.0341 0.1584
0 0 0

0.1118 0.0990 0.0869
0 0 0

If you do not specify an initial portfolio, the purchase and sale weights assume
that your initial portfolio is 0.

Obtaining an Efficient Portfolio that Maximizes the
Sharpe Ratio
The Sharpe ratio is defined as the ratio

()

()

x r

x

0

where x Rn and r0 is the risk-free rate (μ and Σ proxies for portfolio return
and risk). For more information, see “Portfolio Optimization Theory” on page
4-2.

Portfolios that maximize the Sharpe ratio are portfolios on the efficient
frontier that satisfy a number of theoretical conditions in finance. For
example, such portfolios are called tangency portfolios since the tangent line

4-91

4 Portfolio Optimization Tools

from the risk-free rate to the efficient frontier touches the efficient frontier at
portfolios that maximize the Sharpe ratio.

To obtain efficient portfolios that maximizes the Sharpe ratio, the
estimateMaxSharpeRatio method accepts a portfolio object and obtains
efficient portfolios that maximize the Sharpe Ratio.

Suppose you have a universe with four risky assets and a riskless asset and
you want to obtain a portfolio that maximizes the Sharpe ratio, where, in this
example, r0 is the return for the riskless asset.

r0 = 0.03;
m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio('RiskFreeRate', r0);
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateMaxSharpeRatio;

display(pwgt);
pwgt =

0.4251
0.2917
0.0856
0.1977

If you start with an initial portfolio, estimateMaxSharpeRatio also returns
purchases and sales to get from your initial portfolio to the portfolio that
maximizes the Sharpe ratio. For example, given an initial portfolio in pwgt0,
you can obtain purchases and sales from the previous example:

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = p.setInitPort(pwgt0);
[pwgt, pbuy, psell] = p.estimateMaxSharpeRatio;

display(pwgt);

4-92

Estimate Efficient Portfolios

display(pbuy);
display(psell);

pwgt =

0.4251
0.2917
0.0856
0.1977

pbuy =

0.1251
0
0

0.0977

psell =

0
0.0083
0.1144

0

If you do not specify an initial portfolio, the purchase and sale weights assume
that you initial portfolio is 0.

Choosing and Controlling the Solver
The default solver for mean-variance portfolio optimization is lcprog,
which implements a linear complementarity programming (LCP) algorithm.
Although lcprog works for most problems, you can adjust parameters to
control the algorithm. Alternatively, the mean-variance portfolio optimization
tools let you use any of the variations of quadprog from Optimization
Toolbox™ software. Unlike Optimization Toolbox which uses the
trust-region-reflective algorithm as the default algorithm for quadprog,
the portfolio optimization tools use the interior-point-convex algorithm.

4-93

4 Portfolio Optimization Tools

For details about quadprog and quadratic programming algorithms and
options, see “Quadratic Programming Algorithms”.

To modify either lcprog or to specify quadprog as your solver, use
the setSolver method to set the hidden properties solverType and
solverOptions that specify and control the solver. Since the solver properties
are hidden, you cannot set these using the portfolio constructor Portfolio..
The default solver is lcprog so you do not need to use setSolver to specify
this solver. To use quadprog, you must set up the interior-point-convex
version of quadprog using:

p = p.setSolver('quadprog');
display(p.solverType);
quadprog

and you can switch back tolcprog with:

p = p.setSolver('lcprog');
display(p.solverType);
lcprog

In both cases, setSolver sets up default options associated with either solver.
If you want to specify additional options associated with a given solver,
setSolver accepts these options with parameter name and value pairs in the
function call. For example, if you intend to use quadprog and want to use the
active-set algorithm, call setSolver with:

p = p.setSolver('quadprog', 'Algorithm', 'active-set');
display(p.solverOptions.Algorithm);
active-set

In addition, if you want to specify any of the options for quadprog that are
normally set through optimset, setSolver accepts an optimset structure
as the second argument. For example, you can start with the default
options for quadprog set by setSolver and then change the algorithm to
trust-region-reflective with no displayed output:

p = Portfolio;

options = optimset('quadprog');

options = optimset(options, 'Algorithm', 'trust-region-reflective', 'Display', 'off');

p = p.setSolver('quadprog', options);

4-94

Estimate Efficient Portfolios

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

trust-region-reflective

off

4-95

4 Portfolio Optimization Tools

Estimate Efficient Frontiers

In this section...

“Obtaining Portfolio Risks and Returns” on page 4-96

“Plotting the Efficient Frontier” on page 4-98

Whereas the previous section (“Estimate Efficient Portfolios” on page 4-82)
focused on estimation of efficient portfolios, this section focuses on the
estimation of efficient frontiers.

Obtaining Portfolio Risks and Returns
Given any portfolio and, in particular, efficient portfolios, the methods
estimatePortReturns, estimatePortRisk, and estimatePortMoments
provide estimates for the return (or return proxy), risk (or the risk proxy),
and, in the case of mean-variance portfolio optimization, the moments of
expected portfolio returns. Each method has the same input syntax but with
different combinations of outputs. Suppose you have this following portfolio
optimization problem that gave you a collection of portfolios along the efficient
frontier in pwgt:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

pwgt0 = [0.3; 0.3; 0.2; 0.1];
p = Portfolio('AssetMean', m, 'AssetCovar', C, 'InitPort', pwgt0);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;

Given pwgt0 and pwgt, use the portfolio risk and return estimation methods
to obtain risks and returns for your initial portfolio and the portfolios on
the efficient frontier:

[prsk0, pret0] = p.estimatePortMoments(pwgt0);
[prsk, pret] = p.estimatePortMoments(pwgt);

or

4-96

Estimate Efficient Frontiers

prsk0 = p.estimatePortRisk(pwgt0);
pret0 = p.estimatePortReturn(pwgt0);
prsk = p.estimatePortRisk(pwgt);
pret = p.estimatePortReturn(pwgt);

In either case, you obtain these risks and returns:

display(prsk0);
display(pret0);
display(prsk);
display(pret);

prsk0 =

0.1103

pret0 =

0.0870

prsk =

0.0769
0.0831
0.0994
0.1217
0.1474
0.1750
0.2068
0.2487
0.2968
0.3500

pret =

0.0590
0.0725
0.0859
0.0994
0.1128

4-97

4 Portfolio Optimization Tools

0.1262
0.1397
0.1531
0.1666
0.1800

Note the returns and risks are at the periodicity of the moments of asset
returns so that, if you have values for AssetMean and AssetCovar in terms
of monthly returns, the estimates for portfolio risk and return are in terms
of monthly returns as well. In addition, the estimate for portfolio risk in the
mean-variance case is the standard deviation of portfolio returns, not the
variance of portfolio returns.

Plotting the Efficient Frontier
The plotFrontier method creates a plot of the efficient frontier for a given
portfolio optimization problem. This method accepts several types of inputs
and generates a plot with an optional possibility to output the estimates for
portfolio risks and returns along the efficient frontier. plotFrontier has four
different ways that it can be used. In addition to a plot of the efficient frontier,
if you have an initial portfolio in the InitPort property, plotFrontier also
displays the return versus risk of the initial portfolio on the same plot. If you
have a well-posed portfolio optimization problem set up in a portfolio object
and you use plotFrontier, you will get a plot of the efficient frontier with the
default number of portfolios on the frontier (the default number is currently
10 and is maintained in the hidden property defaultNumPorts). This example
illustrates a typical use of plotFrontier to create a new plot:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

pwgt0 = [0.3; 0.3; 0.2; 0.1];

p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = p.setAssetMoments(m, C);

p = p.setDefaultConstraints;

p.plotFrontier;

4-98

Estimate Efficient Frontiers

The Name property is displayed as the title of the efficient frontier plot if you
set it in the portfolio object. Without an explicit name, the title on the plot
would be "Efficient Frontier." If you want to obtain a specific number of
portfolios along the efficient frontier, use plotFrontier with the number
of portfolios that you want. Suppose you have the portfolio object from the
previous example and you want to plot 20 portfolios along the efficient frontier
and to obtain 20 risk and return values for each portfolio:

[prsk, pret] = p.plotFrontier(20);
display([pret, prsk]);

ans =

0.0590 0.0769
0.0654 0.0784
0.0718 0.0825
0.0781 0.0890
0.0845 0.0973

4-99

4 Portfolio Optimization Tools

0.0909 0.1071
0.0972 0.1179
0.1036 0.1296
0.1100 0.1418
0.1163 0.1545
0.1227 0.1676
0.1291 0.1810
0.1354 0.1955
0.1418 0.2128
0.1482 0.2323
0.1545 0.2535
0.1609 0.2760
0.1673 0.2995
0.1736 0.3239
0.1800 0.3500

4-100

Estimate Efficient Frontiers

Plotting Existing Efficient Portfolios
If you already have efficient portfolios from any of the "estimateFrontier"
methods (see “Estimate Efficient Portfolios” on page 4-82), pass them into
plotFrontier directly to plot the efficient frontier:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

pwgt0 = [0.3; 0.3; 0.2; 0.1];

p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = p.setAssetMoments(m, C);

p = p.setDefaultConstraints;

pwgt = p.estimateFrontier(20);

p.plotFrontier(pwgt);

4-101

4 Portfolio Optimization Tools

Plotting Existing Efficient Portfolio Risks and Returns
If you already have efficient portfolio risks and returns, you can use the
interface to plotFrontier to pass them into plotFrontier to obtain a plot of
the efficient frontier:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

pwgt0 = [0.3; 0.3; 0.2; 0.1];

p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = p.setAssetMoments(m, C);

p = p.setDefaultConstraints;

[prsk, pret] = p.estimatePortMoments(p.estimateFrontier(20));

p.plotFrontier(prsk, pret);

4-102

Post-Processing

Post-Processing

In this section...

“Setting Up Tradable Portfolios” on page 4-103

“Troubleshooting Portfolio Optimization Results” on page 4-105

After obtaining efficient portfolios or estimates for expected portfolio risks and
returns, use your results to set up trades to move toward an efficient portfolio.

Setting Up Tradable Portfolios
Suppose you set up a portfolio optimization problem and obtained portfolio
on the efficient frontier. Use the dataset object from Statistics Toolbox™
software to form a blotter that lists your portfolios with the names for each
asset. For example, suppose you want to obtain five portfolios along the
efficient frontier. You can set up a blotter with weights multiplied by 100 to
view the allocations for each portfolio:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

pwgt0 = [0.3; 0.3; 0.2; 0.1];

p = Portfolio('InitPort', pwgt0);

p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = p.setAssetMoments(m, C);

p = p.setDefaultConstraints;

pwgt = p.estimateFrontier(5);

pnames = cell(1,5);

for i = 1:5

pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);

display(Blotter);

Blotter =

4-103

4 Portfolio Optimization Tools

Port1 Port2 Port3 Port4 Port5

Bonds 88.906 51.216 13.525 0 0

Large-Cap Equities 3.6875 24.387 45.086 27.479 0

Small-Cap Equities 4.0425 7.7088 11.375 13.759 0

Emerging Equities 3.364 16.689 30.014 58.762 100

This result indicates that you would invest primarily in bonds at the
minimum-risk/minimum-return end of the efficient frontier (Port1),
and that you would invest completely in emerging equity at the
maximum-risk/maximum-return end of the efficient frontier (Port5). You can
also select a particular efficient portfolio, for example, suppose you want
a portfolio with 15% risk and you add purchase and sale weights outputs
obtained from the “estimateFrontier” methods to set up a trade blotter:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

pwgt0 = [0.3; 0.3; 0.2; 0.1];

p = Portfolio('InitPort', pwgt0);

p = p.setAssetList('Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = p.setAssetMoments(m, C);

p = p.setDefaultConstraints;

[pwgt, pbuy, psell] = p.estimateFrontierByRisk(0.15);

Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...

{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);

display(Blotter);

Blotter =

Initial Weight Purchases Sales

Bonds 30 20.299 0 9.7007

Large-Cap Equities 30 41.366 11.366 0

Small-Cap Equities 20 10.716 0 9.2838

Emerging Equities 10 27.619 17.619 0

4-104

Post-Processing

If you have prices for each asset (in this example, they can be ETFs), add them
to your blotter and then use the tools of the dataset object to obtain shares
and shares to be traded. For an example, see “Asset Allocation Example” on
page 4-108.

Troubleshooting Portfolio Optimization Results

Portfolio Object Destroyed When Modifying
If a portfolio object is destroyed when modifying, remember to pass an existing
object into the constructor if you want to modify it, otherwise it creates a new
object. See “Constructing the Portfolio Object” on page 4-23 for details.

Optimization Fails with “Bad Pivot” Message
If the optimization fails with a "bad pivot" message from lcprog, try a
larger value for tolpiv which is a tolerance for pivot selection in the lcprog
algorithm (try 1.0e-7, for example) or try the interior-point-convex
version of quadprog. For details, see “Choosing and Controlling the Solver” on
page 4-93, the help header for lcprog, and the quadprog documentation.

Matrix Incompatibility and "Non-Conformable" Errors
If you get "non-conformable" or matrix incompatibility errors, the
representation of data in the tools follows a specific set of basic rules described
in “Conventions for Representation of Data” on page 4-22.

Missing Data Estimation Fails
If asset return data has missing or NaN values, the method
estimateAssetMoments with the 'missingdata' flag set to true may fail
with either too many iterations or a singular covariance. To correct this
problem, consider this:

• If you have asset return data with no missing or NaN values, you can
compute a covariance matrix that may be singular without difficulties. If
you have missing or NaN values in your data, the supported missing data
feature requires that your covariance matrix must be positive-definite,
i.e., nonsingular.

4-105

4 Portfolio Optimization Tools

• estimateAssetMoments uses default settings for the missing data
estimation procedure that may not be appropriate for all problems.

In either case, you may want to estimate the moments of asset returns
separately with either the ECM estimation functions such as ecmnmle or
with your own methods.

mv_optim_transform Errors
If you obtain optimization errors such as:

??? Error using ==> mv_optim_transform at 212

Portfolio set appears to be empty. Check constraints, especially the turnover constraint.

Error in ==> Portfolio.estimateFrontier at 65

[A, b, f0, f, H, g, lb] = mv_optim_transform(obj);

or

??? Error using ==> mv_optim_transform at 221
Cannot obtain finite lower bounds for specified portfolio set.

Error in ==> Portfolio.estimateFrontier at 65
[A, b, f0, f, H, g, lb] = mv_optim_transform(obj);

Error in ==> Portfolio.plotFrontier at 117
pwgt = obj.estimateFrontier(NumPorts);

Since the portfolio optimization tools require a bounded portfolio set, these
errors (and similar errors) can occur if your portfolio set is either empty
and, if nonempty, unbounded. Specifically, the portfolio optimization
algorithm requires that your portfolio set have at least a finite lower
bound. The best way to deal with these problems is to use the validation
methods in “Validating the Portfolio Problem” on page 4-78. Specifically, use
estimateBounds to examine your portfolio set, and use checkFeasibility to
ensure that your initial portfolio is either feasible and, if infeasible, that you
have sufficient turnover to get from your initial portfolio to the portfolio set.

4-106

Post-Processing

Note To correct this problem, try solving your problem with larger values for
turnover and gradually reduce to the value that you want.

Efficient Portfolios Do Not Make Sense
If you obtain efficient portfolios that do not seem to make sense, this can
happen if you forget to set specific constraints or you set incorrect constraints.
For example, if you allow portfolio weights to fall between 0 and 1 and do
not set a budget constraint, you can get portfolios that are 100% invested
in every asset. Although it may be hard to detect, the best thing to do is to
review the constraints you have set with display of the object. If you get
portfolios with 100% invested in each asset, you can review the display of
your object and quickly see that no budget constraint is set. Also, you can use
estimateBounds and checkFeasibility to determine if the bounds for your
portfolio set make sense and to determine if the portfolios you obtained are
feasible relative to an independent formulation of your portfolio set.

4-107

4 Portfolio Optimization Tools

Asset Allocation Example

In this section...

“Defining the Portfolio Problem” on page 4-108

“Simulating Asset Prices” on page 4-109

“Setting Up the Portfolio Object” on page 4-111

“Validating the Portfolio Problem” on page 4-113

“Plotting the Efficient Frontier” on page 4-113

“Evaluating Gross vs. Net Portfolio Returns” on page 4-114

“Analyzing Descriptive Properties of the Portfolio Structures” on page 4-115

“Obtaining a Portfolio at the Specified Return Level on the Efficient
Frontier” on page 4-116

“Obtaining a Portfolio at the Specified Risk Levels on the Efficient Frontier”
on page 4-117

“Displaying the Final Results” on page 4-120

The following example sets up a basic asset allocation problem to use
mean-variance portfolio optimization to estimate efficient portfolios. Suppose
you want to manage an asset allocation fund with four asset classes: bonds,
large-cap equities, small-cap equities, and emerging equities. The fund is
long-only with no borrowing or leverage, should have no more than 85% of
the portfolio in equities, and no more than 35% of the portfolio in emerging
equities.

The cost to trade the first three assets is 10 basis points annualized and the
cost to trade emerging equities is four times higher. Finally, you want to
ensure that average turnover is no more than 15%. To solve this problem, you
will set up a basic mean-variance portfolio optimization problem and then
slowly introduce the various constraints on the problem to get to a solution.

Defining the Portfolio Problem
To set up the portfolio optimization problem, start with basic definitions of
known quantities associated with the structure of this problem. Each asset
class is assumed to have a tradeable asset with a real-time price. Such assets

4-108

Asset Allocation Example

can be, for example, exchange-traded funds (ETFs). The initial portfolio with
holdings in each asset that has a total of $7.5 million along with an additional
cash position of $60,000. These basic quantities and the costs to trade are set
up in the following variables with asset names in the cell array Asset, current
prices in the vector Price, current portfolio holdings in the vector Holding,
and transaction costs in the vector UnitCost.

Asset = { 'Bonds', 'Large-Cap Equities', 'Small-Cap Equities', 'Emerging Equities' };

Price = [52.4; 122.7; 35.2; 46.9];

Holding = [42938; 24449; 42612; 15991];

UnitCost = [0.001; 0.001; 0.001; 0.004];

To analyze this portfolio, you can set up a blotter in a dataset object to help
track prices, holdings, weights, and so forth. In particular, you can compute
the initial portfolio weights and maintain them in a new blotter field called
InitPort.

Blotter = dataset({Price, 'Price'}, {Holding, 'InitHolding'},'obsnames',Asset);

Wealth = sum(Blotter.Price .* Blotter.InitHolding);

Blotter.InitPort = (1/Wealth)*(Blotter.Price .* Blotter.InitHolding);

Blotter.UnitCost = UnitCost;

disp(Blotter);

Price InitHolding InitPort UnitCost

Bonds 52.4 42938 0.3 0.001

Large-Cap Equities 122.7 24449 0.4 0.001

Small-Cap Equities 35.2 42612 0.2 0.001

Emerging Equities 46.9 15991 0.1 0.004

Simulating Asset Prices
Since this is a hypothetical example, to simulate asset prices from a given
mean and covariance of annual asset total returns for the asset classes,
portsim is used to create asset returns with the desired mean and covariance.
Specifically, portsim is used to simulate 5 years of monthly total returns. The
mean and covariance of annual asset total returns are maintained in the
variables AssetMean and AssetCovar. The simulated asset total return prices
(which are compounded total returns) are maintained in the variable Y. All
initial asset total return prices are normalized to 1 in this example.

AssetMean = [0.05; 0.1; 0.12; 0.18];

4-109

4 Portfolio Optimization Tools

AssetCovar = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225];

X = portsim(AssetMean'/12, AssetCovar/12, 60); % monthly total returns for 5 years (60 months)

[Y, T] = ret2tick(X, [], 1/12); % form total return prices

This plot shows the log of the simulated total return prices:

plot(T, log(Y));
title('\bfSimulated Asset Class Total Return Prices');
xlabel('Year');
ylabel('Log Total Return Price');
legend(Asset,'Location','best');

If working with actual historical asset prices, income, and corporate actions
data, you would compute total returns for your assets by other means.

4-110

Asset Allocation Example

Setting Up the Portfolio Object
To explore portfolios on the efficient frontier, set up a portfolio object using
these specifications:

• Portfolio weights are nonnegative and sum to 1.

• Equity allocation is no more than 85% of the portfolio.

• Emerging equity is no more than 35% of the portfolio.

These specifications are incorporated into the portfolio object p in the
following sequence of methods that starts with the portfolio constructor:

p = Portfolio('Name', 'Asset Allocation Portfolio', ...
'AssetList', Asset, 'InitPort', Blotter.InitPort);

The specification of the initial portfolio from Blotter gives the number of
assets in your universe so you do not need to specify the NumAssets property
directly. Next, set up default constraints (long-only with a budget constraint).
In addition, set up the group constraint that imposes an upper bound on
equities in the portfolio (equities are identified in the group matrix with 1s)
and the upper bound constraint on emerging equities.

p = p.setDefaultConstraints;
p = p.setGroups([0, 1, 1, 1], [], 0.85);
p = p.addGroups([0, 0, 0, 1], [], 0.35);

Although you could have set the upper bound on emerging equities using the
setBounds method, notice how you used the addGroups method to set up
this constraint.

Finally, to have a fully specified mean-variance portfolio optimization
problem, you must specify the mean and covariance of asset returns. Since
starting with these moments in the variables AssetMean and AssetCovar, you
could use the method setAssetMoments to enter these variables into your
portfolio object in the following way (remember that you are assuming that
your raw data are monthly returns which is why you divide your annual input
moments by 12 to get monthly returns).

p = p.setAssetMoments(AssetMean/12, AssetCovar/12);

4-111

4 Portfolio Optimization Tools

To make things more interesting, however, you can use the total return prices
and use the method estimateAssetMoments with a specification that your
data in Y are prices, and not returns, to estimate asset return moments for
your portfolio object.

p = p.estimateAssetMoments(Y, 'DataFormat', 'Prices');

Although the returns in your portfolio object are in units of monthly returns,
and since subsequent costs are annualized, it is convenient to specify them as
annualized total returns with this direct transformation of the AssetMean and
AssetCovar properties of your object:

p.AssetMean = 12*p.AssetMean;
p.AssetCovar = 12*p.AssetCovar;

Now, the portfolio object is ready:

display(p);

p =

Portfolio

Properties:

BuyCost: []

SellCost: []

RiskFreeRate: []

AssetMean: [4x1 double]

AssetCovar: [4x4 double]

Turnover: []

Name: 'Asset Allocation Portfolio'

NumAssets: 4

AssetList: {'Bonds' 'Large-Cap Equities' 'Small-Cap Equities' 'Emerging Equities'}

InitPort: [4x1 double]

AInequality: []

bInequality: []

AEquality: []

bEquality: []

LowerBound: [4x1 double]

UpperBound: []

LowerBudget: 1

4-112

Asset Allocation Example

UpperBudget: 1

GroupMatrix: [2x4 double]

LowerGroup: []

UpperGroup: [2x1 double]

GroupA: []

GroupB: []

LowerRatio: []

UpperRatio: []

Validating the Portfolio Problem
An important step in portfolio optimization is to validate that the portfolio
problem is feasible and the main test is to ensure that the set of portfolios is
nonempty and bounded. Use the estimateBounds method to determine the
bounds for the portfolio set:

[lb, ub] = p.estimateBounds;
display([lb, ub]);

ans =

0.1500 1.0000
0.0000 0.8500
0.0000 0.8500
0.0000 0.3500

Since both lb and ub are finite, the set is bounded.

Plotting the Efficient Frontier
Given the constructed portfolio object, use the method plotFrontier to view
the efficient frontier. Instead of using the default of 10 portfolios along the
frontier, you can display the frontier with 40 portfolios:

p.plotFrontier(40);

4-113

4 Portfolio Optimization Tools

Notice gross efficient portfolio returns fall between approximately 6% and
16% per years.

Evaluating Gross vs. Net Portfolio Returns
The portfolio object p does not include transaction costs so that the portfolio
optimization problem specified in p uses gross portfolio return as the return
proxy. To handle net returns, create a second portfolio object q that includes
transaction costs:

q = p.setCosts(UnitCost, UnitCost);

display(q);

q =

Portfolio

Properties:

BuyCost: [4x1 double]

4-114

Asset Allocation Example

SellCost: [4x1 double]

RiskFreeRate: []

AssetMean: [4x1 double]

AssetCovar: [4x4 double]

Turnover: []

Name: 'Asset Allocation Portfolio'

NumAssets: 4

AssetList: {'Bonds' 'Large-Cap Equities' 'Small-Cap Equities' 'Emerging Equities'}

InitPort: [4x1 double]

AInequality: []

bInequality: []

AEquality: []

bEquality: []

LowerBound: [4x1 double]

UpperBound: []

LowerBudget: 1

UpperBudget: 1

GroupMatrix: [2x4 double]

LowerGroup: []

UpperGroup: [2x1 double]

GroupA: []

GroupB: []

LowerRatio: []

UpperRatio: []

Analyzing Descriptive Properties of the Portfolio
Structures
To be more concrete about the ranges of efficient portfolio returns and risks,
use the method estimateFrontierLimits to obtain portfolios at the endpoints
of the efficient frontier. Given these portfolios, compute their moments using
estimatePortMoments. The following code generates a table that lists the
risk and return of the initial portfolio as well as the gross and net moments of
portfolio returns for the portfolios at the endpoints of the efficient frontier:

[prsk0, pret0] = p.estimatePortMoments(p.InitPort);

pret = p.estimatePortReturn(p.estimateFrontierLimits);

qret = q.estimatePortReturn(q.estimateFrontierLimits);

4-115

4 Portfolio Optimization Tools

fprintf('Annualized Portfolio Returns ...\n');

fprintf(' %6s %6s\n','Gross','Net');

fprintf('Initial Portfolio Return %6.2f %% %6.2f %%\n',100*pret0,100*pret0);

fprintf('Minimum Efficient Portfolio Return %6.2f %% %6.2f %%\n',100*pret(1),100*qret(1));

fprintf('Maximum Efficient Portfolio Return %6.2f %% %6.2f %%\n',100*pret(2),100*qret(2));

Annualized Portfolio Returns ...

Gross Net

Initial Portfolio Return 9.70 % 9.70 %

Minimum Efficient Portfolio Return 5.90 % 5.77 %

Maximum Efficient Portfolio Return 13.05 % 12.86 %

This result shows that the cost to trade ranges from 14 to 19 basis points to
get from the current portfolio to the efficient portfolios at the endpoints of the
efficient frontier (these costs are the difference between gross and net portfolio
returns.) In addition, notice that the maximum efficient portfolio return
(13%) is less than the maximum asset return (18%) due to the constraints
on equity allocations.

Obtaining a Portfolio at the Specified Return Level
on the Efficient Frontier
A common approach to select efficient portfolios is to pick a portfolio that has
a desired fraction of the range of expected portfolio returns. To obtain the
portfolio that is 30% of the range from the minimum to maximum return
on the efficient frontier, obtain the range of net returns in qret using the
portfolio object q and interpolate to obtain a 30% level with interp1 to obtain
a portfolio qwgt:

Level = 0.3;

qret = q.estimatePortReturn(q.estimateFrontierLimits);

qwgt = q.estimateFrontierByReturn(interp1([0, 1], qret, Level));

[qrsk, qret] = q.estimatePortMoments(qwgt);

fprintf('Portfolio at %g%% return level on efficient frontier ...\n',100*Level);

fprintf('%10s %10s\n','Return','Risk');

fprintf('%10.2f %10.2f\n',100*qret,100*qrsk);

display(qwgt);

4-116

Asset Allocation Example

Portfolio at 30% return level on efficient frontier ...

Return Risk

7.90 9.09

qwgt =

0.6252

0.1856

0.0695

0.1198

The target portfolio that is 30% of the range from minimum to maximum net
returns has a return of 7.9% and a risk of 9.1%.

Obtaining a Portfolio at the Specified Risk Levels on
the Efficient Frontier
Although you could accept this result, suppose you want to target values
for portfolio risk. Specifically, suppose you have a conservative target risk
of 10%, a moderate target risk of 15%, and an aggressive target risk of 20%
and you want to obtain portfolios that satisfy each risk target. Use the
estimateFrontierByRisk method to obtain targeted risks specified in the
variable TargetRisk. The resultant three efficient portfolios are obtained
in qwgt:

TargetRisk = [0.10; 0.15; 0.20];
qwgt = q.estimateFrontierByRisk(TargetRisk);
display(qwgt);

qwgt =

0.5407 0.2020 0.1500
0.2332 0.4000 0.0318
0.0788 0.1280 0.4682
0.1474 0.2700 0.3500

Use estimatePortRisk to compute the portfolio risks for the three portfolios
to confirm that the target risks have been attained:

4-117

4 Portfolio Optimization Tools

display(q.estimatePortRisk(qwgt));

ans =

0.1000
0.1500
0.2000

Suppose you want to shift from the current portfolio to the moderate portfolio.
You can estimate the purchases and sales to get to this portfolio:

[qwgt, qbuy, qsell] = q.estimateFrontierByRisk(0.15);

If you average the purchases and sales for this portfolio, you can see that the
average turnover is 17%, which is greater than the target of 15%:

disp(sum(qbuy + qsell)/2)

0.1700

Since you also want to ensure that average turnover is no more than 15%, you
can add the average turnover constraint to the portfolio object:

q = q.setTurnover(0.15);
[qwgt, qbuy, qsell] = q.estimateFrontierByRisk(0.15);

You can enter the estimated efficient portfolio with purchases and sales into
the Blotter:

qbuy(abs(qbuy) < 1.0e-5) = 0;

qsell(abs(qsell) < 1.0e-5) = 0; % zero out near 0 trade weights

Blotter.Port = qwgt;

Blotter.Buy = qbuy;

Blotter.Sell = qsell;

display(Blotter);

Blotter =

Price InitHolding InitPort UnitCost Port Buy Sell

Bonds 52.4 42938 0.3 0.001 0.18787 0 0.11213

4-118

Asset Allocation Example

Large-Cap Equities 122.7 24449 0.4 0.001 0.4 0 0

Small-Cap Equities 35.2 42612 0.2 0.001 0.16213 0 0.037871

Emerging Equities 46.9 15991 0.1 0.004 0.25 0.15 0

The Buy and Sell elements of the Blotter are changes in portfolio weights
that must be converted into changes in portfolio holdings to determine the
trades. Since you are working with net portfolio returns, you must first
compute the cost to trade from your initial portfolio to the new portfolio. This
can be accomplished as follows:

TotalCost = Wealth * sum(Blotter.UnitCost .* (Blotter.Buy + Blotter.Sell))

TotalCost =

5.6248e+003

The cost to trade is $5,625, so that, in general, you would have to adjust
your initial wealth accordingly before setting up your new portfolio weights.
However, to keep the analysis simple, note that you have sufficient cash
($60,0000) set aside to pay the trading costs and that you will not touch
the cash position to build up any positions in your portfolio. Thus, you can
populate your blotter with the new portfolio holdings and the trades to get to
the new portfolio without making any changes in your total invested wealth.

First, compute portfolio holding:

Blotter.Holding = Wealth * (Blotter.Port ./ Blotter.Price);

Next, compute number of shares to Buy and Sell in your Blotter:

Blotter.BuyShare = Wealth * (Blotter.Buy ./ Blotter.Price);
Blotter.SellShare = Wealth * (Blotter.Sell ./ Blotter.Price);

Notice how you used an add-hoc truncation rule to obtain unit numbers of
shares to buy and sell.

Finally, clean up the blotter by removing the unit costs and the buy and sell
portfolio weights:

Blotter.Buy = [];
Blotter.Sell = [];
Blotter.UnitCost = [];

4-119

4 Portfolio Optimization Tools

Displaying the Final Results
The final result is a blotter that contains proposed trades to get from your
current portfolio to a moderate-risk portfolio. To make the trade, you would
need to sell 16,049 shares of your bond asset and 8,069 shares of your
small-cap equity asset and would need to purchase 23,986 shares of your
emerging equities asset.

display(Blotter);

Blotter =

Price InitHolding InitPort Port Holding BuyShare SellShare

Bonds 52.4 42938 0.3 0.18787 26889 0 16049

Large-Cap Equities 122.7 24449 0.4 0.4 24449 0 0

Small-Cap Equities 35.2 42612 0.2 0.16213 34543 0 8068.8

Emerging Equities 46.9 15991 0.1 0.25 39977 23986 0

The final plot uses plotFrontier to display the efficient frontier and the
initial portfolio for the fully specified portfolio optimization problem. It also
adds the location of the moderate-risk or final portfolio on the efficient frontier.

q.plotFrontier(40);

hold on

scatter(q.estimatePortRisk(qwgt), q.estimatePortReturn(qwgt), 'filled', 'r');

h = legend('Initial Portfolio', 'Efficient Frontier', 'Final Portfolio', 'location', 'best');

set(h, 'Fontsize', 8);

hold off

4-120

Asset Allocation Example

4-121

4 Portfolio Optimization Tools

4-122

5

Investment Performance
Metrics

• “Overview of Performance Metrics” on page 5-2

• “Using the Sharpe Ratio” on page 5-6

• “Using the Information Ratio” on page 5-8

• “Tracking Error” on page 5-10

• “Risk-Adjusted Return” on page 5-11

• “Sample and Expected Lower Partial Moments” on page 5-14

• “Maximum and Expected Maximum Drawdown” on page 5-17

5 Investment Performance Metrics

Overview of Performance Metrics

In this section...

“Performance Metrics Types” on page 5-2

“Performance Metrics Example” on page 5-3

Performance Metrics Types
Sharpe first proposed a ratio of excess return to total risk as an investment
performance metric. Subsequent work by Sharpe, Lintner, and Mossin
extended these ideas to entire asset markets in what is called the Capital
Asset Pricing Model (CAPM). Since the development of the CAPM, a variety
of investment performance metrics has evolved.

This chapter presents four type of investment performance metrics:

• The first type of metrics are absolute investment performance metrics that
are called “classic” metrics since they are based on the CAPM. They include
the Sharpe ratio, the information ratio, and tracking error. To compute the
Sharpe ratio from data, use the function sharpe to calculate the ratio for
one or more asset return series. To compute the information ratio and
associated tracking error, use the function inforatio to calculate these
quantities for one or more asset return series.

• The second type of metrics are relative investment performance metrics
to compute risk-adjusted returns. These metrics are also based on the
CAPM and include Beta, Jensen’s Alpha, the Security Market Line (SML),
Modigliani and Modigliani Risk-Adjusted Return, and the Graham-Harvey
measures. To calculate risk-adjusted alpha and return, use portalpha.

• The third type of metrics are alternative investment performance metrics
based on lower partial moments. To calculate lower partial moments, use
the functions lpm for sample lower partial moments and elpm for expected
lower partial moments.

• The fourth type of metrics are performance metrics based on maximum
drawdown and expected maximum drawdown. To calculate maximum
or expected maximum drawdowns, use the functions maxdrawdown and
emaxdrawdown.

5-2

Overview of Performance Metrics

Performance Metrics Example
To illustrate the functions for investment performance metrics, you will work
with three financial time series objects using performance data for:

• An actively managed, large-cap value mutual fund

• A large-cap market index

• 90-day Treasury bills

The data is monthly total return prices that cover a span of 5 years.

The following plot illustrates the performance of each series in terms of total
returns to an initial $1 invested at the start of this 5-year period:

load FundMarketCash
plot(TestData)
hold all
title('\bfFive-Year Total Return Performance');
legend('Fund','Market','Cash','Location','SouthEast');
hold off

5-3

5 Investment Performance Metrics

The mean (Mean) and standard deviation (Sigma) of returns for each series are

Returns = tick2ret(TestData);
Assets
Mean = mean(Returns)
Sigma = std(Returns, 1)

which gives the following result:

Assets =
'Fund' 'Market' 'Cash'

Mean =
0.0038 0.0030 0.0017

Sigma =
0.0229 0.0389 0.0009

5-4

Overview of Performance Metrics

In this chapter, you will work with this data to demonstrate that the example
fund has done well in absolute, relative, and risk-adjusted terms with respect
to the investment performance metrics.

Note Functions for investment performance metrics use total return price
and total returns. To convert between total return price and total returns,
use ret2tick and tick2ret.

5-5

5 Investment Performance Metrics

Using the Sharpe Ratio

In this section...

“Introduction” on page 5-6

“Sharpe Ratio Example” on page 5-6

Introduction
The Sharpe ratio is the ratio of the excess return of an asset divided by the
asset’s standard deviation of returns. The Sharpe ratio has the form:

(Mean - Riskless) / Sigma

Here Mean is the mean of asset returns, Riskless is the return of a riskless
asset, and Sigma is the standard deviation of asset returns. A higher Sharpe
ratio is better than a lower Sharpe ratio. A negative Sharpe ratio indicates
“anti-skill” since the performance of the riskless asset is superior.

Sharpe Ratio Example
To compute the Sharpe ratio, the mean return of the cash asset is used as the
return for the riskless asset. Thus, given asset return data and the riskless
asset return, the Sharpe ratio is calculated with

load FundMarketCash
Returns = tick2ret(TestData);
Riskless = mean(Returns(:,3))
Sharpe = sharpe(Returns, Riskless)

which gives the following result:

Riskless =
0.0017

Sharpe =
0.0886 0.0315 0

The Sharpe ratio of the example fund is significantly higher than the Sharpe
ratio of the market. As will be demonstrated with portalpha, this translates
into a strong risk-adjusted return. Since the Cash asset is the same as

5-6

Using the Sharpe Ratio

Riskless, it makes sense that its Sharpe ratio is 0. The Sharpe ratio was
calculated with the mean of cash returns. It can also be calculated with the
cash return series as input for the riskless asset

Sharpe = sharpe(Returns, Returns(:,3))

which gives the following result:

Sharpe =
0.0886 0.0315 0

When using the Portfolio. object, you can use the estimateMaxSharpeRatio
method to estimate an efficient portfolio that maximizes the Sharpe ratio. For
more information, see “Obtaining an Efficient Portfolio that Maximizes the
Sharpe Ratio” on page 4-91.

5-7

5 Investment Performance Metrics

Using the Information Ratio

In this section...

“Introduction” on page 5-8

“Information Ratio Example” on page 5-8

Introduction
Although originally called the “appraisal ratio” by Treynor and Black, the
information ratio is the ratio of relative return to relative risk (known as
“tracking error”). Whereas the Sharpe ratio looks at returns relative to a
riskless asset, the information ratio is based on returns relative to a risky
benchmark which is known colloquially as a “bogey.” Given an asset or
portfolio of assets with random returns designated by Asset and a benchmark
with random returns designated by Benchmark, the information ratio has
the form:

Mean(Asset - Benchmark) / Sigma (Asset - Benchmark)

Here Mean(Asset - Benchmark) is the mean of Asset minus Benchmark
returns, and Sigma(Asset - Benchmark) is the standard deviation of Asset
minus Benchmark returns. A higher information ratio is considered better
than a lower information ratio.

Information Ratio Example
To calculate the information ratio using the example data, the mean return of
the market series is used as the return of the benchmark. Thus, given asset
return data and the riskless asset return, compute the information ratio with

load FundMarketCash
Returns = tick2ret(TestData);
Benchmark = Returns(:,2);
InfoRatio = inforatio(Returns, Benchmark)

which gives the following result:

InfoRatio =
0.0432 NaN -0.0315

5-8

Using the Information Ratio

Since the market series has no risk relative to itself, the information ratio
for the second series is undefined (which is represented as NaN in MATLAB
software). Its standard deviation of relative returns in the denominator is 0.

5-9

5 Investment Performance Metrics

Tracking Error

In this section...

“Introduction” on page 5-10

“Tracking Error Example” on page 5-10

Introduction
Given an asset or portfolio of assets and a benchmark, the relative standard
deviation of returns between the asset or portfolio of assets and the
benchmark is called tracking error.

Tracking Error Example
The function inforatio computes tracking error and returns it as a second
argument

load FundMarketCash
Returns = tick2ret(TestData);
Benchmark = Returns(:,2);
[InfoRatio, TrackingError] = inforatio(Returns, Benchmark)

which gives the following results:

InfoRatio =
0.0432 NaN -0.0315

TrackingError =
0.0187 0 0.0390

Tracking error is a useful measure of performance relative to a benchmark
since it is in units of asset returns. For example, the tracking error of 1.87%
for the fund relative to the market in this example is reasonable for an
actively managed, large-cap value fund.

5-10

Risk-Adjusted Return

Risk-Adjusted Return

In this section...

“Introduction” on page 5-11

“Risk-Adjusted Return Example” on page 5-11

Introduction
Risk-adjusted return either shifts the risk (which is the standard deviation
of returns) of a portfolio to match the risk of a market portfolio or shifts the
risk of a market portfolio to match the risk of a fund. According to the Capital
Asset Pricing Model (CAPM), the market portfolio and a riskless asset are
points on a Security Market Line (SML). The return of the resultant shifted
portfolio, levered or unlevered, to match the risk of the market portfolio, is
the risk-adjusted return. The SML provides another measure of risk-adjusted
return, since the difference in return between the fund and the SML, return
at the same level of risk.

Risk-Adjusted Return Example
Given our example data with a fund, a market, and a cash series, you can
calculate the risk-adjusted return and compare it with the fund and market’s
mean returns

load FundMarketCash
Returns = tick2ret(TestData);
Fund = Returns(:,1);
Market = Returns(:,2);
Cash = Returns(:,3);
MeanFund = mean(Fund)
MeanMarket = mean(Market)

[MM, aMM] = portalpha(Fund, Market, Cash, 'MM')
[GH1, aGH1] = portalpha(Fund, Market, Cash, 'gh1')
[GH2, aGH2] = portalpha(Fund, Market, Cash, 'gh2')
[SML, aSML] = portalpha(Fund, Market, Cash, 'sml')

which gives the following results:

5-11

5 Investment Performance Metrics

MeanFund =

0.0038

MeanMarket =

0.0030

MM =

0.0022

aMM =

0.0052

GH1 =

0.0013

aGH1 =

0.0025

GH2 =

0.0022

aGH2 =

0.0052

SML =

0.0013

aSML =

0.0025

5-12

Risk-Adjusted Return

Since the fund’s risk is much less than the market’s risk, the risk-adjusted
return of the fund is much higher than both the nominal fund and market
returns.

5-13

5 Investment Performance Metrics

Sample and Expected Lower Partial Moments

In this section...

“Introduction” on page 5-14

“Sample Lower Partial Moments Example” on page 5-14

“Expected Lower Partial Moments Example” on page 5-15

Introduction
Use lower partial moments to examine what is colloquially known as
“downside risk.” The main idea of the lower partial moment framework is to
model moments of asset returns that fall below a minimum acceptable level of
return. To compute lower partial moments from data, use lpm to calculate
lower partial moments for multiple asset return series and for multiple
moment orders. To compute expected values for lower partial moments under
several assumptions about the distribution of asset returns, use elpm to
calculate lower partial moments for multiple assets and for multiple orders.

Sample Lower Partial Moments Example
The following example demonstrates lpm to compute the zero-order,
first-order, and second-order lower partial moments for the three time series,
where the mean of the third time series is used to compute MAR (with the
so-called risk-free rate).

load FundMarketCash
Returns = tick2ret(TestData);
Assets
MAR = mean(Returns(:,3))
LPM = lpm(Returns, MAR, [0 1 2])

which gives the following results:

Assets =
'Fund' 'Market' 'Cash'

MAR =
0.0017

LPM =

5-14

Sample and Expected Lower Partial Moments

0.4333 0.4167 0.6167
0.0075 0.0140 0.0004
0.0003 0.0008 0.0000

The first row of LPM contains zero-order lower partial moments of the three
series. The fund and market index fall below MAR about 40% of the time and
cash returns fall below its own mean about 60% of the time.

The second row contains first-order lower partial moments of the three series.
The fund and market have large expected shortfall returns relative to MAR by
75 and 140 basis points per month. On the other hand, cash underperforms
MAR by about only 4 basis points per month on the downside.

The third row contains second-order lower partial moments of the three
series. The square root of these quantities provides an idea of the dispersion
of returns that fall below the MAR. The market index has a much larger
variation on the downside when compared to the fund.

Expected Lower Partial Moments Example
To compare realized values with expected values, use elpm to compute
expected lower partial moments based on the mean and standard deviations
of normally distributed asset returns. The elpm function works with the mean
and standard deviations for multiple assets and multiple orders

load FundMarketCash
Returns = tick2ret(TestData);
MAR = mean(Returns(:,3))
Mean = mean(Returns)
Sigma = std(Returns, 1)
Assets
ELPM = elpm(Mean, Sigma, MAR, [0 1 2])

which gives the following results:

Assets =
'Fund' 'Market' 'Cash'

ELPM =
0.4647 0.4874 0.5000
0.0082 0.0149 0.0004

5-15

5 Investment Performance Metrics

0.0002 0.0007 0.0000

Based on the moments of each asset, the expected values for lower partial
moments imply better than expected performance for the fund and market
and worse than expected performance for cash. Note that this function works
with either degenerate or nondegenerate normal random variables. For
example, if cash were truly riskless, its standard deviation would be 0. You
can examine the difference in expected shortfall.

RisklessCash = elpm(Mean(3), 0, MAR, 1)

which gives the following result:

RisklessCash =
0

5-16

Maximum and Expected Maximum Drawdown

Maximum and Expected Maximum Drawdown

In this section...

“Introduction” on page 5-17

“Maximum Drawdown Example” on page 5-17

“Expected Maximum Drawdown Example” on page 5-21

Introduction
Maximum drawdown is the maximum decline of a series, measured as return,
from a peak to a nadir over a period of time. Although additional metrics
exist that are used in the hedge fund and commodity trading communities
(see Pederson and Rudholm-Alfvin [20] in Appendix A, “Bibliography”), the
original definition and subsequent implementation of these metrics is not
yet standardized.

It is possible to compute analytically the expected maximum drawdown
for a Brownian motion with drift (see Magdon-Ismail, Atiya, Pratap, and
Abu-Mostafa [16] Appendix A, “Bibliography”). These results are used to
estimate the expected maximum drawdown for a series that approximately
follows a geometric Brownian motion.

Use maxdrawdown and emaxdrawdown to calculate the maximum and expected
maximum drawdowns.

Maximum Drawdown Example
This example demonstrates how to compute the maximum drawdown (MaxDD)
using our example data with a fund, a market, and a cash series:

load FundMarketCash
MaxDD = maxdrawdown(TestData)

which gives the following results:

MaxDD =
0.1658 0.3381 0

5-17

5 Investment Performance Metrics

The maximum drop in the given time period was of 16.58% for the fund
series, and 33.81% for the market. There was no decline in the cash series, as
expected, because the cash account never loses value.

maxdrawdown can also return the indices (MaxDDIndex) of the maximum
drawdown intervals for each series in an optional output argument:

[MaxDD, MaxDDIndex] = maxdrawdown(TestData)

which gives the following results:

MaxDD =

0.1658 0.3381 0

MaxDDIndex =

2 2 NaN
18 18 NaN

The first two series experience their maximum drawdowns from the 2nd to
the 18th month in the data. The indices for the third series are NaNs because
it never has a drawdown.

The 16.58% value loss from month 2 to month 18 for the fund series is verified
using the reported indices:

Start = MaxDDIndex(1,:);
End = MaxDDIndex(2,:);
(TestData(Start(1),1) - TestData(End(1),1))/TestData(Start(1),1)
ans =

0.1658

Although the maximum drawdown is measured in terms of returns,
maxdrawdown can measure the drawdown in terms of absolute drop in value,
or in terms of log-returns. To contrast these alternatives more clearly, we
work with the fund series assuming, an initial investment of 50 dollars:

Fund50 = 50*TestData(:,1);

5-18

Maximum and Expected Maximum Drawdown

plot(Fund50);
title('\bfFive-Year Fund Performance, Initial Investment 50 usd');
xlabel('Months');
ylabel('Value of Investment');

First, we compute the standard maximum drawdown, which coincides with
the results above because returns are independent of the initial amounts
invested:

MaxDD50Ret = maxdrawdown(Fund50)

MaxDD50Ret =

0.1658

Next, we compute the maximum drop in value, using the arithmetic
argument:

[MaxDD50Arith, Ind50Arith] = maxdrawdown(Fund50,'arithmetic')

5-19

5 Investment Performance Metrics

MaxDD50Arith =

8.4285

Ind50Arith =

2
18

The value of this investment was $50.84 in month 2, but by month 18
the value was down to $42.41, a drop of $8.43. This is the largest loss in
dollar value from a previous high in the given time period. In this case, the
maximum drawdown period, 2nd to 18th month, is the same independently of
whether drawdown is measured as return or as dollar value loss.

Last, we compute the maximum decline based on log-returns using the
geometric argument. In this example, the log-returns result in a maximum
drop of 18.13%, again from the 2nd to the 18th month, not far from the 16.58%
obtained using standard returns.

[MaxDD50LogRet, Ind50LogRet] = maxdrawdown(Fund50,'geometric')

MaxDD50LogRet =

0.1813

Ind50LogRet =

2
18

Note, the last measure is equivalent to finding the arithmetic maximum
drawdown for the log of the series:

MaxDD50LogRet2 = maxdrawdown(log(Fund50),'arithmetic')

MaxDD50LogRet2 =

0.1813

5-20

Maximum and Expected Maximum Drawdown

Expected Maximum Drawdown Example
This example demonstrates using the log-return moments of the fund to
compute the expected maximum drawdown (EMaxDD) and then compare it
with the realized maximum drawdown (MaxDD).

load FundMarketCash
logReturns = log(TestData(2:end,:) ./ TestData(1:end - 1,:));
Mu = mean(logReturns(:,1));
Sigma = std(logReturns(:,1),1);
T = size(logReturns,1);

MaxDD = maxdrawdown(TestData(:,1),'geometric')
EMaxDD = emaxdrawdown(Mu-0.5*Sigma^2, Sigma, T)

which gives the following results:

MaxDD =

0.1813

EMaxDD =

0.1588

The drawdown observed in this time period is above the expected maximum
drawdown. There is no contradiction here. The expected maximum drawdown
is not an upper bound on the maximum losses from a peak, but an estimate of
their average, based on a geometric Brownian motion assumption.

5-21

5 Investment Performance Metrics

5-22

6

Credit Risk Analysis

• “Credit Rating” on page 6-2

• “Estimation of Transition Probabilities” on page 6-3

• “Forecast Corporate Default Rates” on page 6-25

• “Credit Quality Thresholds” on page 6-26

6 Credit Risk Analysis

Credit Rating

In this section...

“Introduction” on page 6-2

“Example” on page 6-2

Introduction
A credit rating evaluates a potential borrower’s ability to repay debt. The
credit rating demo describes one approach to assigning credit ratings to
companies. The demo uses the same financial ratios as Altman’s z-score (see
Altman [39] in Appendix A, “Bibliography”) as predictors of credit quality, and
then it trains a classifier using one of the statistical learning tools available
in Statistics Toolbox software. The classifier used in the demo outputs a
classification score to help reviewers identify companies that fall into “gray
areas” between ratings that require a closer look. The demo also discusses
back-testing tools to evaluate the ratings accuracy.

Example
To run the Credit Rating by Bagging Decision Trees demo at the MATLAB
command line, enter:

showdemo creditratingdemo

6-2

Estimation of Transition Probabilities

Estimation of Transition Probabilities

In this section...

“Introduction” on page 6-3

“Estimate Transition Probabilities” on page 6-4

“Estimate Transition Probabilities for Different Rating Scales” on page 6-7

“Estimate Point-in-Time and Through-the-Cycle Probabilities” on page 6-8

“Estimate t-Year Default Probabilities” on page 6-12

“Estimate Bootstrap Confidence Intervals” on page 6-13

“Group Credit Ratings” on page 6-15

“Work with Nonsquare Matrices” on page 6-17

“Remove Outliers” on page 6-19

“Estimate Probabilities for Different Segments” on page 6-20

“Work with Large Datasets” on page 6-21

Introduction
Credit ratings rank borrowers according to their credit worthiness. Though
this ranking is, in itself, useful, institutions are also interested in knowing
how likely it is that borrowers in a particular rating category will be upgraded
or downgraded to a different rating, and especially, how likely it is that they
will default.

Transition probabilities offer one way to characterize the past changes in
credit quality of obligors (typically firms), and are cardinal inputs to many
risk management applications. Financial Toolbox software supports the
estimation of transition probabilities using both cohort and duration (also
known as hazard rate or intensity) approaches using transprob and related
functions.

6-3

6 Credit Risk Analysis

Note The sample dataset used throughout this chapter is simulated using a
single transition matrix. No attempt is made to match historical trends in
transition rates.

Estimate Transition Probabilities
The Data_TransProb.mat file contains sample credit ratings data.

load Data_TransProb
data(1:10,:)

ans =

'00010283' '10-Nov-1984' 'CCC'
'00010283' '12-May-1986' 'B'
'00010283' '29-Jun-1988' 'CCC'
'00010283' '12-Dec-1991' 'D'
'00013326' '09-Feb-1985' 'A'
'00013326' '24-Feb-1994' 'AA'
'00013326' '10-Nov-2000' 'BBB'
'00014413' '23-Dec-1982' 'B'
'00014413' '20-Apr-1988' 'BB'
'00014413' '16-Jan-1998' 'B'

The sample data is formatted as a cell array with three columns. Each row
contains an ID (column 1), a date (column 2), and a credit rating (column 3).
The assigned credit rating corresponds to the associated ID on the associated
date. All information corresponding to the same ID must be stored in
contiguous rows. In this example, IDs, dates, and ratings are stored in string
format, but you also can enter them in numeric format.

In this example, the simplest calling syntax for transprob passes the
nRecords-by-3 cell array as the only input argument. The default startDate
and endDate are the earliest and latest dates in the data. The default
estimation algorithm is the duration method and 1-year transition
probabilities are estimated:

transMat0 = transprob(data)

6-4

Estimation of Transition Probabilities

transMat0 =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

It is recommended to provide explicit start and end dates. Otherwise the
estimation window for two different datasets can differ, and the estimates
might not be comparable. From this point, assume that the time window of
interest is the 5-year period from the end of 1995 to the end of 2000. For
comparisons, compute the estimates for this time window. First use the
duration algorithm (default option), and then the cohort algorithm explicitly
set.

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

transMat1 = transprob(data,'startDate',startDate,'endDate',endDate)

transMat2 = transprob(data,'startDate',startDate,'endDate',endDate,...

'algorithm','cohort')

transMat1 =

90.6236 7.9051 1.0314 0.4123 0.0210 0.0020 0.0003 0.0043

4.4780 89.5558 4.5298 1.1225 0.2284 0.0094 0.0009 0.0754

0.3983 6.1164 87.0641 5.4801 0.7637 0.0892 0.0050 0.0832

0.1029 0.8572 10.7918 83.0204 3.9971 0.7001 0.1313 0.3992

0.1043 0.3745 2.2962 14.0954 78.9840 3.0013 0.0463 1.0980

0.0113 0.0544 0.7055 3.2925 15.4350 75.5988 1.8166 3.0860

0.0044 0.0189 0.1903 1.9743 6.2320 10.2334 75.9983 5.3484

0 0 0 0 0 0 0 100.0000

transMat2 =

90.1554 8.5492 0.9067 0.3886 0 0 0 0

4.9512 88.5221 5.1763 1.0503 0.2251 0 0 0.0750

6-5

6 Credit Risk Analysis

0.2770 6.6482 86.2188 6.0942 0.6233 0.0693 0 0.0693

0.0794 0.8737 11.6759 81.6521 4.3685 0.7943 0.1589 0.3971

0.1002 0.4008 1.9038 15.4309 77.8557 3.4068 0 0.9018

0 0 0.2262 2.4887 17.4208 74.2081 2.2624 3.3937

0 0 0.7576 1.5152 6.0606 10.6061 75.0000 6.0606

0 0 0 0 0 0 0 100.0000

By default, the cohort algorithm internally gets yearly snapshots of the
credit ratings, but the number of snapshots per year is definable using the
parameter/value pair snapsPerYear. To get the estimates using quarterly
snapshots:

transMat3 = transprob(data,'startDate',startDate,'endDate',endDate,...

'algorithm','cohort','snapsPerYear',4)

transMat3 =

90.4765 8.0881 1.0072 0.4069 0.0164 0.0015 0.0002 0.0032

4.5949 89.3216 4.6489 1.1239 0.2276 0.0074 0.0007 0.0751

0.3747 6.3158 86.7380 5.6344 0.7675 0.0856 0.0040 0.0800

0.0958 0.7967 11.0441 82.6138 4.1906 0.7230 0.1372 0.3987

0.1028 0.3571 2.3312 14.4954 78.4276 3.1489 0.0383 1.0987

0.0084 0.0399 0.6465 3.0962 16.0789 75.1300 1.9044 3.0956

0.0031 0.0125 0.1445 1.8759 6.2613 10.7022 75.6300 5.3705

0 0 0 0 0 0 0 100.0000

Both duration and cohort compute 1-year transition probabilities by
default, but the time interval for the transitions is definable using the
parameter/value pair transInterval. For example, to get the 2-year
transition probabilities using the cohort algorithm with the same snapshot
periodicity and estimation window:

transMat4 = transprob(data,'startDate',startDate,'endDate',endDate,...

'algorithm','cohort','snapsPerYear',4,'transInterval',2)

transMat4 =

82.2358 14.6092 2.2062 0.8543 0.0711 0.0074 0.0011 0.0149

8.2803 80.4584 8.3606 2.2462 0.4665 0.0316 0.0030 0.1533

0.9604 11.1975 76.1729 9.7284 1.5322 0.2044 0.0162 0.1879

0.2483 2.0903 18.8440 69.5145 6.9601 1.2966 0.2329 0.8133

6-6

Estimation of Transition Probabilities

0.2129 0.8713 5.4893 23.5776 62.6438 4.9464 0.1390 2.1198

0.0378 0.1895 1.7679 7.2875 24.9444 57.1783 2.8816 5.7132

0.0154 0.0716 0.6576 4.2157 11.4465 16.3455 57.4078 9.8399

0 0 0 0 0 0 0 100.0000

Estimate Transition Probabilities for Different Rating
Scales
The dataset data from Data_TransProb.mat contains sample credit ratings
using the default rating scale {'AAA', 'AA','A', 'BBB', 'BB', 'B',
'CCC', 'D'}. It also contains the dataset dataIGSG with ratings investment
grade ('IG'), speculative grade ('SG'), and default ('D'). To estimate the
transition matrix for this dataset, use the labels argument.

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
dataIGSG(1:10,:)
transMatIGSG = transprob(dataIGSG,'labels',{'IG','SG','D'},...
'startDate',startDate,'endDate',endDate)
ans =

'00011253' '04-Apr-1983' 'IG'
'00012751' '17-Feb-1985' 'SG'
'00012751' '19-May-1986' 'D'
'00014690' '17-Jan-1983' 'IG'
'00012144' '21-Nov-1984' 'IG'
'00012144' '25-Mar-1992' 'SG'
'00012144' '07-May-1994' 'IG'
'00012144' '23-Jan-2000' 'SG'
'00012144' '20-Aug-2001' 'IG'
'00012937' '07-Feb-1984' 'IG'

transMatIGSG =

98.1986 1.5179 0.2835
8.5396 89.4891 1.9713

0 0 100.0000

There is another dataset, dataIGSGnum, with the same information as
dataIGSG, except the ratings are mapped to a numeric scale where 'IG'=1,

6-7

6 Credit Risk Analysis

'SG'=2, and 'D'=3. To estimate the transition matrix, use the labels
optional argument specifying the numeric scale as a cell array.

dataIGSGnum(1:10,:)

% Note {1,2,3} and num2cell(1:3) are equivalent; num2cell is convenient

% when the number of ratings is larger

transMatIGSGnum = transprob(dataIGSGnum,'labels',{1,2,3},...

'startDate',startDate,'endDate',endDate)

ans =

'00011253' '04-Apr-1983' [1]

'00012751' '17-Feb-1985' [2]

'00012751' '19-May-1986' [3]

'00014690' '17-Jan-1983' [1]

'00012144' '21-Nov-1984' [1]

'00012144' '25-Mar-1992' [2]

'00012144' '07-May-1994' [1]

'00012144' '23-Jan-2000' [2]

'00012144' '20-Aug-2001' [1]

'00012937' '07-Feb-1984' [1]

transMatIGSGnum =

98.1986 1.5179 0.2835

8.5396 89.4891 1.9713

0 0 100.0000

Any time the input dataset contains ratings not included in the default
rating scale {'AAA', 'AA', 'A', 'BBB', 'BB', 'B', 'CCC', 'D'}, the
full rating scale needs to be specified using the labels optional argument.
For example, if the dataset contains ratings 'AAA', ..., 'CCC, 'D',
and 'NR' (not rated), use labels with this cell array {'AAA', 'AA',
'A','BBB','BB','B','CCC','D','NR'}.

Estimate Point-in-Time and Through-the-Cycle
Probabilities
Transition probability estimates are sensitive to the length of the estimation
window. When the estimation window is small, the estimates only capture

6-8

Estimation of Transition Probabilities

recent credit events, and these can change significantly from one year to the
next. These are called point-in-time (PIT) estimates. In contrast, a large time
window yields fairly stable estimates that average transition rates over a
longer period of time. These are called through-the-cycle (TTC) estimates.

The estimation of PIT probabilities requires repeated calls to transprob
with a rolling estimation window. Use transprobprep every time repeated
calls to transprob are required. transprobprep performs a preprocessing
step on the raw dataset that is independent of the estimation window. The
benefits of transprobprep are greater as the number of repeated calls to
transprob increases. Also, the performance gains from transprobprep are
more significant for the cohort algorithm.

load Data_TransProb

prepData = transprobprep(data);

Years = 1991:2000;

nYears = length(Years);

nRatings = length(prepData.ratingsLabels);

transMatPIT = zeros(nRatings,nRatings,nYears);

sampleTotals(nYears,1) = struct('totalsVec',[],'totalsMat',[],...

'algorithm','cohort');

for t = 1:nYears

startDate = ['31-Dec-' num2str(Years(t)-1)];

endDate = ['31-Dec-' num2str(Years(t))];

[transMatPIT(:,:,t),sampleTotals(t)] = transprob(prepData,...

'startDate',startDate,'endDate',endDate);

end

Here is the PIT transition matrix for 1993. Recall that the sample dataset
contains simulated credit migrations so the PIT estimates in this example do
not match actual historical transition rates.

transMatPIT(:,:,Years==1993)

ans =

95.3193 4.5999 0.0802 0.0004 0.0002 0.0000 0.0000 0.0000

2.0631 94.5931 3.3057 0.0254 0.0126 0.0002 0.0000 0.0000

0.0237 2.1748 95.5901 1.4700 0.7284 0.0131 0.0000 0.0000

0.0003 0.0372 3.2585 95.2914 1.3876 0.0250 0.0001 0.0000

6-9

6 Credit Risk Analysis

0.0000 0.0005 0.0657 3.8292 92.7474 3.3459 0.0111 0.0001

0.0000 0.0001 0.0128 0.7977 8.0926 90.4897 0.5958 0.0113

0.0000 0.0000 0.0005 0.0459 0.5026 11.1621 84.9315 3.3574

0 0 0 0 0 0 0 100.0000

A structure array stores the sampleTotals optional output from transprob.
The sampleTotals structure contains summary information on the total time
spent on each rating, and the number of transitions out of each rating, for
each year under consideration. For more information on the sampleTotals
structure, see “Algorithms” on page 17-882.

As an example, the sampleTotals structure for 1993 is used here. The total
time spent on each rating is stored in the totalsVec field of the structure.
The total transitions out of each rating are stored in the totalsMat field. A
third field, algorithm, indicates the algorithm used to generate the structure.

sampleTotals(Years==1993).totalsVec

sampleTotals(Years==1993).totalsMat

sampleTotals(Years==1993).algorithm

ans =

144.4411 230.0356 262.2438 204.9671 246.1315 147.0767 54.9562 215.1479

ans =

0 7 0 0 0 0 0 0

5 0 8 0 0 0 0 0

0 6 0 4 2 0 0 0

0 0 7 0 3 0 0 0

0 0 0 10 0 9 0 0

0 0 0 1 13 0 1 0

0 0 0 0 0 7 0 2

0 0 0 0 0 0 0 0

ans =

duration

6-10

Estimation of Transition Probabilities

To get the TTC transition matrix, pass the sampleTotals structure array
to transprobbytotals. Internally, transprobbytotals aggregates the
information in the sampleTotals structures to get the total time spent on
each rating over the 10 years considered in this example, and the total number
of transitions out of each rating during the same period. transprobbytotals
uses the aggregated information to get the TTC matrix, or average 1-year
transition matrix.

transMatTTC = transprobbytotals(sampleTotals)

transMatTTC =

92.8544 6.1068 0.7463 0.2761 0.0123 0.0009 0.0001 0.0032

2.9399 92.2329 3.8394 0.7349 0.1676 0.0050 0.0004 0.0799

0.2410 4.5963 90.3468 3.9572 0.6909 0.0521 0.0025 0.1133

0.0530 0.4729 7.9221 87.2751 3.5075 0.4650 0.0791 0.2254

0.0460 0.1636 1.1873 9.3442 85.4305 2.9520 0.1150 0.7615

0.0031 0.0152 0.2608 1.5563 10.4468 83.8525 1.9771 1.8882

0.0009 0.0041 0.0542 0.8378 2.9996 7.3614 82.4758 6.2662

0 0 0 0 0 0 0 100.0000

The same TTC matrix could be obtained with a direct call to transprob,
setting the estimation window to the 10 years under consideration. But it is
much more efficient to use the sampleTotals structures, whenever they are
available. (Note, for the duration algorithm, these alternative workflows can
result in small numerical differences in the estimates whenever leap years
are part of the sample.)

In “Estimate Transition Probabilities” on page 6-4, a 1-year transition matrix
is estimated using the 5-year time window from 1996 through 2000. This is
another example of a TTC matrix and this can also be computed using the
sampleTotals structure array.

transprobbytotals(sampleTotals(Years>=1996&Years<=2000))

ans =

90.6239 7.9048 1.0313 0.4123 0.0210 0.0020 0.0003 0.0043

4.4776 89.5565 4.5294 1.1224 0.2283 0.0094 0.0009 0.0754

0.3982 6.1159 87.0651 5.4797 0.7636 0.0892 0.0050 0.0832

0.1029 0.8571 10.7909 83.0218 3.9968 0.7001 0.1313 0.3991

0.1043 0.3744 2.2960 14.0947 78.9851 3.0012 0.0463 1.0980

6-11

6 Credit Risk Analysis

0.0113 0.0544 0.7054 3.2922 15.4341 75.6004 1.8165 3.0858

0.0044 0.0189 0.1903 1.9742 6.2318 10.2332 75.9990 5.3482

0 0 0 0 0 0 0 100.0000

Estimate t-Year Default Probabilities
By varying the start and end dates, the amount of data considered for the
estimation is changed, but the output still contains, by default, 1-year
transition probabilities. You can change the default behavior by specifying
the transInterval argument, as illustrated in “Estimate Transition
Probabilities” on page 6-4.

However, when t-year transition probabilities are required for a whole range
of values of t, for example, 1-year, 2-year, 3-year, 4-year, and 5-year transition
probabilities, it is more efficient to call transprob once to get the optional
output sampleTotals. You can use the same sampleTotals structure can
be used to get the t-year transition matrix for any transition interval t.
Given a sampleTotals structure and a transition interval, you can get the
corresponding transition matrix by using transprobbytotals.

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

[~,sampleTotals] = transprob(data,'startDate', ...

startDate, 'endDate',endDate);

DefProb = zeros(7,5);

for t = 1:5

transMatTemp = transprobbytotals(sampleTotals,'transInterval',t);

DefProb(:,t) = transMatTemp(1:7,8);

end

DefProb

DefProb =

0.0043 0.0169 0.0377 0.0666 0.1033

0.0754 0.1542 0.2377 0.3265 0.4213

0.0832 0.1936 0.3276 0.4819 0.6536

0.3992 0.8127 1.2336 1.6566 2.0779

1.0980 2.1189 3.0668 3.9468 4.7644

6-12

Estimation of Transition Probabilities

3.0860 5.6994 7.9281 9.8418 11.4963

5.3484 9.8053 13.5320 16.6599 19.2964

Estimate Bootstrap Confidence Intervals
transprob also returns the idTotals structure array which contains, for
each ID, or company, the total time spent on each rating, and the total
transitions out of each rating. For more information on the the idTotals
structure, see “Algorithms” on page 17-882. The idTotals structure is
similar to the sampleTotals structures (see “Estimate Point-in-Time
and Through-the-Cycle Probabilities” on page 6-8), but idTotals has the
information at an ID level. Because most companies only migrate between
very few ratings, the numeric arrays in idTotals are stored as sparse arrays
to reduce memory requirements.

You can use the idTotals structure array to estimate confidence intervals for
the transition probabilities using a bootstrapping procedure, as the following
example demonstrates. To do this, call transprob and keep the third output
argument, idTotals. The idTotals fields are displayed for the last company
in the sample. Within the estimation window, this company spends almost
a year as 'AA' and it is then upgraded to 'AAA'.

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

[transMat,~,idTotals] = transprob(data,...

'startDate',startDate,'endDate',endDate);

% Total time spent on each rating

full(idTotals(end).totalsVec)

% Total transitions out of each rating

full(idTotals(end).totalsMat)

% Algorithm

idTotals(end).algorithm

ans =

4.0820 0.9180 0 0 0 0 0 0

6-13

6 Credit Risk Analysis

ans =

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ans =

duration

Next, use bootstrp from Statistics Toolbox with transprobbytotals as
the bootstrap function and idTotals as the data to sample from. Each
bootstrap sample corresponds to a dataset made of companies sampled with
replacement from the original data. However, you do not have to draw
companies from the original data, because a bootstrap idTotals sample
contains all the information required to compute the transition probabilities.
transprobbytotals aggregates all structures in each bootstrap idTotals
sample and finds the corresponding transition matrix.

To estimate 95% confidence intervals for the transition matrix and display the
probabilities of default together with its upper and lower confidence bounds:

PD = transMat(1:7,8);

bootstat = bootstrp(100,@(totals)transprobbytotals(totals),idTotals);

ci = prctile(bootstat,[2.5 97.5]); % 95% confidence

CIlower = reshape(ci(1,:),8,8);

CIupper = reshape(ci(2,:),8,8);

PD_LB = CIlower(1:7,8);

PD_UB = CIupper(1:7,8);

[PD_LB PD PD_UB]

ans =

6-14

Estimation of Transition Probabilities

0.0004 0.0043 0.0106

0.0028 0.0754 0.2192

0.0126 0.0832 0.2180

0.1659 0.3992 0.6617

0.5703 1.0980 1.7260

1.7264 3.0860 4.7602

1.7678 5.3484 9.5055

Group Credit Ratings
Credit rating scales can be more or less granular. For example, there are
ratings with qualifiers (such as 'AA+', 'BB-', etc.), whole ratings ('AA', 'BB',
etc.), and investment or speculative grade ('IG', 'SG') categories. Given a
dataset with credit ratings at a more granular level, transition probabilities
for less granular categories can be of interest. For example, you might be
interested in a transition matrix for investment and speculative grades given
a dataset with whole ratings. Use transprobgrouptotals for this evaluation,
as illustrated in the following examples. The sample dataset data has whole
credit ratings:

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
data(1:5,:)
ans =

'00010283' '10-Nov-1984' 'CCC'
'00010283' '12-May-1986' 'B'
'00010283' '29-Jun-1988' 'CCC'
'00010283' '12-Dec-1991' 'D'
'00013326' '09-Feb-1985' 'A'

A call to transprob returns the transition matrix and totals structures for
the eight ('AAA' to 'D') whole credit ratings. The array with number of
transitions out of each credit rating is displayed after the call to transprob:

[transMat,sampleTotals,idTotals] = transprob(data,'startDate',startDate,...

'endDate',endDate);

sampleTotals.totalsMat

6-15

6 Credit Risk Analysis

ans =

0 67 7 3 0 0 0 0

67 0 68 15 3 0 0 1

4 101 0 93 11 1 0 1

1 7 163 0 62 10 2 5

1 3 16 168 0 37 0 11

0 0 2 10 83 0 10 14

0 0 0 2 8 16 0 7

0 0 0 0 0 0 0 0

Next, use transprobgrouptotals to group whole ratings into investment
and speculative grades. This function takes a totals structure as the
first argument. The second argument indicates the edges between rating
categories. In this case, ratings 1 through 4 ('AAA' through 'BBB') correspond
to the first category ('IG'), ratings 5 through 7 ('BB' through 'CCC') to
the second category ('SG'), and rating 8 ('D') is a category of its own.
transprobgrouptotals adds up the total time spent on ratings that belong to
the same category. For example, total times spent on 'AAA' through 'BBB'
are added up as the total time spent on 'IG'. transprobgrouptotals also
adds up the total number of transitions between any 'IG' rating and any
'SG' rating, for example, a credit migration from 'BBB' to 'BB'.

The grouped totals can then be passed to transprobbytotals to obtain the
transition matrix for investment and speculative grades. Note that both
totalsMat and the new transition matrix are both 3-by-3, corresponding to
the grouped categories 'IG', 'SG', and 'D'.

sampleTotalsIGSG = transprobgrouptotals(sampleTotals,[4 7 8])
transMatIGSG = transprobbytotals(sampleTotalsIGSG)

sampleTotalsIGSG =

totalsVec: [4.8591e+003 1.5034e+003 1.1621e+003]
totalsMat: [3x3 double]
algorithm: 'duration'

transMatIGSG =

98.1591 1.6798 0.1611

6-16

Estimation of Transition Probabilities

12.3228 85.6961 1.9811
0 0 100.0000

When a totals structure array is passed to transprobgrouptotals, this
function groups each structure in the array individually and preserves
sparsity, if the fields in the input structures are sparse. One way to exploit
this feature is to compute confidence intervals for the investment grade
default rate and the speculative grade default rate (see also “Estimate
Bootstrap Confidence Intervals” on page 6-13).

PDIGSG = transMatIGSG(1:2,3);

idTotalsIGSG = transprobgrouptotals(idTotals,[4 7 8]);

bootstat = bootstrp(100,@(totals)transprobbytotals(totals),idTotalsIGSG);

ci = prctile(bootstat,[2.5 97.5]); % 95% confidence

CIlower = reshape(ci(1,:),3,3);

CIupper = reshape(ci(2,:),3,3);

PDIGSG_LB = CIlower(1:2,3);

PDIGSG_UB = CIupper(1:2,3);

[PDIGSG_LB PDIGSG PDIGSG_UB]

ans =

0.0603 0.1611 0.2538

1.3470 1.9811 2.6195

Work with Nonsquare Matrices
Transition probabilities and the number of transitions between ratings are
usually reported without the 'D' ('Default') row. For example, a credit
report can contain the following table, indicating the number of issuers
starting in each rating (first column), and the number of transitions between
ratings (remaining columns):

Initial AAA AA A BBB BB B CCC D
AAA 98 88 9 1 0 0 0 0 0
AA 389 0 368 19 2 0 0 0 0
A 1165 1 21 1087 56 0 0 0 0

BBB 1435 0 2 89 1289 45 8 0 2
BB 915 0 0 1 60 776 73 2 3
B 867 0 0 1 7 88 715 39 17

6-17

6 Credit Risk Analysis

CCC 112 0 0 0 1 3 34 61 13

You can store the information in this table in a totals structure compatible
with the cohort algorithm. For more information on the cohort algorithm
and the totals structure, see “Algorithms” on page 17-882. Note that the
totalsMat field is a nonsquare array in this case.

% Define totals structure
totals.totalsVec = [98 389 1165 1435 915 867 112];
totals.totalsMat = [

88 9 1 0 0 0 0 0;
0 368 19 2 0 0 0 0;
1 21 1087 56 0 0 0 0;
0 2 89 1289 45 8 0 2;
0 0 1 60 776 73 2 3;
0 0 1 7 88 715 39 17;
0 0 0 1 3 34 61 13];

totals.algorithm = 'cohort';

transprobbytotals and transprobgrouptotals accept totals inputs with
nonsquare totalsMat fields. To get the transition matrix corresponding to the
previous table, and to group ratings into investment and speculative grade
with the corresponding matrix:

transMat = transprobbytotals(totals)

% Group into IG/SG and get IG/SG transition matrix

totalsIGSG = transprobgrouptotals(totals,[4 7]);

transMatIGSG = transprobbytotals(totalsIGSG)

transMat =

89.7959 9.1837 1.0204 0 0 0 0 0

0 94.6015 4.8843 0.5141 0 0 0 0

0.0858 1.8026 93.3047 4.8069 0 0 0 0

0 0.1394 6.2021 89.8258 3.1359 0.5575 0 0.1394

0 0 0.1093 6.5574 84.8087 7.9781 0.2186 0.3279

0 0 0.1153 0.8074 10.1499 82.4683 4.4983 1.9608

0 0 0 0.8929 2.6786 30.3571 54.4643 11.6071

6-18

Estimation of Transition Probabilities

transMatIGSG =

98.2183 1.7169 0.0648

3.6959 94.5618 1.7423

Remove Outliers
The idTotals output from transprob can also be exploited to update the
transition probability estimates after removing some outlier information.
For more information on idTotals, see “Algorithms” on page 17-882. For
example, if you know that the credit rating migration information for the
4th and 27th companies in the data have problems, you can remove those
companies and efficiently update the transition probabilities as follows:

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

[transMat,~,idTotals] = transprob(data,'startDate', ...

startDate, 'endDate',endDate);

transMat

transMat =

90.6236 7.9051 1.0314 0.4123 0.0210 0.0020 0.0003 0.0043

4.4780 89.5558 4.5298 1.1225 0.2284 0.0094 0.0009 0.0754

0.3983 6.1164 87.0641 5.4801 0.7637 0.0892 0.0050 0.0832

0.1029 0.8572 10.7918 83.0204 3.9971 0.7001 0.1313 0.3992

0.1043 0.3745 2.2962 14.0954 78.9840 3.0013 0.0463 1.0980

0.0113 0.0544 0.7055 3.2925 15.4350 75.5988 1.8166 3.0860

0.0044 0.0189 0.1903 1.9743 6.2320 10.2334 75.9983 5.3484

0 0 0 0 0 0 0 100.0000

nIDs = length(idTotals);

keepInd = setdiff(1:nIDs,[4 27]);

transMatNoOutlier = transprobbytotals(idTotals(keepInd))

transMatNoOutlier =

90.6241 7.9067 1.0290 0.4124 0.0211 0.0020 0.0003 0.0043

4.4917 89.5918 4.4779 1.1240 0.2288 0.0094 0.0009 0.0756

6-19

6 Credit Risk Analysis

0.3990 6.1220 87.0530 5.4841 0.7643 0.0893 0.0050 0.0833

0.1030 0.8576 10.7909 83.0207 3.9971 0.7001 0.1313 0.3992

0.1043 0.3746 2.2960 14.0955 78.9840 3.0013 0.0463 1.0980

0.0113 0.0544 0.7054 3.2925 15.4350 75.5988 1.8166 3.0860

0.0044 0.0189 0.1903 1.9743 6.2320 10.2334 75.9983 5.3484

0 0 0 0 0 0 0 100.0000

Deciding which companies to remove is a case-by-case situation. Reasons to
remove a company can include a typo in one of the ratings history, or an
unusual migration between ratings whose impact on the transition probability
estimates must be measured. Note that transprob does not reorder the
companies in any way. The ordering of companies in the input data is the
same as the ordering in the idTotals array.

Estimate Probabilities for Different Segments
You can use idTotals efficiently to get estimates over different segments
of the sample. For more information on idTotals, see “Algorithms” on
page 17-882. For example, assume that the companies in the example are
grouped into three geographic regions and that the companies were grouped
by geographic regions previously, so that the first 340 companies correspond
to the first region, the next 572 companies to the second region, and the rest
to the third region. You can efficiently get transition probabilities for each
region as follows:

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

[~,~,idTotals] = transprob(data,'startDate', ...

startDate, 'endDate',endDate);

n1 = 340;

n2 = 572;

transMatG1 = transprobbytotals(idTotals(1:n1))

transMatG2 = transprobbytotals(idTotals(n1+1:n1+n2))

transMatG3 = transprobbytotals(idTotals(n1+n2+1:end))

transMatG1 =

90.8299 7.6501 0.3178 1.1700 0.0255 0.0044 0.0021 0.0002

6-20

Estimation of Transition Probabilities

4.3572 89.0262 5.7838 0.8039 0.0245 0.0029 0.0013 0.0001

0.7066 6.7567 86.6320 5.4950 0.3721 0.0252 0.0101 0.0023

0.0626 1.3688 10.3895 83.5022 3.6823 0.6466 0.3084 0.0396

0.0256 0.7884 2.6970 13.7857 78.8321 2.8310 0.0561 0.9842

0.0026 0.1095 0.4280 3.5204 21.1437 72.9230 1.6456 0.2273

0.0005 0.0216 0.0730 0.4574 4.9586 4.2821 80.3062 9.9006

0 0 0 0 0 0 0 100.0000

transMatG2 =

90.5798 8.4877 0.8202 0.0884 0.0132 0.0011 0.0000 0.0096

4.1999 90.0371 3.8657 1.4744 0.2144 0.0128 0.0001 0.1956

0.3022 5.9869 86.7128 5.5526 1.0411 0.1902 0.0015 0.2127

0.0204 0.5606 10.9342 82.9195 4.0123 0.7398 0.0059 0.8073

0.0089 0.3338 2.1185 16.6496 76.2395 3.1241 0.0261 1.4995

0.0013 0.0465 0.6710 2.4731 14.7281 76.7378 1.2993 4.0428

0.0002 0.0080 0.0681 0.4598 4.1324 8.4380 80.9092 5.9843

0 0 0 0 0 0 0 100.0000

transMatG3 =

90.5655 7.5408 1.5288 0.3369 0.0258 0.0015 0.0003 0.0004

4.8073 89.3842 4.4865 0.9582 0.3509 0.0095 0.0009 0.0025

0.3153 5.8771 87.6353 5.4101 0.7160 0.0322 0.0052 0.0088

0.1995 0.8625 10.8682 82.8717 4.1423 0.6903 0.1565 0.2090

0.2465 0.1091 2.1558 12.0289 81.5803 3.0057 0.0616 0.8122

0.0227 0.0400 0.9380 4.3175 12.3632 75.9429 2.5766 3.7991

0.0149 0.0180 0.3414 3.6918 8.1414 13.6010 70.7254 3.4661

0 0 0 0 0 0 0 100.0000

Work with Large Datasets
This example shows how to aggregate estimates from two (or more) datasets.
It is possible that two datasets, coming from two different databases, must be
considered for the estimation of the transition probabilities. Also, if a dataset
is too large and cannot be loaded into memory, the dataset can be split into
two (or more) datasets. In these cases, it is simple to apply transprob to each
individual dataset, and then get the final estimates corresponding to the
aggregated data with a call to transprobbytotals at the end.

6-21

6 Credit Risk Analysis

For demonstration, the dataset data is artificially split into two sections in
this example. In practice the two datasets would come from different files or
databases. When aggregating multiple datasets, the history of a company
cannot be split across datasets. You can verify that this condition is satisfied
for the arbitrarily chosen cut-off point.

load Data_TransProb

cutoff = 2099;
data(cutoff-5:cutoff,:)
data(cutoff+1:cutoff+6,:)

ans =

'00011166' '24-Aug-1995' 'BBB'
'00011166' '25-Jan-1997' 'A'
'00011166' '01-Feb-1998' 'AA'
'00014878' '15-Mar-1983' 'B'
'00014878' '21-Sep-1986' 'BB'
'00014878' '17-Jan-1998' 'BBB'

ans =

'00012043' '09-Feb-1985' 'BBB'
'00012043' '03-Jan-1988' 'A'
'00012043' '15-Jan-1994' 'AAA'
'00011157' '24-Jun-1984' 'A'
'00011157' '09-Dec-1999' 'BBB'
'00011157' '28-Mar-2001' 'A'

When working with multiple datasets, it is important to set the start and end
dates explicitly. Otherwise, the estimation window will differ for each dataset
because the default start and end dates used by transprob are the earliest
and latest dates found in the input data.

startDate = '31-Dec-1995';
endDate = '31-Dec-2000';

6-22

Estimation of Transition Probabilities

In practice, this is the point where you can read in the first dataset. Now, the
dataset is already obtained. Call transprob with the first dataset and the
explicit start and end dates. Keep only the sampleTotals output. For details
on sampleTotals, see“Algorithms” on page 17-882.

[~,sampleTotals(1)] = transprob(data(1:cutoff,:),...
'startDate',startDate,'endDate',endDate);

Repeat for the remaining datasets. Note the different sampleTotals
structures are stored in a structured array.

[~,sampleTotals(2)] = transprob(data(cutoff+1:end,:),...
'startDate',startDate,'endDate',endDate);

To get the transition matrix corresponding to the aggregated dataset,
use transprobbytotals. When the totals input is a structure array,
transprobbytotals aggregates the information over all structures, and
returns a single transition matrix.

transMatAggr = transprobbytotals(sampleTotals)

transMatAggr =

90.6236 7.9051 1.0314 0.4123 0.0210 0.0020 0.0003 0.0043

4.4780 89.5558 4.5298 1.1225 0.2284 0.0094 0.0009 0.0754

0.3983 6.1164 87.0641 5.4801 0.7637 0.0892 0.0050 0.0832

0.1029 0.8572 10.7918 83.0204 3.9971 0.7001 0.1313 0.3992

0.1043 0.3745 2.2962 14.0954 78.9840 3.0013 0.0463 1.0980

0.0113 0.0544 0.7055 3.2925 15.4350 75.5988 1.8166 3.0860

0.0044 0.0189 0.1903 1.9743 6.2320 10.2334 75.9983 5.3484

0 0 0 0 0 0 0 100.0000

As a sanity check, for this example you can verify that the aggregation
procedure yields the same estimates (up to numerical differences) as
estimating the probabilities directly over the entire sample:

transMatWhole = transprob(data,'startDate',startDate,'endDate',endDate)

aggError = max(max(abs(transMatAggr - transMatWhole)))

transMatWhole =

6-23

6 Credit Risk Analysis

90.6236 7.9051 1.0314 0.4123 0.0210 0.0020 0.0003 0.0043

4.4780 89.5558 4.5298 1.1225 0.2284 0.0094 0.0009 0.0754

0.3983 6.1164 87.0641 5.4801 0.7637 0.0892 0.0050 0.0832

0.1029 0.8572 10.7918 83.0204 3.9971 0.7001 0.1313 0.3992

0.1043 0.3745 2.2962 14.0954 78.9840 3.0013 0.0463 1.0980

0.0113 0.0544 0.7055 3.2925 15.4350 75.5988 1.8166 3.0860

0.0044 0.0189 0.1903 1.9743 6.2320 10.2334 75.9983 5.3484

0 0 0 0 0 0 0 100.0000

aggError =

2.8422e-014

6-24

Forecast Corporate Default Rates

Forecast Corporate Default Rates

In this section...

“Introduction” on page 6-25

“Example” on page 6-25

Introduction
Risk parameters are dynamic in nature. Understanding how these
parameters change in time is a fundamental task for risk management. The
“Forecasting Corporate Default Rates” demo uses historical credit migrations
data to construct some time series of interest, and to visualize default rates
dynamics. The demo also fits a forecasting model for corporate default rates,
demonstrates backtesting and stress testing concepts, and touches on the
handling of forecasting models for full transition matrices.

Example
To run the Forecasting Corporate Default Rates demo at the MATLAB
command line, enter:

showdemo Demo_DefaultRatesForecasts

6-25

6 Credit Risk Analysis

Credit Quality Thresholds

In this section...

“Introduction” on page 6-26

“Compute Credit Quality Thresholds” on page 6-26

“Visualize Credit Quality Thresholds” on page 6-28

Introduction
An equivalent way to represent transition probabilities is by transforming
them into credit quality thresholds. These are critical values of a standard
normal distribution that yield the same transition probabilities.

An M-by-N matrix of transition probabilities TRANS and the corresponding
M-by-N matrix of credit quality thresholds THRESH are related as follows. The
thresholds THRESH(i,j) are critical values of a standard normal distribution
z, such that

TRANS(i,N) = P[z < THRESH(i,N)],

TRANS(i,j) = P[z < THRESH(i,j)] - P[z < THRESH(i,j+1)], for 1<=j<N

Financial Toolbox supports the transformation between transition
probabilities and credit quality thresholds with the functions
transprobtothresholds and transprobfromthresholds.

Compute Credit Quality Thresholds
To compute credit quality thresholds, transition probabilities are required as
input. Here is a transition matrix estimated from credit ratings data:

load Data_TransProb

trans = transprob(data)

trans =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

6-26

Credit Quality Thresholds

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

Convert the transition matrix to credit quality thresholds using
transprobtothresholds:

thresh = transprobtothresholds(trans)

thresh =

Inf -1.4846 -2.3115 -2.8523 -3.3480 -4.0083 -4.1276 -4.1413

Inf 2.1403 -1.6228 -2.3788 -2.8655 -3.3166 -3.3523 -3.3554

Inf 3.0264 1.8773 -1.6690 -2.4673 -2.9800 -3.1631 -3.1736

Inf 3.4963 2.8009 1.6201 -1.6897 -2.4291 -2.7663 -2.8490

Inf 3.5195 2.9999 2.4225 1.5089 -1.7010 -2.3275 -2.4547

Inf 4.2696 3.8015 3.0477 2.3320 1.3838 -1.6491 -1.9703

Inf 4.6241 4.2097 3.6472 2.7803 2.1199 1.5556 -1.1399

Inf Inf Inf Inf Inf Inf Inf Inf

Conversely, given a matrix of thresholds, you can compute transition
probabilities using transprobfromthresholds. For example, take the
thresholds computed previously as input to recover the original transition
probabilities:

trans1 = transprobfromthresholds(thresh)

trans1 =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

6-27

6 Credit Risk Analysis

Visualize Credit Quality Thresholds
You can graphically represent the relationship between credit quality
thresholds and transition probabilities. Here, this example shows the
relationship for the 'CCC' credit rating. In the plot, the thresholds are
marked by the vertical lines and the transition probabilities are the area
below the standard normal density curve:

load Data_TransProb
trans = transprob(data);
thresh = transprobtothresholds(trans);

xliml = -5;
xlimr = 5;
step = 0.1;
x=xliml:step:xlimr;
thresCCC = thresh(7,:);
labels = {'AAA','AA','A','BBB','BB','B','CCC','D'};

centersX = ([5 thresCCC(2:end)]+[thresCCC(2:end) -5])*0.5;
omag = round(log10(trans(7,:)));
omag(omag>0)=omag(omag>0).^2;
fs = 14+2*omag;

figure
plot(x,normpdf(x),'LineWidth',1.5)
text(centersX(1),0.2,labels{1},'FontSize',fs(1),...

'HorizontalAlignment','center')
for i=2:length(labels)

val = thresCCC(i);
line([val val],[0 0.4],'LineStyle',':')
text(centersX(i),0.2,labels{i},'FontSize',fs(i),...

'HorizontalAlignment','center')
end
xlabel('Credit Quality Thresholds')
ylabel('Probability Density Function')
title('{\bf Visualization of Credit Quality Thresholds}')
legend('Std Normal PDF','Location','S')

6-28

Credit Quality Thresholds

The second plot uses the cumulative density function instead. The thresholds
are represented by vertical lines. The transition probabilities are given by the
distance between horizontal lines.

figure
plot(x,normcdf(x),'m','LineWidth',1.5)
text(centersX(1),0.2,labels{1},'FontSize',fs(1),...

'HorizontalAlignment','center')
for i=2:length(labels)

val = thresCCC(i);
line([val val],[0 normcdf(val)],'LineStyle',':');
line([x(1) val],[normcdf(val) normcdf(val)],'LineStyle',':');
text(centersX(i),0.2,labels{i},'FontSize',fs(i),...

'HorizontalAlignment','center')
end
xlabel('Credit Quality Thresholds')
ylabel('Cumulative Probability')
title('{\bf Visualization of Credit Quality Thresholds}')

6-29

6 Credit Risk Analysis

legend('Std Normal CDF','Location','W')

6-30

7

Regression with Missing
Data

• “Multivariate Normal Regression” on page 7-2

• “Maximum Likelihood Estimation with Missing Data” on page 7-9

• “Multivariate Normal Regression Types” on page 7-17

• “Valuation with Missing Data” on page 7-34

7 Regression with Missing Data

Multivariate Normal Regression

In this section...

“Introduction” on page 7-2

“Multivariate Normal Linear Regression” on page 7-3

“Maximum Likelihood Estimation” on page 7-4

“Special Case of a Multiple Linear Regression Model” on page 7-5

“Least-Squares Regression” on page 7-5

“Mean and Covariance Estimation” on page 7-5

“Convergence” on page 7-6

“Fisher Information” on page 7-6

“Statistical Tests” on page 7-7

Introduction
This section focuses on using likelihood-based methods for multivariate
normal regression. The parameters of the regression model are estimated via
maximum likelihood estimation. For multiple series, this requires iteration
until convergence. The complication due to the possibility of missing data is
incorporated into the analysis with a variant of the EM algorithm known as
the ECM algorithm.

The underlying theory of maximum likelihood estimation and the definition
and significance of the Fisher information matrix can be found in Caines [1]
and Cramér [2]. The underlying theory of the ECM algorithm can be found in
Meng and Rubin [8] and Sexton and Swensen [9].

In addition, these two examples of maximum likelihood estimation are
presented:

• “Example of Portfolios with Missing Data” on page 7-26

• “Estimation of Some Technology Stock Betas” on page 7-36

7-2

Multivariate Normal Regression

Multivariate Normal Linear Regression
Suppose you have a multivariate normal linear regression model in the form

Z

Z
N

H b

H b

C

Cm m

1 1 0

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

~ , ⎟⎟
⎟
⎟
,

where the model has m observations of n-dimensional random variables Z1, ...,
Zm with a linear regression model that has a p-dimensional model parameter
vector b. In addition, the model has a sequence of m design matrices H1, ...,
Hm, where each design matrix is a known n-by-p matrix.

Given a parameter vector b and a collection of design matrices, the collection
of m independent variables Zk is assumed to have independent identically
distributed multivariate normal residual errors Zk – Hk b with n-vector mean
0 and n-by-n covariance matrix C for each k = 1, ..., m.

A concise way to write this model is

Z N H b Ck k ,()

for k = 1, ..., m.

The goal of multivariate normal regression is to obtain maximum likelihood
estimates for b and C given a collection of m observations z1, ..., zm of the
random variables Z1, ..., Zm. The estimated parameters are the p distinct
elements of b and the n (n + 1)/2 distinct elements of C (the lower-triangular
elements of C).

Note Quasi-maximum likelihood estimation works with the same models but
with a relaxation of the assumption of normally distributed residuals. In this
case, however, the parameter estimates are asymptotically optimal.

7-3

7 Regression with Missing Data

Maximum Likelihood Estimation
To estimate the parameters of the multivariate normal linear regression
model using maximum likelihood estimation, it is necessary to maximize the
log-likelihood function over the estimation parameters given observations z1,
... , zm.

Given the multivariate normal model to characterize residual errors in the
regression model, the log-likelihood function is

L z z b C mn m C

z H b C z

m

k k
T

k

1

1

1
2

2
1
2

1
2

, , ; , log log det() = () + ()()

+ −() −

−−()
=
∑ H bk
k

m

1
.

Although the cross-sectional residuals must be independent, you can use this
log-likelihood function for quasi-maximum likelihood estimation. In this case,
the estimates for the parameters b and C provide estimates to characterize
the first and second moments of the residuals. See Caines [1] for details.

Except for a special case (see “Special Case of a Multiple Linear Regression
Model” on page 7-5), if both the model parameters in b and the covariance
parameters in C are to be estimated, the estimation problem is intractably
nonlinear and a solution must use iterative methods. Denote estimates for
the parameters b and C for iteration t = 0, 1, ... with the superscript notation
b(t) and C(t).

Given initial estimates b(0) and C(0) for the parameters, the maximum
likelihood estimates for b and C are obtained using a two-stage iterative
process with

b H C H H C zt
k

T t
k

k

m

k
T t

k
k

m
+() () −

=

−
() −

=
= ()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

()⎛

⎝
⎜⎜

⎞
∑ ∑1 1

1

1
1

1 ⎠⎠
⎟⎟

and

7-4

Multivariate Normal Regression

C
m

z H b z H bt
k k

t
k k

t T

k

m
+() +() +()

=
= −() −()∑1 1 1

1

1

for t = 0, 1,

Special Case of a Multiple Linear Regression Model
The special case mentioned in “Maximum Likelihood Estimation” on page 7-4
occurs if n = 1 so that the sequence of observations is a sequence of scalar
observations. This model is known as a multiple linear regression model. In
this case, the covariance matrix C is a 1-by-1 matrix that drops out of the
maximum likelihood iterates so that a single-step estimate for b and C can
be obtained with converged estimates b(1) and C(1).

Least-Squares Regression
Another simplification of the general model is called least-squares regression.
If b(0) = 0 and C(0) = I, then b(1) and C(1) from the two-stage iterative process
are least-squares estimates for b and C, where

b H H H zLS
k

T
k

k

m

k
T

k
k

m
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

−

=
∑ ∑

1

1

1

and

C
m

z H b z H bLS
k k

LS
k k

LS T

k

m
= −() −()

=
∑1

1
.

Mean and Covariance Estimation
A final simplification of the general model is to estimate the mean and
covariance of a sequence of n-dimensional observations z1, ..., zm. In this case,
the number of series is equal to the number of model parameters with n = p
and the design matrices are identity matrices with Hk = I for i = 1, ..., m so
that b is an estimate for the mean and C is an estimate of the covariance of
the collection of observations z1, ..., zm.

7-5

7 Regression with Missing Data

Convergence
If the iterative process continues until the log-likelihood function increases
by no more than a specified amount, the resultant estimates are said to be
maximum likelihood estimates bML and CML.

Note that if n = 1 (which implies a single data series), convergence occurs
after only one iterative step, which, in turn, implies that the least-squares
and maximum likelihood estimates are identical. If, however, n > 1, the
least-squares and maximum likelihood estimates are usually distinct.

In Financial Toolbox software, both the changes in the log-likelihood function
and the norm of the change in parameter estimates are monitored. Whenever
both changes fall below specified tolerances (which should be something
between machine precision and its square root), the toolbox functions
terminate under an assumption that convergence has been achieved.

Fisher Information
Since maximum likelihood estimates are formed from samples of random
variables, their estimators are random variables; an estimate derived from
such samples has an uncertainty associated with it. To characterize these
uncertainties, which are called standard errors, two quantities are derived
from the total log-likelihood function.

The Hessian of the total log-likelihood function is

∇ ()2
1L z zm, , ;

and the Fisher information matrix is

I E L z zm () = − ∇ ()⎡⎣ ⎤⎦
2

1, , ; ,

where the partial derivatives of the ∇2 operator are taken with respect to the
combined parameter vector Θ that contains the distinct components of b and
C with a total of q = p + n (n + 1)/2 parameters.

Since maximum likelihood estimation is concerned with large-sample
estimates, the central limit theorem applies to the estimates and the Fisher

7-6

Multivariate Normal Regression

information matrix plays a key role in the sampling distribution of the
parameter estimates. Specifically, maximum likelihood parameter estimates
are asymptotically normally distributed such that

 t tN I t() − ()−() ()() → ∞0 1, , , as

where Θ is the combined parameter vector and Θ(t) is the estimate for the
combined parameter vector at iteration t = 0, 1,

The Fisher information matrix provides a lower bound, called a Cramér-Rao
lower bound, for the standard errors of estimates of the model parameters.

Statistical Tests
Given an estimate for the combined parameter vector Θ, the squared standard
errors are the diagonal elements of the inverse of the Fisher information
matrix

s Ii i ii
2 1ˆ ˆ () = ()()−

for i = 1, ..., q.

Since the standard errors are estimates for the standard deviations of the
parameter estimates, you can construct confidence intervals so that, for
example, a 95% interval for each parameter estimate is approximately

ˆ . ˆ i is± ()1 96

for i = 1, ..., q.

Error ellipses at a level-of-significance α ε [0, 1] for the parameter estimates
satisfy the inequality

 −() () −() ≤ −
ˆ ˆ ˆ

,
T

qI 1
2

7-7

7 Regression with Missing Data

and follow a 2 distribution with q degrees-of-freedom. Note that similar
inequalities can be formed for any subcollection of the parameters.

In general, given parameter estimates, the computed Fisher information
matrix, and the log-likelihood function, you can perform numerous statistical
tests on the parameters, the model, and the regression.

7-8

Maximum Likelihood Estimation with Missing Data

Maximum Likelihood Estimation with Missing Data

In this section...

“Introduction” on page 7-9

“ECM Algorithm” on page 7-10

“Standard Errors” on page 7-10

“Data Augmentation” on page 7-11

“Multivariate Normal Regression Functions” on page 7-12

“Multivariate Normal Regression Without Missing Data” on page 7-14

“Multivariate Normal Regression With Missing Data” on page 7-14

“Least-Squares Regression with Missing Data” on page 7-15

“Multivariate Normal Parameter Estimation with Missing Data” on page
7-15

“Support Functions” on page 7-16

Introduction
Suppose that a portion of the sample data is missing, where missing values
are represented as NaNs. If the missing values are missing-at-random and
ignorable, where Little and Rubin [7] have precise definitions for these
terms, it is possible to use a version of the Expectation Maximization, or EM,
algorithm of Dempster, Laird, and Rubin [3] to estimate the parameters of
the multivariate normal regression model. The algorithm used in Financial
Toolbox software is the ECM (Expectation Conditional Maximization)
algorithm of Meng and Rubin [8] with enhancements by Sexton and Swensen
[9].

Each sample zk for k = 1, ..., m, is either complete with no missing values,
empty with no observed values, or incomplete with both observed and missing
values. Empty samples are ignored since they contribute no information.

To understand the missing-at-random and ignorabable conditions, consider
an example of stock price data before an IPO. For a counterexample, censored
data, in which all values greater than some cutoff are replaced with NaNs, does
not satisfy these conditions.

7-9

7 Regression with Missing Data

In sample k, let xk represent the missing values in zk , and yk represent the
observed values. Define a permutation matrix Pk so that

z P
x
yk k

k

k
=

⎡

⎣
⎢

⎤

⎦
⎥

for k = 1, ..., m.

ECM Algorithm
The ECM algorithm has two steps – an E, or expectation step, and a CM, or
conditional maximization, step. As with maximum likelihood estimation, the
parameter estimates evolve according to an iterative process, where estimates
for the parameters after t iterations are denoted as b(t) and C(t).

The E step forms conditional expectations for the elements of missing data
with

E X Y y b C

cov X Y y b C

k k k
t t

k k k
t t

=⎡
⎣

⎤
⎦

=⎡
⎣

⎤
⎦

() ()

() ()

; ,

; ,

for each sample k m∈{ }1, , that has missing data.

The CM step proceeds in the same manner as the maximum likelihood
procedure without missing data. The main difference is that missing data
moments are imputed from the conditional expectations obtained in the E
step.

The E and CM steps are repeated until the log-likelihood function ceases to
increase. One of the important properties of the ECM algorithm is that it is
always guaranteed to find a maximum of the log-likelihood function and,
under suitable conditions, this maximum can be a global maximum.

Standard Errors
The negative of the expected Hessian of the log-likelihood function and the
Fisher information matrix are identical if no data is missing. However, if

7-10

Maximum Likelihood Estimation with Missing Data

data is missing, the Hessian, which is computed over available samples,
accounts for the loss of information due to missing data. Consequently, the
Fisher information matrix provides standard errors that are a Cramér-Rao
lower bound whereas the Hessian matrix provides standard errors that may
be greater if there is missing data.

Data Augmentation
The ECM functions do not “fill in” missing values as they estimate model
parameters. In some cases, you may want to fill in the missing values.
Although you can fill in the missing values in your data with conditional
expectations, you would get optimistic and unrealistic estimates because
conditional estimates are not random realizations.

Several approaches are possible, including resampling methods and multiple
imputation (see Little and Rubin [7] and Shafer [10] for details). A somewhat
informal sampling method for data augmentation is to form random samples
for missing values based on the conditional distribution for the missing

values. Given parameter estimates for X Rn and Ĉ , each observation
has moments

E Z H bk k[] = ˆ

and

cov Z H CHk k k
T() = ˆ

for k = 1, ..., m, where you have dropped the parameter dependence on the
left sides for notational convenience.

For observations with missing values partitioned into missing values Xk
and observed values Yk = yk, you can form conditional estimates for any
subcollection of random variables within a given observation. Thus, given
estimates E[Zk] and cov(Zk) based on the parameter estimates, you can
create conditional estimates

E X yk k⎡⎣ ⎤⎦

7-11

7 Regression with Missing Data

and

cov X yk k()

using standard multivariate normal distribution theory. Given these
conditional estimates, you can simulate random samples for the missing
values from the conditional distribution

X N E X y cov X yk k k k k⎡⎣ ⎤⎦ ()(), .

The samples from this distribution reflect the pattern of missing and
nonmissing values for observations k = 1, ..., m. You must sample from
conditional distributions for each observation to preserve the correlation
structure with the nonmissing values at each observation.

If you follow this procedure, the resultant filled-in values are random and
generate mean and covariance estimates that are asymptotically equivalent
to the ECM-derived mean and covariance estimates. Note, however, that the
filled-in values are random and reflect likely samples from the distribution
estimated over all the data and may not reflect “true” values for a particular
observation.

Multivariate Normal Regression Functions
Financial Toolbox software has a number of functions for multivariate
normal regression with or without missing data. The toolbox functions solve
four classes of regression problems with functions to estimate parameters,
standard errors, log-likelihood functions, and Fisher information matrices.
The four classes of regression problems are:

• “Multivariate Normal Regression Without Missing Data” on page 7-14

• “Multivariate Normal Regression With Missing Data” on page 7-14

• “Least-Squares Regression with Missing Data” on page 7-15

• “Multivariate Normal Parameter Estimation with Missing Data” on page
7-15

7-12

Maximum Likelihood Estimation with Missing Data

Additional support functions are also provided, see “Support Functions” on
page 7-16.

In all functions, the MATLAB representation for the number of observations
(or samples) is NumSamples = m, the number of data series is NumSeries =
n, and the number of model parameters is NumParams = p. Note that the
moment estimation functions have NumSeries = NumParams.

The collection of observations (or samples) is stored in a MATLAB matrix
Data such that

Data k, :() = zk
T

for k = 1, ..., NumSamples, where Data is a NumSamples-by-NumSeries
matrix.

For the multivariate normal regression or least-squares functions, an
additional required input is the collection of design matrices that is stored as
either a MATLAB matrix or a vector of cell arrays denoted as Design.

If Numseries = 1, Design can be a NumSamples-by-NumParams matrix. This is
the “standard” form for regression on a single data series.

If Numseries = 1, Design can be either a cell array with a single cell or
a cell array with NumSamples cells. Each cell in the cell array contains a
NumSeries-by-NumParams matrix such that

Design k{ } = Hk

for k = 1, ..., NumSamples. If Design has a single cell, it is assumed to be
the same Design matrix for each sample such that

Design 1 1{ } = = =H Hm .

Otherwise, Design must contain individual design matrices for each and
every sample.

7-13

7 Regression with Missing Data

The main distinction among the four classes of regression problems depends
upon how missing values are handled and where missing values are
represented as the MATLAB value NaN. If a sample is to be ignored given any
missing values in the sample, the problem is said to be a problem “without
missing data.” If a sample is to be ignored if and only if every element of the
sample is missing, the problem is said to be a problem “with missing data”
since the estimation must account for possible NaN values in the data.

In general, Data may or may not have missing values and Design should have
no missing values. In some cases, however, if an observation in Data is to be
ignored, the corresponding elements in Design are also ignored. Consult the
function reference pages for details.

Multivariate Normal Regression Without Missing
Data
You can use the following functions for multivariate normal regression
without missing data.

mvnrmle Estimate model parameters, residuals, and the
residual covariance.

mvnrstd Estimate standard errors of model and
covariance parameters.

mvnrfish Estimate the Fisher information matrix.

mvnrobj Calculate the log-likelihood function.

The first two functions are the main estimation functions. The second two are
supporting functions that can be used for more detailed analyses.

Multivariate Normal Regression With Missing Data
You can use the following functions for multivariate normal regression with
missing data.

7-14

Maximum Likelihood Estimation with Missing Data

ecmmvnrmle Estimate model parameters, residuals, and the
residual covariance.

ecmmvnrstd Estimate standard errors of model and
covariance parameters.

ecmmvnrfish Estimate the Fisher information matrix.

ecmmvnrobj Calculate the log-likelihood function.

The first two functions are the main estimation functions. The second two are
supporting functions used for more detailed analyses.

Least-Squares Regression with Missing Data
You can use the following functions for least-squares regression with missing
data or for covariance-weighted least-squares regression with a fixed
covariance matrix.

ecmlsrmle Estimate model parameters, residuals, and the
residual covariance.

ecmlsrobj Calculate the least-squares objective function
(pseudo log-likelihood).

To compute standard errors and estimates for the Fisher information matrix,
the multivariate normal regression functions with missing data are used.

ecmmvnrstd Estimate standard errors of model and
covariance parameters.

ecmmvnrfish Estimate the Fisher information matrix.

Multivariate Normal Parameter Estimation with
Missing Data
You can use the following functions to estimate the mean and covariance
of multivariate normal data.

7-15

7 Regression with Missing Data

ecmnmle Estimate the mean and covariance of the data.

ecmnstd Estimate standard errors of the mean and
covariance of the data.

ecmnfish Estimate the Fisher information matrix.

ecmnhess Estimate the Fisher information matrix using
the Hessian.

ecmnobj Calculate the log-likelihood function.

These functions behave slightly differently from the more general regression
functions since they solve a specialized problem. Consult the function
reference pages for details.

Support Functions
Two support functions are included.

convert2sur Convert a multivariate normal regression model
into an SUR model.

ecmninit Obtain initial estimates for the mean and
covariance of a Data matrix.

The convert2sur function converts a multivariate normal regression model
into a seemingly unrelated regression, or SUR, model. The second function
ecmninit is a specialized function to obtain initial ad hoc estimates for the
mean and covariance of a Data matrix with missing data. (If there are no
missing values, the estimates are the maximum likelihood estimates for the
mean and covariance.)

7-16

Multivariate Normal Regression Types

Multivariate Normal Regression Types

In this section...

“Regressions” on page 7-17

“Multivariate Normal Regression” on page 7-17

“Least-Squares Regression” on page 7-18

“Covariance-Weighted Least Squares” on page 7-19

“Feasible Generalized Least Squares” on page 7-20

“Seemingly Unrelated Regression” on page 7-21

“Mean and Covariance Parameter Estimation” on page 7-23

“Troubleshooting Multivariate Normal Regression” on page 7-23

“Slow Convergence” on page 7-24

“Nonrandom Residuals” on page 7-24

“Nonconvergence” on page 7-25

“Example of Portfolios with Missing Data” on page 7-26

Regressions
Each regression function has a specific operation. This section shows how to
use these functions to perform specific types of regressions. To illustrate use
of the functions for various regressions, “typical” usage is shown with optional
arguments kept to a minimum. For a typical regression, you estimate model
parameters and residual covariance matrices with the mle functions and
estimate the standard errors of model parameters with the std functions.
The regressions “without missing data” essentially ignore samples with any
missing values, and the regressions “with missing data” ignore samples with
every value missing.

Multivariate Normal Regression
Multivariate normal regression, or MVNR, is the “standard” implementation
of the regression functions in Financial Toolbox software.

7-17

7 Regression with Missing Data

Multivariate Normal Regression Without Missing Data
Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, Design);

Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

Multivariate Normal Regression with Missing Data
Estimate Parameters

[Parameters, Covariance] = ecmmvnrmle(Data, Design);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Least-Squares Regression
Least-squares regression, or LSR, sometimes called ordinary least-squares
or multiple linear regression, is the simplest linear regression model. It also
enjoys the property that, independent of the underlying distribution, it is a
best linear unbiased estimator (BLUE).

Given m = NumSamples observations, the typical least-squares regression
model seeks to minimize the objective function

Z H b Z H bk k
T

k k
k

m
−() −()

=
∑

1
,

which, within the maximum likelihood framework of the multivariate normal
regression routine mvnrmle, is equivalent to a single-iteration estimation
of just the parameters to obtain Parameters with the initial covariance
matrix Covariance held fixed as the identity matrix. In the case of missing
data, however, the internal algorithm to handle missing data requires a
separate routine ecmlsrmle to do least-squares instead of multivariate
normal regression.

7-18

Multivariate Normal Regression Types

Least-Squares Regression Without Missing Data
Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, Design, 1);

Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

Least-Squares Regression with Missing Data
Estimate Parameters

[Parameters, Covariance] = ecmlsrmle(Data, Design);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Covariance-Weighted Least Squares
Given m = NUMSAMPLES observations, the typical covariance-weighted least
squares, or CWLS, regression model seeks to minimize the objective function

Z H b C Z H bk k
T

k k
k

m
−() −()

=
∑ 0

1

with fixed covariance C0.

In most cases, C0 is a diagonal matrix. The inverse matrix W C= −
0

1 has
diagonal elements that can be considered relative “weights” for each series.
Thus, CWLS is a form of weighted least squares with the weights applied
across series.

Covariance-Weighted Least Squares Without Missing Data
Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, Design, 1, [], [], [],
Covar0);

7-19

7 Regression with Missing Data

Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

Covariance-Weighted Least Squares with Missing Data
Estimate Parameters

[Parameters, Covariance] = ecmlsrmle(Data, Design, [], [], [], [],

Covar0);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Feasible Generalized Least Squares
An ad hoc form of least squares that has surprisingly good properties for
misspecified or nonnormal models is known as feasible generalized least
squares, or FGLS. The basic procedure is to do least-squares regression and
then to do covariance-weighted least-squares regression with the resultant
residual covariance from the first regression.

Feasible Generalized Least Squares Without Missing Data
Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, Design, 2, 0, 0);

or (to illustrate the FGLS process explicitly)

[Parameters, Covar0] = mvnrmle(Data, Design, 1);
[Parameters, Covariance] = mvnrmle(Data, Design, 1, [], [], [],

Covar0);

Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

Feasible Generalized Least Squares with Missing Data
Estimate Parameters

7-20

Multivariate Normal Regression Types

[Parameters, Covar0] = ecmlsrmle(Data, Design);

[Parameters, Covariance] = ecmlsrmle(Data, Design, [], [], [], [],

Covar0);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Seemingly Unrelated Regression
Given a multivariate normal regression model in standard form with a
Data matrix and a Design array, it is possible to convert the problem into a
seemingly unrelated regression (SUR) problem by a simple transformation
of the Design array. The main idea of SUR is that instead of having a
common parameter vector over all data series, you have a separate parameter
vector associated with each separate series or with distinct groups of series
that, nevertheless, share a common residual covariance. It is this ability to
aggregate and disaggregate series and to perform comparative tests on each
design that is the power of SUR.

To make the transformation, use the function convert2sur, which converts a
standard-form design array into an equivalent design array to do SUR with
a specified mapping of the series into NUMGROUPS groups. The regression
functions are used in the usual manner, but with the SUR design array
instead of the original design array. Instead of having NUMPARAMS elements,
the SUR output parameter vector has NUMGROUPS of stacked parameter
estimates, where the first NUMPARAMS elements of Parameters contain
parameter estimates associated with the first group of series, the next
NUMPARAMS elements of Parameters contain parameter estimates associated
with the second group of series, and so on. If the model has only one series,
for example, NUMSERIES = 1, then the SUR design array is the same as the
original design array since SUR requires two or more series to generate
distinct parameter estimates.

Given NUMPARAMS parameters and NUMGROUPS groups with a parameter
vector Parameters with NUMGROUPS * NUMPARAMS elements from any of the
regression routines, the following MATLAB code fragment shows how to
print a table of SUR parameter estimates with rows that correspond to each
parameter and columns that correspond to each group or series:

fprintf(1,'Seemingly Unrelated Regression Parameter

7-21

7 Regression with Missing Data

Estimates\n');
fprintf(1,' %7s ',' ');
fprintf(1,' Group(%3d) ',1:NumGroups);
fprintf(1,'\n');
for i = 1:NumParams
fprintf(1,' %7d ',i);
ii = i;

for j = 1:NumGroups
fprintf(1,'%12g ',Param(ii));
ii = ii + NumParams;
end
fprintf(1,'\n');

end
fprintf(1,'\n');

Seemingly Unrelated Regression Without Missing Data
Form an SUR Design

DesignSUR = convert2sur(Design, Group);

Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, DesignSUR);

Estimate Standard Errors

StdParameters = mvnrstd(Data, DesignSUR, Covariance);

Seemingly Unrelated Regression with Missing Data
Form an SUR Design

DesignSUR = convert2sur(Design, Group);

Estimate Parameters

[Parameters, Covariance] = ecmmvnrmle(Data, DesignSUR);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, DesignSUR, Covariance);

7-22

Multivariate Normal Regression Types

Mean and Covariance Parameter Estimation
Without missing data, you can estimate the mean of your Data with the
function mean and the covariance with the function cov. Nevertheless, the
function ecmnmle does this for you if it detects an absence of missing values.
Otherwise, it uses the ECM algorithm to handle missing values.

Estimate Parameters

[Mean, Covariance] = ecmnmle(Data);

Estimate Standard Errors

StdMean = ecmnstd(Data, Mean, Covariance);

Troubleshooting Multivariate Normal Regression
This section provides a few pointers to handle various technical and
operational difficulties that might occur.

Biased Estimates
If samples are ignored, the number of samples used in the estimation is
less than NumSamples. Clearly the actual number of samples used must be
sufficient to obtain estimates. In addition, although the model parameters
Parameters (or mean estimates Mean) are unbiased maximum likelihood
estimates, the residual covariance estimate Covariance is biased. To convert
to an unbiased covariance estimate, multiply Covariance by

Count Count −()1 ,

where Count is the actual number of samples used in the estimation with
Count ≤ NumSamples. Note that none of the regression functions perform
this adjustment.

Requirements
The regression functions, particularly the estimation functions, have several
requirements. First, they must have consistent values for NumSamples,
NumSeries, and NumParams. As a general rule, the multivariate normal
regression functions require

7-23

7 Regression with Missing Data

Count NumSeries NumParams NumSeries NumSeries× ≤ × +(){ }max , 1 2

and the least-squares regression functions require

Count NumSeries NumParams× ≤ ,

where Count is the actual number of samples used in the estimation with

Count NumSamples.≤

Second, they must have enough nonmissing values to converge. Third, they
must have a nondegenerate covariance matrix.

Although some necessary and sufficient conditions can be found in the
references, general conditions for existence and uniqueness of solutions in
the missing-data case do not exist. Nonconvergence is usually due to an
ill-conditioned covariance matrix estimate, which is discussed in greater
detail in “Nonconvergence” on page 7-25.

Slow Convergence
Since worst-case convergence of the ECM algorithm is linear, it is possible
to execute hundreds and even thousands of iterations before termination of
the algorithm. If you are estimating with the ECM algorithm on a regular
basis with regular updates, you can use prior estimates as initial guesses for
the next period’s estimation. This approach often speeds things up since the
default initialization in the regression functions sets the initial parameters b
to zero and the initial covariance C to be the identity matrix.

Other ad hoc approaches are possible although most approaches are
problem-dependent. In particular, for mean and covariance estimation, the
estimation function ecmnmle uses a function ecmninit to obtain an initial
estimate.

Nonrandom Residuals
Simultaneous estimates for parameters b and covariances C require C to be
positive-definite. Consequently, the general multivariate normal regression

7-24

Multivariate Normal Regression Types

routines require nondegenerate residual errors. If you are faced with a
model that has exact results, the least-squares routine ecmlsrmle still
works, although it provides a least-squares estimate with a singular residual
covariance matrix. The other regression functions will fail.

Nonconvergence
Although the regression functions are robust and work for most “typical”
cases, they can fail to converge. The main failure mode is an ill-conditioned
covariance matrix, where failures are either soft or hard. A soft failure
wanders endlessly toward a nearly singular covariance matrix and can
be spotted if the algorithm fails to converge after about 100 iterations. If
MaxIterations is increased to 500 and display mode is initiated (with no
output arguments), a typical soft failure looks like this.

This case, which is based on 20 observations of 5 assets with 30% of data
missing, shows that the log-likelihood goes linearly to infinity as the likelihood

7-25

7 Regression with Missing Data

function goes to 0. In this case, the function converges but the covariance
matrix is effectively singular with a smallest eigenvalue on the order of
machine precision (eps).

For the function ecmnmle, a hard error looks like this:

> In ecmninit at 60
In ecmnmle at 140

??? Error using ==> ecmnmle
Full covariance not positive-definite in iteration 218.

From a practical standpoint, if in doubt, test your residual covariance matrix
from the regression routines to ensure that it is positive-definite. This is
important because a soft error has a matrix that appears to be positive-definite
but actually has a near-zero-valued eigenvalue to within machine precision.
To do this with a covariance estimate Covariance, use cond(Covariance),
where any value greater than 1/eps should be considered suspect.

If either type of failure occurs, however, note that the regression routine is
indicating that something is probably wrong with the data. (Even with no
missing data, two time series that are proportional to one another produce a
singular covariance matrix.)

Example of Portfolios with Missing Data
This example illustrates how to use the missing data algorithms for portfolio
optimization and for valuation. This example works with 5 years of daily
total return data for 12 computer technology stocks, with 6 hardware and 6
software companies. The example estimates the mean and covariance matrix
for these stocks, forms efficient frontiers with both a naïve approach and the
ECM approach, and compares results.

You can run the example directly with ecmtechdemo.m.

1 Load the following data file:

load ecmtechdemo

This file contains these three quantities:

7-26

Multivariate Normal Regression Types

• Assets is a cell array of the tickers for the twelve stocks in the example.

• Data is a 1254-by-12 matrix of 1254 daily total returns for each of the 12
stocks.

• Dates is a 1254-by-1 column vector of the dates associated with the data.

The time period for the data extends from April 19, 2000 to April 18, 2005.

The sixth stock in Assets is Google (GOOG), which started trading on August
19, 2004. Consequently, all returns before August 20, 2004 are missing and
represented as NaNs. Also, Amazon (AMZN) had a few days with missing
values scattered throughout the past 5 years.

2 A naïve approach to the estimation of the mean and covariance for these
12 assets is to eliminate all days that have missing values for any of the 12
assets. Use the function ecmninit with the nanskip option to do this.

[NaNMean, NaNCovar] = ecmninit(Data,'nanskip');

3 Contrast the result of this approach with using all available data and the
function ecmnmle to compute the mean and covariance. First, call ecmnmle
with no output arguments to establish that enough data is available to obtain
meaningful estimates.

ecmnmle(Data);

The following figure shows that, even with almost 87% of the Google data
being NaN values, the algorithm converges after only four iterations.

7-27

7 Regression with Missing Data

4 Estimate the mean and covariance as computed by ecmnmle.

>> [ECMMean, ECMCovar] = ecmnmle(Data)

ECMMean =

0.0008
0.0008

-0.0005
0.0002
0.0011
0.0038

-0.0003
-0.0000
-0.0003
-0.0000
-0.0003

7-28

Multivariate Normal Regression Types

0.0004

ECMCovar =

0.0012 0.0005 0.0006 0.0005 0.0005 0.0003
0.0005 0.0024 0.0007 0.0006 0.0010 0.0004
0.0006 0.0007 0.0013 0.0007 0.0007 0.0003
0.0005 0.0006 0.0007 0.0009 0.0006 0.0002
0.0005 0.0010 0.0007 0.0006 0.0016 0.0006
0.0003 0.0004 0.0003 0.0002 0.0006 0.0022
0.0005 0.0005 0.0006 0.0005 0.0005 0.0001
0.0003 0.0003 0.0004 0.0003 0.0003 0.0002
0.0006 0.0006 0.0008 0.0007 0.0006 0.0002
0.0003 0.0004 0.0005 0.0004 0.0004 0.0001
0.0005 0.0006 0.0008 0.0005 0.0007 0.0003
0.0006 0.0012 0.0008 0.0007 0.0011 0.0016

ECMCovar (continued)

0.0005 0.0003 0.0006 0.0003 0.0005 0.0006
0.0005 0.0003 0.0006 0.0004 0.0006 0.0012
0.0006 0.0004 0.0008 0.0005 0.0008 0.0008
0.0005 0.0003 0.0007 0.0004 0.0005 0.0007
0.0005 0.0003 0.0006 0.0004 0.0007 0.0011
0.0001 0.0002 0.0002 0.0001 0.0003 0.0016
0.0009 0.0003 0.0005 0.0004 0.0005 0.0006
0.0003 0.0005 0.0004 0.0003 0.0004 0.0004
0.0005 0.0004 0.0011 0.0005 0.0007 0.0007
0.0004 0.0003 0.0005 0.0006 0.0004 0.0005
0.0005 0.0004 0.0007 0.0004 0.0013 0.0007
0.0006 0.0004 0.0007 0.0005 0.0007 0.0020

5 Given estimates for the mean and covariance of asset returns derived from
the naïve and ECM approaches, estimate portfolios, and associated expected
returns and risks on the efficient frontier for both approaches.

[ECMRisk, ECMReturn, ECMWts] = portopt(ECMMean',ECMCovar,10);
[NaNRisk, NaNReturn, NaNWts] = portopt(NaNMean',NaNCovar,10);

6 Plot the results on the same graph to illustrate the differences.

7-29

7 Regression with Missing Data

figure(gcf)

plot(ECMRisk,ECMReturn,'-bo','MarkerFaceColor','b','MarkerSize', 3);

hold all

plot(NaNRisk,NaNReturn,'-ro','MarkerFaceColor','r','MarkerSize', 3);

title('\bfMean-Variance Efficient Frontiers under Various Assumptions');

legend('ECM','NaN','Location','SouthEast');

xlabel('\bfStd. Dev. of Returns');

ylabel('\bfMean of Returns');

hold off

7 Clearly, the naïve approach is optimistic about the risk-return trade-offs for
this universe of 12 technology stocks. The proof, however, lies in the portfolio
weights. To view the weights, enter

Assets
ECMWts
NaNWts

7-30

Multivariate Normal Regression Types

which generates

>> Assets

ans =

'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG'

>> ECMWts

ans =

0.0358 0.0011 -0.0000 0.0000 0.0000 0.0989
0.0654 0.0110 0.0000 0.0000 0.0000 0.1877
0.0923 0.0194 0.0000 0.0000 0.0000 0.2784
0.1165 0.0264 0.0000 -0.0000 0.0000 0.3712
0.1407 0.0334 -0.0000 0 0.0000 0.4639
0.1648 0.0403 0.0000 0 -0.0000 0.5566
0.1755 0.0457 0.0000 -0.0000 -0.0000 0.6532
0.1845 0.0509 0.0000 0.0000 -0.0000 0.7502
0.1093 0.0174 -0.0000 0.0000 0 0.8733

0 0 -0.0000 0.0000 0 1.0000

>> NaNWts

ans =

-0.0000 0.0000 -0.0000 0.1185 0.0000 0.0522
0.0576 -0.0000 -0.0000 0.1219 0.0000 0.0854
0.1248 -0.0000 -0.0000 0.0952 -0.0000 0.1195
0.1969 -0.0000 -0.0000 0.0529 -0.0000 0.1551
0.2690 -0.0000 -0.0000 0.0105 0.0000 0.1906
0.3414 0.0000 -0.0000 -0.0000 -0.0000 0.2265
0.4235 0.0000 -0.0000 -0.0000 -0.0000 0.2639
0.5245 0.0000 -0.0000 -0.0000 -0.0000 0.3034
0.6269 -0.0000 -0.0000 -0.0000 -0.0000 0.3425
1.0000 -0.0000 -0.0000 0.0000 -0.0000 0

Assets (continued)

7-31

7 Regression with Missing Data

'HPQ' 'IBM' 'INTC' 'MSFT' 'ORCL' 'YHOO'

ECMWts (continued)

0.0535 0.4676 0.0000 0.3431 -0.0000 0.0000
0.0179 0.3899 -0.0000 0.3282 0.0000 -0.0000

0 0.3025 -0.0000 0.3074 0.0000 -0.0000
0.0000 0.2054 -0.0000 0.2806 0.0000 0.0000
0.0000 0.1083 -0.0000 0.2538 -0.0000 0.0000
0.0000 0.0111 -0.0000 0.2271 -0.0000 0.0000
0.0000 0.0000 -0.0000 0.1255 -0.0000 0.0000
0.0000 0 -0.0000 0.0143 -0.0000 -0.0000
0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000

NaNWts (continued)

0.0824 0.1779 0.0000 0.5691 -0.0000 0.0000
0.1274 0.0460 0.0000 0.5617 -0.0000 -0.0000
0.1674 -0.0000 0.0000 0.4802 0.0129 -0.0000
0.2056 -0.0000 0.0000 0.3621 0.0274 -0.0000
0.2438 -0.0000 0.0000 0.2441 0.0419 -0.0000
0.2782 -0.0000 0.0000 0.0988 0.0551 -0.0000
0.2788 -0.0000 0.0000 -0.0000 0.0337 -0.0000
0.1721 -0.0000 0.0000 -0.0000 -0.0000 -0.0000
0.0306 -0.0000 0.0000 0.0000 0 -0.0000

0 0.0000 0.0000 -0.0000 -0.0000 -0.0000

The naïve portfolios in NaNWts tend to favor Apple Computer (AAPL), which
happened to do well over the period from the Google IPO to the end of the
estimation period, while the ECM portfolios in ECMWts tend to underweight
Apple Computer and to recommend increased weights in Google relative to
the naïve weights.

8 To evaluate the impact of estimation error and, in particular, the effect
of missing data, use ecmnstd to calculate standard errors. Although it is
possible to estimate the standard errors for both the mean and covariance,
the standard errors for the mean estimates alone are usually the main
quantities of interest.

7-32

Multivariate Normal Regression Types

StdMeanF = ecmnstd(Data,ECMMean,ECMCovar,'fisher');

9 Calculate standard errors that use the data-generated Hessian matrix (which
accounts for the possible loss of information due to missing data) with the
option HESSIAN.

StdMeanH = ecmnstd(Data,ECMMean,ECMCovar,'hessian');

The difference in the standard errors shows the increase in uncertainty of
estimation of asset expected returns due to missing data. This can be viewed
by entering

Assets
StdMeanH'
StdMeanF'
StdMeanH' - StdMeanF'

The two assets with missing data, AMZN and GOOG, are the only assets to
have differences due to missing information.

7-33

7 Regression with Missing Data

Valuation with Missing Data

In this section...

“Introduction” on page 7-34

“Capital Asset Pricing Model” on page 7-34

“Estimation of the CAPM” on page 7-35

“Estimation with Missing Data” on page 7-36

“Estimation of Some Technology Stock Betas” on page 7-36

“Grouped Estimation of Some Technology Stock Betas” on page 7-39

“References” on page 7-42

Introduction
The Capital Asset Pricing Model (CAPM) is a venerable but often maligned
tool to characterize comovements between asset and market prices. Although
many issues arise in CAPM implementation and interpretation, one problem
that practitioners face is to estimate the coefficients of the CAPM with
incomplete stock price data.

This example shows how to use the missing data regression functions to
estimate the coefficients of the CAPM. You can run the example directly using
CAPMdemo.m.

Capital Asset Pricing Model
Given a host of assumptions that can be found in the references (see
Sharpe [11], Lintner [6], Jarrow [5], and Sharpe, et. al. [12]), the CAPM
concludes that asset returns have a linear relationship with market returns.
Specifically, given the return of all stocks that constitute a market denoted as
M and the return of a riskless asset denoted as C, the CAPM states that the
return of each asset Ri in the market has the expectational form

E R C E M Ci i i[] ([])= + + −

for assets i = 1, ..., n, where βi is a parameter that specifies the degree of
comovement between a given asset and the underlying market. In other

7-34

Valuation with Missing Data

words, the expected return of each asset is equal to the return on a riskless
asset plus a risk-adjusted expected market return net of riskless asset
returns. The collection of parameters β1, ..., βn is called asset betas.

Note that the beta of an asset has the form

i
iR M

M
=

()
()

cov ,

var
,

which is the ratio of the covariance between asset and market returns divided
by the variance of market returns. If an asset has a beta = 1, the asset is
said to move with the market; if an asset has a beta > 1, the asset is said to
be more volatile than the market. Conversely, if an asset has a beta < 1, the
asset is said to be less volatile than the market.

Estimation of the CAPM
The standard CAPM model is a linear model with additional parameters
for each asset to characterize residual errors. For each of n assets with m
samples of observed asset returns Rk,i, market returns Mk, and riskless asset
returns Ck, the estimation model has the form

R C M C Vk i i k i k k k i, ,()= + + − +

for samples k = 1, ..., m and assets i = 1, ..., n, where αi is a parameter that
specifies the nonsystematic return of an asset, βi is the asset beta, and Vk,i is
the residual error for each asset with associated random variable Vi.

The collection of parameters α1, ..., αn are called asset alphas. The strict form
of the CAPM specifies that alphas must be zero and that deviations from
zero are the result of temporary disequilibria. In practice, however, assets
may have nonzero alphas, where much of active investment management is
devoted to the search for assets with exploitable nonzero alphas.

To allow for the possibility of nonzero alphas, the estimation model generally
seeks to estimate alphas and to perform tests to determine if the alphas are
statistically equal to zero.

The residual errors Vi are assumed to have moments

7-35

7 Regression with Missing Data

E Vi[] = 0

and

E V V Si j ij⎡⎣ ⎤⎦ =

for assets i,j = 1, ..., n, where the parameters S11, ..., Snn are called residual or
nonsystematic variances/covariances.

The square root of the residual variance of each asset, for example, sqrt(Sii)
for i = 1, ..., n, is said to be the residual or nonsystematic risk of the asset since
it characterizes the residual variation in asset prices that are not explained
by variations in market prices.

Estimation with Missing Data
Although betas can be estimated for companies with sufficiently long histories
of asset returns, it is difficult to estimate betas for recent IPOs. However, if
a collection of sufficiently observable companies exists that can be expected
to have some degree of correlation with the new company’s stock price
movements, that is, companies within the same industry as the new company,
it is possible to obtain imputed estimates for new company betas with the
missing-data regression routines.

Estimation of Some Technology Stock Betas
To illustrate how to use the missing-data regression routines, estimate betas
for 12 technology stocks, where a single stock (GOOG) is an IPO.

1 Load dates, total returns, and ticker symbols for the 12 stocks from the
MAT-file CAPMuniverse.

load CAPMuniverse
whos Assets Data Dates

Name Size Bytes Class

Assets 1x14 952 cell array
Data 1471x14 164752 double array

7-36

Valuation with Missing Data

Dates 1471x1 11768 double array

Grand total is 22135 elements using 177472 bytes

The assets in the model have the following symbols, where the last two series
are proxies for the market and the riskless asset:

Assets(1:7)

Assets(8:14)

ans =

'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG' 'HPQ'

ans =

'IBM' 'INTC' 'MSFT' 'ORCL' 'YHOO' 'MARKET' 'CASH'

The data covers the period from January 1, 2000 to November 7, 2005 with
daily total returns. Two stocks in this universe have missing values that are
represented by NaNs. One of the two stocks had an IPO during this period
and, consequently, has significantly less data than the other stocks.

2 Compute separate regressions for each stock, where the stocks with missing
data will have estimates that reflect their reduced observability.

[NumSamples, NumSeries] = size(Data);

NumAssets = NumSeries - 2;

StartDate = Dates(1);

EndDate = Dates(end);

fprintf(1,'Separate regressions with ');

fprintf(1,'daily total return data from %s to %s ...\n', ...

datestr(StartDate,1),datestr(EndDate,1));

fprintf(1,' %4s %-20s %-20s %-20s\n','','Alpha','Beta','Sigma');

fprintf(1,' ---- -------------------- ');

fprintf(1,'-------------------- --------------------\n');

for i = 1:NumAssets

7-37

7 Regression with Missing Data

% Set up separate asset data and design matrices

TestData = zeros(NumSamples,1);

TestDesign = zeros(NumSamples,2);

TestData(:) = Data(:,i) - Data(:,14);

TestDesign(:,1) = 1.0;

TestDesign(:,2) = Data(:,13) - Data(:,14);

% Estimate CAPM for each asset separately

[Param, Covar] = ecmmvnrmle(TestData, TestDesign);

% Estimate ideal standard errors for covariance parameters

[StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, ...

Covar, 'fisher');

% Estimate sample standard errors for model parameters

StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');

% Set up results for output

Alpha = Param(1);

Beta = Param(2);

Sigma = sqrt(Covar);

StdAlpha = StdParam(1);

StdBeta = StdParam(2);

StdSigma = sqrt(StdCovar);

% Display estimates

fprintf(' %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ...

Assets{i},Alpha(1),abs(Alpha(1)/StdAlpha(1)), ...

Beta(1),abs(Beta(1)/StdBeta(1)),Sigma(1),StdSigma(1));

end

This code fragment generates the following table.

Separate regressions with daily total return data from 03-Jan-2000

to 07-Nov-2005 ...

Alpha Beta Sigma

-------------------- -------------------- --------------------

AAPL 0.0012 (1.3882) 1.2294 (17.1839) 0.0322 (0.0062)

7-38

Valuation with Missing Data

AMZN 0.0006 (0.5326) 1.3661 (13.6579) 0.0449 (0.0086)

CSCO -0.0002 (0.2878) 1.5653 (23.6085) 0.0298 (0.0057)

DELL -0.0000 (0.0368) 1.2594 (22.2164) 0.0255 (0.0049)

EBAY 0.0014 (1.4326) 1.3441 (16.0732) 0.0376 (0.0072)

GOOG 0.0046 (3.2107) 0.3742 (1.7328) 0.0252 (0.0071)

HPQ 0.0001 (0.1747) 1.3745 (24.2390) 0.0255 (0.0049)

IBM -0.0000 (0.0312) 1.0807 (28.7576) 0.0169 (0.0032)

INTC 0.0001 (0.1608) 1.6002 (27.3684) 0.0263 (0.0050)

MSFT -0.0002 (0.4871) 1.1765 (27.4554) 0.0193 (0.0037)

ORCL 0.0000 (0.0389) 1.5010 (21.1855) 0.0319 (0.0061)

YHOO 0.0001 (0.1282) 1.6543 (19.3838) 0.0384 (0.0074)

The Alpha column contains alpha estimates for each stock that are near zero
as expected. In addition, the t-statistics (which are enclosed in parentheses)
generally reject the hypothesis that the alphas are nonzero at the 99.5%
level of significance.

The Beta column contains beta estimates for each stock that also have
t-statistics enclosed in parentheses. For all stocks but GOOG, the hypothesis
that the betas are nonzero is accepted at the 99.5% level of significance.
It seems, however, that GOOG does not have enough data to obtain a
meaningful estimate for beta since its t-statistic would imply rejection of the
hypothesis of a nonzero beta.

The Sigma column contains residual standard deviations, that is, estimates
for nonsystematic risks. Instead of t-statistics, the associated standard errors
for the residual standard deviations are enclosed in parentheses.

Grouped Estimation of Some Technology Stock Betas
To estimate stock betas for all 12 stocks, set up a joint regression model that
groups all 12 stocks within a single design. (Since each stock has the same
design matrix, this model is actually an example of seemingly unrelated
regression.) The routine to estimate model parameters is ecmmvnrmle, and
the routine to estimate standard errors is ecmmvnrstd.

Because GOOG has a significant number of missing values, a direct use of
the missing data routine ecmmvnrmle takes 482 iterations to converge. This
can take a long time to compute. For the sake of brevity, the parameter and

7-39

7 Regression with Missing Data

covariance estimates after the first 480 iterations are contained in a MAT-file
and are used as initial estimates to compute stock betas.

load CAPMgroupparam
whos Param0 Covar0

Name Size Bytes Class

Covar0 12x12 1152 double array
Param0 24x1 192 double array

Grand total is 168 elements using 1344 bytes

Now estimate the parameters for the collection of 12 stocks.

fprintf(1,'\n');

fprintf(1,'Grouped regression with ');

fprintf(1,'daily total return data from %s to %s ...\n', ...

datestr(StartDate,1),datestr(EndDate,1));

fprintf(1,' %4s %-20s %-20s %-20s\n','','Alpha','Beta','Sigma');

fprintf(1,' ---- -------------------- ');

fprintf(1,'-------------------- --------------------\n');

NumParams = 2 * NumAssets;

% Set up grouped asset data and design matrices

TestData = zeros(NumSamples, NumAssets);

TestDesign = cell(NumSamples, 1);

Design = zeros(NumAssets, NumParams);

for k = 1:NumSamples

for i = 1:NumAssets

TestData(k,i) = Data(k,i) - Data(k,14);

Design(i,2*i - 1) = 1.0;

Design(i,2*i) = Data(k,13) - Data(k,14);

end

TestDesign{k} = Design;

end

% Estimate CAPM for all assets together with initial parameter

7-40

Valuation with Missing Data

% estimates

[Param, Covar] = ecmmvnrmle(TestData, TestDesign, [], [], [],...

Param0, Covar0);

% Estimate ideal standard errors for covariance parameters

[StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, Covar,...

'fisher');

% Estimate sample standard errors for model parameters

StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');

% Set up results for output

Alpha = Param(1:2:end-1);

Beta = Param(2:2:end);

Sigma = sqrt(diag(Covar));

StdAlpha = StdParam(1:2:end-1);

StdBeta = StdParam(2:2:end);

StdSigma = sqrt(diag(StdCovar));

% Display estimates

for i = 1:NumAssets

fprintf(' %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ...

Assets{i},Alpha(i),abs(Alpha(i)/StdAlpha(i)), ...

Beta(i),abs(Beta(i)/StdBeta(i)),Sigma(i),StdSigma(i));

end

This code fragment generates the following table.

Grouped regression with daily total return data from 03-Jan-2000

to 07-Nov-2005 ...

Alpha Beta Sigma

---------------------- --

AAPL 0.0012 (1.3882) 1.2294 (17.1839) 0.0322 (0.0062)

AMZN 0.0007 (0.6086) 1.3673 (13.6427) 0.0450 (0.0086)

CSCO -0.0002 (0.2878) 1.5653 (23.6085) 0.0298 (0.0057)

DELL -0.0000 (0.0368) 1.2594 (22.2164) 0.0255 (0.0049)

EBAY 0.0014 (1.4326) 1.3441 (16.0732) 0.0376 (0.0072)

GOOG 0.0041 (2.8907) 0.6173 (3.1100) 0.0337 (0.0065)

HPQ 0.0001 (0.1747) 1.3745 (24.2390) 0.0255 (0.0049)

7-41

7 Regression with Missing Data

IBM -0.0000 (0.0312) 1.0807 (28.7576) 0.0169 (0.0032)

INTC 0.0001 (0.1608) 1.6002 (27.3684) 0.0263 (0.0050)

MSFT -0.0002 (0.4871) 1.1765 (27.4554) 0.0193 (0.0037)

ORCL 0.0000 (0.0389) 1.5010 (21.1855) 0.0319 (0.0061)

YHOO 0.0001 (0.1282) 1.6543 (19.3838) 0.0384 (0.0074)

Although the results for complete-data stocks are the same, note that the beta
estimates for AMZN and GOOG (the two stocks with missing values) are
different from the estimates derived for each stock separately. Since AMZN
has few missing values, the differences in the estimates are small. With
GOOG, however, the differences are more pronounced.

The t-statistic for the beta estimate of GOOG is now significant at the 99.5%
level of significance. Note, however, that the t-statistics for beta estimates
are based on standard errors from the sample Hessian which, in contrast to
the Fisher information matrix, accounts for the increased uncertainty in an
estimate due to missing values. If the t-statistic is obtained from the more
optimistic Fisher information matrix, the t-statistic for GOOG is 8.25. Thus,
despite the increase in uncertainty due to missing data, GOOG nonetheless
has a statistically significant estimate for beta.

Finally, note that the beta estimate for GOOG is 0.62 —a value that may
require some explanation. Although the market has been volatile over this
period with sideways price movements, GOOG has steadily appreciated in
value. Consequently, it is less tightly correlated with the market, implying
that it is less volatile than the market (beta < 1).

References

[1] Caines, Peter E. Linear Stochastic Systems. John Wiley & Sons, Inc., 1988.

[2] Cramér, Harald. Mathematical Methods of Statistics. Princeton
University Press, 1946.

[3] Dempster, A.P, N.M. Laird, and D.B Rubin. “Maximum Likelihood from
Incomplete Data via the EM Algorithm,”Journal of the Royal Statistical
Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

7-42

Valuation with Missing Data

[4] Greene, William H. Econometric Analysis, 5th ed., Pearson Education,
Inc., 2003.

[5] Jarrow, R.A. Finance Theory, Prentice-Hall, Inc., 1988.

[6] Lintner, J. “The Valuation of Risk Assets and the Selection of Risky
Investments in Stocks,” Review of Economics and Statistics, Vol. 14, 1965,
pp. 13-37.

[7] Little, Roderick J. A and Donald B. Rubin. Statistical Analysis with
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.

[8] Meng, Xiao-Li and Donald B. Rubin. “Maximum Likelihood Estimation
via the ECM Algorithm,” Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.

[9] Sexton, Joe and Anders Rygh Swensen. “ECM Algorithms that Converge
at the Rate of EM,” Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.

[10] Shafer, J. L. Analysis of Incomplete Multivariate Data, Chapman &
Hall/CRC, 1997.

[11] Sharpe, W. F. “Capital Asset Prices: A Theory of Market Equilibrium
Under Conditions of Risk,” Journal of Finance, Vol. 19, 1964, pp. 425-442.

[12] Sharpe, W. F., G. J. Alexander, and J. V. Bailey. Investments, 6th ed.,
Prentice-Hall, Inc., 1999.

7-43

7 Regression with Missing Data

7-44

8

Solving Sample Problems

• “Introduction” on page 8-2

• “Common Problems in Finance” on page 8-3

• “Producing Graphics with the Toolbox” on page 8-21

8 Solving Sample Problems

Introduction
This section shows how Financial Toolbox functions solve real-world problems.
The examples ship with the toolbox as MATLAB files. Try them by entering
the commands directly or by executing the code.

This chapter contains two major topics:

• “Common Problems in Finance” on page 8-3

Shows how the toolbox solves real-world financial problems, specifically:

- “Sensitivity of Bond Prices to Changes in Interest Rates” on page 8-3

- “Constructing a Bond Portfolio to Hedge Against Duration and
Convexity” on page 8-6

- “Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve” on
page 8-9

- “Constructing Greek-Neutral Portfolios of European Stock Options” on
page 8-14

- “Term Structure Analysis and Interest Rate Swap Pricing” on page 8-18

• “Producing Graphics with the Toolbox” on page 8-21

Shows how the toolbox produces presentation-quality graphics by solving
these problems:

- “Plotting an Efficient Frontier” on page 8-21

- “Plotting Sensitivities of an Option” on page 8-24

- “Plotting Sensitivities of a Portfolio of Options” on page 8-26

8-2

Common Problems in Finance

Common Problems in Finance

In this section...

“Sensitivity of Bond Prices to Changes in Interest Rates” on page 8-3

“Constructing a Bond Portfolio to Hedge Against Duration and Convexity”
on page 8-6

“Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve” on page 8-9

“Sensitivity of Bond Prices to Nonparallel Shifts in the Yield Curve” on
page 8-12

“Constructing Greek-Neutral Portfolios of European Stock Options” on
page 8-14

“Term Structure Analysis and Interest Rate Swap Pricing” on page 8-18

Sensitivity of Bond Prices to Changes in Interest Rates
Macaulay and modified duration measure the sensitivity of a bond’s price
to changes in the level of interest rates. Convexity measures the change
in duration for small shifts in the yield curve, and thus measures the
second-order price sensitivity of a bond. Both measures can gauge the
vulnerability of a bond portfolio’s value to changes in the level of interest rates.

Alternatively, analysts can use duration and convexity to construct a bond
portfolio that is partly hedged against small shifts in the term structure. If you
combine bonds in a portfolio whose duration is zero, the portfolio is insulated,
to some extent, against interest rate changes. If the portfolio convexity is also
zero, this insulation is even better. However, since hedging costs money or
reduces expected return, you need to know how much protection results from
hedging duration alone compared to hedging both duration and convexity.

This example demonstrates a way to analyze the relative importance of
duration and convexity for a bond portfolio using some of the SIA-compliant
bond functions in Financial Toolbox software. Using duration, it constructs
a first-order approximation of the change in portfolio price to a level shift
in interest rates. Then, using convexity, it calculates a second-order
approximation. Finally, it compares the two approximations with the true

8-3

8 Solving Sample Problems

price change resulting from a change in the yield curve. The example is
ftspex1.m.

Step 1. Define three bonds using values for the settlement date, maturity
date, face value, and coupon rate. For simplicity, accept default values for the
coupon payment periodicity (semiannual), end-of-month payment rule (rule
in effect), and day-count basis (actual/actual). Also, synchronize the coupon
payment structure to the maturity date (no odd first or last coupon dates).
Any inputs for which defaults are accepted are set to empty matrices ([])
as placeholders where appropriate.

Settle = '19-Aug-1999';
Maturity = ['17-Jun-2010'; '09-Jun-2015'; '14-May-2025'];
Face = [100; 100; 1000];
CouponRate = [0.07; 0.06; 0.045];

Also, specify the yield curve information.

Yields = [0.05; 0.06; 0.065];

Step 2. Use Financial Toolbox functions to calculate the price, modified
duration in years, and convexity in years of each bond.

The true price is quoted (clean) price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,...

Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity, 2, 0,...

[], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle, Maturity, 2, 0,...

[], [], [], [], [], Face);

Prices = CleanPrice + AccruedInterest;

Step 3. Choose a hypothetical amount by which to shift the yield curve (here,
0.2 percentage point or 20 basis points).

dY = 0.002;

8-4

Common Problems in Finance

Weight the three bonds equally, and calculate the actual quantity of each
bond in the portfolio, which has a total value of $100,000.

PortfolioPrice = 100000;
PortfolioWeights = ones(3,1)/3;
PortfolioAmounts = PortfolioPrice * PortfolioWeights ./ Prices;

Step 4. Calculate the modified duration and convexity of the portfolio. Note
that the portfolio duration or convextity is a weighted average of the durations
or convexities of the individual bonds. Calculate the first- and second-order
approximations of the percent price change as a function of the change in the
level of interest rates.

PortfolioDuration = PortfolioWeights' * Durations;
PortfolioConvexity = PortfolioWeights' * Convexities;
PercentApprox1 = -PortfolioDuration * dY * 100;

PercentApprox2 = PercentApprox1 + ...
PortfolioConvexity*dY^2*100/2.0;

Step 5. Estimate the new portfolio price using the two estimates for the
percent price change.

PriceApprox1 = PortfolioPrice + ...
PercentApprox1 * PortfolioPrice/100;

PriceApprox2 = PortfolioPrice + ...
PercentApprox2 * PortfolioPrice/100;

Step 6. Calculate the true new portfolio price by shifting the yield curve.

[CleanPrice, AccruedInterest] = bndprice(Yields + dY,...
CouponRate, Settle, Maturity, 2, 0, [], [], [], [], [],...
Face);

NewPrice = PortfolioAmounts' * (CleanPrice + AccruedInterest);

Step 7. Compare the results. The analysis results are as follows (verify these
results by running the example ftspex1.m:

• The original portfolio price was $100,000.

8-5

8 Solving Sample Problems

• The yield curve shifted up by 0.2 percentage point or 20 basis points.

• The portfolio duration and convexity are 10.3181 and 157.6346,
respectively. These will be needed for “Constructing a Bond Portfolio to
Hedge Against Duration and Convexity” on page 8-6.

• The first-order approximation, based on modified duration, predicts the
new portfolio price (PriceApprox1) will be $97,936.37.

• The second-order approximation, based on duration and convexity, predicts
the new portfolio price (PriceApprox2) will be $97,967.90.

• The true new portfolio price (NewPrice) for this yield curve shift is
$97,967.51.

• The estimate using duration and convexity is quite good (at least for this
fairly small shift in the yield curve), but only slightly better than the
estimate using duration alone. The importance of convexity increases as
the magnitude of the yield curve shift increases. Try a larger shift (dY)
to see this effect.

The approximation formulas in this example consider only parallel shifts in
the term structure, because both formulas are functions of dY, the change
in yield. The formulas are not well-defined unless each yield changes by
the same amount. In actual financial markets, changes in yield curve level
typically explain a substantial portion of bond price movements. However,
other changes in the yield curve, such as slope, may also be important and
are not captured here. Also, both formulas give local approximations whose
accuracy deteriorates as dY increases in size. You can demonstrate this by
running the program with larger values of dY.

Constructing a Bond Portfolio to Hedge Against
Duration and Convexity
This example constructs a bond portfolio to hedge the portfolio of “Sensitivity
of Bond Prices to Changes in Interest Rates” on page 8-3 It assumes a long
position in (holding) the portfolio, and that three other bonds are available
for hedging. It chooses weights for these three other bonds in a new portfolio
so that the duration and convexity of the new portfolio match those of the
original portfolio. Taking a short position in the new portfolio, in an amount
equal to the value of the first portfolio, partially hedges against parallel shifts
in the yield curve.

8-6

Common Problems in Finance

Recall that portfolio duration or convexity is a weighted average of the
durations or convexities of the individual bonds in a portfolio. As in the
previous example, this example uses modified duration in years and convexity
in years. The hedging problem therefore becomes one of solving a system of
linear equations, which is an easy to do in MATLAB software. The file for
this example is ftspex2.m.

Step 1. Define three bonds available for hedging the original portfolio.
Specify values for the settlement date, maturity date, face value, and coupon
rate. For simplicity, accept default values for the coupon payment periodicity
(semiannual), end-of-month payment rule (rule in effect), and day-count
basis (actual/actual). Also, synchronize the coupon payment structure to the
maturity date (that is, no odd first or last coupon dates). Set any inputs for
which defaults are accepted to empty matrices ([]) as placeholders where
appropriate. The intent is to hedge against duration and convexity and
constrain total portfolio price.

Settle = '19-Aug-1999';
Maturity = ['15-Jun-2005'; '02-Oct-2010'; '01-Mar-2025'];
Face = [500; 1000; 250];
CouponRate = [0.07; 0.066; 0.08];

Also, specify the yield curve for each bond.

Yields = [0.06; 0.07; 0.075];

Step 2. Use Financial Toolbox functions to calculate the price, modified
duration in years, and convexity in years of each bond.

The true price is quoted (clean price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields,CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity,...
2, 0, [], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle,...
Maturity, 2, 0, [], [], [], [], [], Face);

Prices = CleanPrice + AccruedInterest;

8-7

8 Solving Sample Problems

Step 3. Set up and solve the system of linear equations whose solution is
the weights of the new bonds in a new portfolio with the same duration
and convexity as the original portfolio. In addition, scale the weights to
sum to 1; that is, force them to be portfolio weights. You can then scale this
unit portfolio to have the same price as the original portfolio. Recall that
the original portfolio duration and convexity are 10.3181 and 157.6346,
respectively. Also, note that the last row of the linear system ensures that the
sum of the weights is unity.

A = [Durations'
Convexities'
1 1 1];

b = [10.3181
157.6346

1];

Weights = A\b;

Step 4. Compute the duration and convexity of the hedge portfolio, which
should now match the original portfolio.

PortfolioDuration = Weights' * Durations;
PortfolioConvexity = Weights' * Convexities;

Step 5. Finally, scale the unit portfolio to match the value of the original
portfolio and find the number of bonds required to insulate against small
parallel shifts in the yield curve.

PortfolioValue = 100000;
HedgeAmounts = Weights ./ Prices * PortfolioValue;

Step 6. Compare the results. Verify the analysis results by running the
example ftspex2.m.

• As required, the duration and convexity of the new portfolio are 10.3181
and 157.6346, respectively.

• The hedge amounts for bonds 1, 2, and 3 are -57.37, 71.70, and 216.27,
respectively.

8-8

Common Problems in Finance

Notice that the hedge matches the duration, convexity, and value ($100,000)
of the original portfolio. If you are holding that first portfolio, you can hedge
by taking a short position in the new portfolio.

Just as the approximations of the first example are appropriate only for small
parallel shifts in the yield curve, the hedge portfolio is appropriate only for
reducing the impact of small level changes in the term structure.

Sensitivity of Bond Prices to Parallel Shifts in the
Yield Curve
Often bond portfolio managers want to consider more than just the sensitivity
of a portfolio’s price to a small shift in the yield curve, particularly if the
investment horizon is long. This example shows how MATLAB software can
help you to visualize the price behavior of a portfolio of bonds over a wide
range of yield curve scenarios, and as time progresses toward maturity.

This example uses Financial Toolbox bond pricing functions to evaluate the
impact of time-to-maturity and yield variation on the price of a bond portfolio.
It plots the portfolio value and shows the behavior of bond prices as yield and
time vary. The file for this example is ftspex3.m.

Step 1. Specify values for the settlement date, maturity date, face value,
coupon rate, and coupon payment periodicity of a four-bond portfolio. For
simplicity, accept default values for the end-of-month payment rule (rule
in effect) and day-count basis (actual/actual). Also, synchronize the coupon
payment structure to the maturity date (no odd first or last coupon dates).
Any inputs for which defaults are accepted are set to empty matrices ([])
as placeholders where appropriate.

Settle = '15-Jan-1995';
Maturity = datenum(['03-Apr-2020'; '14-May-2025'; ...

'09-Jun-2019'; '25-Feb-2019']);
Face = [1000; 1000; 1000; 1000];
CouponRate = [0; 0.05; 0; 0.055];
Periods = [0; 2; 0; 2];

Also, specify the points on the yield curve for each bond.

Yields = [0.078; 0.09; 0.075; 0.085];

8-9

8 Solving Sample Problems

Step 2. Use Financial Toolbox functions to calculate the true bond prices as
the sum of the quoted price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields,...
CouponRate,Settle, Maturity, Periods,...
[], [], [], [], [], [], Face);

Prices = CleanPrice + AccruedInterest;

Step 3. Assume the value of each bond is $25,000, and determine the
quantity of each bond such that the portfolio value is $100,000.

BondAmounts = 25000 ./ Prices;

Step 4. Compute the portfolio price for a rolling series of settlement dates
over a range of yields. The evaluation dates occur annually on January 15,
beginning on 15-Jan-1995 (settlement) and extending out to 15-Jan-2018.
Thus, this step evaluates portfolio price on a grid of time of progression (dT)
and interest rates (dY).

dy = -0.05:0.005:0.05; % Yield changes

D = datevec(Settle); % Get date components
dt = datenum(D(1):2018, D(2), D(3)); % Get evaluation dates

[dT, dY] = meshgrid(dt, dy); % Create grid

NumTimes = length(dt); % Number of time steps
NumYields = length(dy); % Number of yield changes
NumBonds = length(Maturity); % Number of bonds

% Preallocate vector
Prices = zeros(NumTimes*NumYields, NumBonds);

Now that the grid and price vectors have been created, compute the price of
each bond in the portfolio on the grid one bond at a time.

for i = 1:NumBonds

[CleanPrice, AccruedInterest] = bndprice(Yields(i)+...

8-10

Common Problems in Finance

dY(:), CouponRate(i), dT(:), Maturity(i), Periods(i),...
[], [], [], [], [], [], Face(i));

Prices(:,i) = CleanPrice + AccruedInterest;

end

Scale the bond prices by the quantity of bonds.

Prices = Prices * BondAmounts;

Reshape the bond values to conform to the underlying evaluation grid.

Prices = reshape(Prices, NumYields, NumTimes);

Step 5. Plot the price of the portfolio as a function of settlement date and
a range of yields, and as a function of the change in yield (dY). This plot
illustrates the interest rate sensitivity of the portfolio as time progresses
(dT), under a range of interest rate scenarios. With the following graphics
commands, you can visualize the three-dimensional surface relative to the
current portfolio value (that is, $100,000).

figure % Open a new figure window
surf(dt, dy, Prices) % Draw the surface

Add the base portfolio value to the existing surface plot.

hold on % Add the current value for reference
basemesh = mesh(dt, dy, 100000*ones(NumYields, NumTimes));

Make it transparent, plot it so the price surface shows through, and draw a
box around the plot.

set(basemesh, 'facecolor', 'none');
set(basemesh, 'edgecolor', 'm');
set(gca, 'box', 'on');

Plot the x-axis using two-digit year (YY format) labels for ticks.

dateaxis('x', 11);

8-11

8 Solving Sample Problems

Add axis labels and set the three-dimensional viewpoint. MATLAB produces
the figure.

xlabel('Evaluation Date (YY Format)');
ylabel('Change in Yield');
zlabel('Portfolio Price');
hold off
view(-25,25);

MATLAB three-dimensional graphics allow you to visualize the interest
rate risk experienced by a bond portfolio over time. This example assumed
parallel shifts in the term structure, but it might similarly have allowed other
components to vary, such as the level and slope.

Sensitivity of Bond Prices to Nonparallel Shifts in the
Yield Curve
Key rate duration enables you to determine the sensitivity of the price of a
bond to nonparallel shifts in the yield curve. This example uses bndkrdur to

8-12

Common Problems in Finance

construct a portfolio to hedge the interest rate risk of a U.S. Treasury bond
maturing in 20 years. For more information on this bond, see .

Settle = datenum('2-Dec-2008');
CouponRate = 5.500/100;
Maturity = datenum('15-Aug-2028');
Price = 128.68;

The interest rate risk of this bond is hedged with the following four on-the-run
Treasury bonds:

The 30-year bond. For more information, see .

Maturity_30 = datenum('15-May-2038');
Coupon_30 = .045;
Price_30 = 124.69;

The ten-year note. For more information, see .

Maturity_10 = datenum('15-Nov-2018');
Coupon_10 = .0375;
Price_10 = 109.35;

The five-year note. For more information, see .

Maturity_05 = datenum('30-Nov-2013');
Coupon_05 = .02;
Price_05 = 101.67;

The two-year note. For more information, see .

Maturity_02 = datenum('30-Nov-2010');
Coupon_02 = .01250;
Price_02 = 100.72;

You can get the Treasury spot or zero curve from: .

ZeroDates = daysadd(Settle,[30 90 180 360 360*2 360*3 360*5 ...

360*7 360*10 360*20 360*30]);

ZeroRates = ([0.09 0.07 0.44 0.81 0.90 1.16 1.71 2.13 2.72 3.51 3.22]/100)';

8-13

8 Solving Sample Problems

Step 1. Compute the key rate durations for both the bond and the hedging
portfolio:

BondKRD = bndkrdur([ZeroDates ZeroRates], CouponRate, Settle,...

Maturity,'keyrates',[2 5 10 20]);

HedgeMaturity = [Maturity_02;Maturity_05;Maturity_10;Maturity_30];

HedgeCoupon = [Coupon_02;Coupon_05;Coupon_10;Coupon_30];

HedgeKRD = bndkrdur([ZeroDates ZeroRates], HedgeCoupon,...

Settle, HedgeMaturity, 'keyrates',[2 5 10 20]);

Step 2. Compute the dollar durations for each of the instruments and each of
the key rates (assuming holding 100 bonds):

PortfolioDD = 100*Price* BondKRD;

HedgeDD = bsxfun(@times, HedgeKRD,[Price_30;Price_10;Price_05;Price_02]);

Step 3. Compute the number of bonds to sell short to obtain a key rate
duration that is 0 for the entire portfolio:

NumBonds = PortfolioDD/HedgeDD;

NumBonds =

3.8973 6.1596 23.0282 80.0522

These results indicate selling 4, 6, 23 and 80 bonds respectively of the 2-, 5-,
10-, and 30-year bonds achieves a portfolio that is neutral with respect to
the 2-, 5-, 10-, and 30-year spot rates.

Constructing Greek-Neutral Portfolios of European
Stock Options
The option sensitivity measures familiar to most option traders are often
referred to as the greeks: delta, gamma, vega, lambda, rho, and theta. Delta
is the price sensitivity of an option with respect to changes in the price
of the underlying asset. It represents a first-order sensitivity measure
analogous to duration in fixed income markets. Gamma is the sensitivity
of an option’s delta to changes in the price of the underlying asset, and
represents a second-order price sensitivity analogous to convexity in fixed
income markets. Vega is the price sensitivity of an option with respect to
changes in the volatility of the underlying asset. See “Pricing and Analyzing

8-14

Common Problems in Finance

Equity Derivatives” on page 2-39 or the “Glossary” on page Glossary-1 for
other definitions.

The greeks of a particular option are a function of the model used to price the
option. However, given enough different options to work with, a trader can
construct a portfolio with any desired values for its greeks. For example, to
insulate the value of an option portfolio from small changes in the price of the
underlying asset, one trader might construct an option portfolio whose delta
is zero. Such a portfolio is then said to be “delta neutral.” Another trader may
want to protect an option portfolio from larger changes in the price of the
underlying asset, and so might construct a portfolio whose delta and gamma
are both zero. Such a portfolio is both delta and gamma neutral. A third
trader may want to construct a portfolio insulated from small changes in the
volatility of the underlying asset in addition to delta and gamma neutrality.
Such a portfolio is then delta, gamma, and vega neutral.

Using the Black-Scholes model for European options, this example creates
an equity option portfolio that is simultaneously delta, gamma, and vega
neutral. The value of a particular greek of an option portfolio is a weighted
average of the corresponding greek of each individual option. The weights are
the quantity of each option in the portfolio. Hedging an option portfolio thus
involves solving a system of linear equations, an easy process in MATLAB.
The file for this example is ftspex4.m.

Step 1. Create an input data matrix to summarize the relevant information.
Each row of the matrix contains the standard inputs to Financial Toolbox
Black-Scholes suite of functions: column 1 contains the current price of the
underlying stock; column 2 the strike price of each option; column 3 the
time to-expiry of each option in years; column 4 the annualized stock price
volatility; and column 5 the annualized dividend rate of the underlying asset.
Note that rows 1 and 3 are data related to call options, while rows 2 and 4 are
data related to put options.

DataMatrix = [100.000 100 0.2 0.3 0 % Call
119.100 125 0.2 0.2 0.025 % Put
87.200 85 0.1 0.23 0 % Call

301.125 315 0.5 0.25 0.0333] % Put

Also, assume the annualized risk-free rate is 10% and is constant for all
maturities of interest.

8-15

8 Solving Sample Problems

RiskFreeRate = 0.10;

For clarity, assign each column of DataMatrix to a column vector whose name
reflects the type of financial data in the column.

StockPrice = DataMatrix(:,1);
StrikePrice = DataMatrix(:,2);
ExpiryTime = DataMatrix(:,3);
Volatility = DataMatrix(:,4);
DividendRate = DataMatrix(:,5);

Step 2. Based on the Black-Scholes model, compute the prices, and the delta,
gamma, and vega sensitivity greeks of each of the four options. Note that
the functions blsprice and blsdelta have two outputs, while blsgamma
and blsvega have only one. The price and delta of a call option differ from
the price and delta of an otherwise equivalent put option, in contrast to the
gamma and vega sensitivities, which are valid for both calls and puts.

[CallPrices, PutPrices] = blsprice(StockPrice, StrikePrice,...
RiskFreeRate, ExpiryTime, Volatility, DividendRate);

[CallDeltas, PutDeltas] = blsdelta(StockPrice,...
StrikePrice, RiskFreeRate, ExpiryTime, Volatility,...
DividendRate);

Gammas = blsgamma(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';

Vegas = blsvega(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';

Extract the prices and deltas of interest to account for the distinction between
call and puts.

Prices = [CallPrices(1) PutPrices(2) CallPrices(3)...
PutPrices(4)];

Deltas = [CallDeltas(1) PutDeltas(2) CallDeltas(3)...
PutDeltas(4)];

8-16

Common Problems in Finance

Step 3. Now, assuming an arbitrary portfolio value of $17,000, set up and
solve the linear system of equations such that the overall option portfolio is
simultaneously delta, gamma, and vega-neutral. The solution computes the
value of a particular greek of a portfolio of options as a weighted average of
the corresponding greek of each individual option in the portfolio. The system
of equations is solved using the back slash (\) operator discussed in “Solving
Simultaneous Linear Equations” on page 1-14.

A = [Deltas; Gammas; Vegas; Prices];
b = [0; 0; 0; 17000];
OptionQuantities = A\b; % Quantity (number) of each option.

Step 4. Finally, compute the market value, delta, gamma, and vega of the
overall portfolio as a weighted average of the corresponding parameters of the
component options. The weighted average is computed as an inner product of
two vectors.

PortfolioValue = Prices * OptionQuantities;
PortfolioDelta = Deltas * OptionQuantities;
PortfolioGamma = Gammas * OptionQuantities;
PortfolioVega = Vegas * OptionQuantities;

The example ftspex4.m performs these computations and displays the output
on the screen.

Option Price Delta Gamma Vega Quantity
1 6.3441 0.5856 0.0290 17.4293 22332.6131
2 6.6035 -0.6255 0.0353 20.0347 6864.0731
3 4.2993 0.7003 0.0548 9.5837 -15654.8657
4 22.7694 -0.4830 0.0074 83.5225 -4510.5153

Portfolio Value: $17000.00
Portfolio Delta: 0.00
Portfolio Gamma: -0.00
Portfolio Vega : 0.00

You can verify that the portfolio value is $17,000 and that the option portfolio
is indeed delta, gamma, and vega neutral, as desired. Hedges based on these
measures are effective only for small changes in the underlying variables.

8-17

8 Solving Sample Problems

Term Structure Analysis and Interest Rate Swap
Pricing
This example illustrates some of the term-structure analysis functions found
in Financial Toolbox software. Specifically, it illustrates how to derive
implied zero (spot) and forward curves from the observed market prices of
coupon-bearing bonds. The zero and forward curves implied from the market
data are then used to price an interest rate swap agreement.

In an interest rate swap, two parties agree to a periodic exchange of cash
flows. One of the cash flows is based on a fixed interest rate held constant
throughout the life of the swap. The other cash flow stream is tied to some
variable index rate. Pricing a swap at inception amounts to finding the fixed
rate of the swap agreement. This fixed rate, appropriately scaled by the
notional principal of the swap agreement, determines the periodic sequence of
fixed cash flows.

In general, interest rate swaps are priced from the forward curve such that
the variable cash flows implied from the series of forward rates and the
periodic sequence of fixed-rate cash flows have the same current value. Thus,
interest rate swap pricing and term structure analysis are intimately related.

Step 1. Specify values for the settlement date, maturity dates, coupon rates,
and market prices for 10 U.S. Treasury Bonds. This data allows you to price a
five-year swap with net cash flow payments exchanged every six months. For
simplicity, accept default values for the end-of-month payment rule (rule in
effect) and day-count basis (actual/actual). To avoid issues of accrued interest,
assume that all Treasury Bonds pay semiannual coupons and that settlement
occurs on a coupon payment date.

Settle = datenum('15-Jan-1999');

BondData = {'15-Jul-1999' 0.06000 99.93
'15-Jan-2000' 0.06125 99.72
'15-Jul-2000' 0.06375 99.70
'15-Jan-2001' 0.06500 99.40
'15-Jul-2001' 0.06875 99.73
'15-Jan-2002' 0.07000 99.42
'15-Jul-2002' 0.07250 99.32
'15-Jan-2003' 0.07375 98.45
'15-Jul-2003' 0.07500 97.71

8-18

Common Problems in Finance

'15-Jan-2004' 0.08000 98.15};

BondData is an instance of a MATLAB cell array, indicated by the curly
braces ({}).

Next assign the date stored in the cell array to Maturity, CouponRate, and
Prices vectors for further processing.

Maturity = datenum(char(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices = [BondData{:,3}]';
Period = 2; % semiannual coupons

Step 2. Now that the data has been specified, use the term structure
function zbtprice to bootstrap the zero curve implied from the prices of
the coupon-bearing bonds. This implied zero curve represents the series of
zero-coupon Treasury rates consistent with the prices of the coupon-bearing
bonds such that arbitrage opportunities will not exist.

ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle);

The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis
(the periodic, six-month, interest rate is doubled to annualize). The first
element of ZeroRates is the annualized rate over the next six months, the
second element is the annualized rate over the next 12 months, and so on.

Step 3. From the implied zero curve, find the corresponding series of implied
forward rates using the term structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);

The forward curve, stored in ForwardRates, is also quoted on a semiannual
bond basis. The first element of ForwardRates is the annualized rate applied
to the interval between settlement and six months after settlement, the
second element is the annualized rate applied to the interval from six months
to 12 months after settlement, and so on. This implied forward curve is also
consistent with the observed market prices such that arbitrage activities
will be unprofitable. Since the first forward rate is also a zero rate, the first
element of ZeroRates and ForwardRates are the same.

8-19

8 Solving Sample Problems

Step 4. Now that you have derived the zero curve, convert it to a sequence of
discount factors with the term structure function zero2disc.

DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);

Step 5. From the discount factors, compute the present value of the variable
cash flows derived from the implied forward rates. For plain interest rate
swaps, the notional principle remains constant for each payment date and
cancels out of each side of the present value equation. The next line assumes
unit notional principle.

PresentValue = sum((ForwardRates/Period) .* DiscountFactors);

Step 6. Compute the swap’s price (the fixed rate) by equating the present
value of the fixed cash flows with the present value of the cash flows derived
from the implied forward rates. Again, since the notional principle cancels out
of each side of the equation, it is simply assumed to be 1.

SwapFixedRate = Period * PresentValue / sum(DiscountFactors);

The example ftspex5.m performs these computations and displays the output
on the screen.

Zero Rates Forward Rates
0.0614 0.0614
0.0642 0.0670
0.0660 0.0695
0.0684 0.0758
0.0702 0.0774
0.0726 0.0846
0.0754 0.0925
0.0795 0.1077
0.0827 0.1089
0.0868 0.1239

Swap Price (Fixed Rate) = 0.0845

All rates are in decimal format. The swap price, 8.45%, would likely be the
mid-point between a market-maker’s bid/ask quotes.

8-20

Producing Graphics with the Toolbox

Producing Graphics with the Toolbox

In this section...

“Introduction” on page 8-21

“Plotting an Efficient Frontier” on page 8-21

“Plotting Sensitivities of an Option” on page 8-24

“Plotting Sensitivities of a Portfolio of Options” on page 8-26

Introduction
Financial Toolbox and MATLAB graphics functions work together to produce
presentation quality graphics, as these examples show. The examples ship
with the toolbox as MATLAB files. Try them by entering the commands
directly or by executing the code. For help using MATLAB plotting functions,
see “Creating Line Plots” in the MATLAB documentation.

Plotting an Efficient Frontier
This example plots the efficient frontier of a hypothetical portfolio of three
assets. It illustrates how to specify the expected returns, standard deviations,
and correlations of a portfolio of assets, how to convert standard deviations
and correlations into a covariance matrix, and how to compute and plot the
efficient frontier from the returns and covariance matrix. The example also
illustrates how to randomly generate a set of portfolio weights, and how to
add the random portfolios to an existing plot for comparison with the efficient
frontier. The file for this example is ftgex1.m.

First, specify the expected returns, standard deviations, and correlation
matrix for a hypothetical portfolio of three assets.

Returns = [0.1 0.15 0.12];
STDs = [0.2 0.25 0.18];

Correlations = [1 0.3 0.4
0.3 1 0.3
0.4 0.3 1];

8-21

8 Solving Sample Problems

Convert the standard deviations and correlation matrix into a
variance-covariance matrix with the Financial Toolbox function corr2cov.

Covariances = corr2cov(STDs, Correlations);

Evaluate and plot the efficient frontier at 20 points along the frontier, using
the function portopt and the expected returns and corresponding covariance
matrix. Although rather elaborate constraints can be placed on the assets in a
portfolio, for simplicity accept the default constraints and scale the total value
of the portfolio to 1 and constrain the weights to be positive (no short-selling).

portopt(Returns, Covariances, 20)

Now that the efficient frontier is displayed, randomly generate the asset
weights for 1000 portfolios starting from the MATLAB initial state.

rand('state', 0)
Weights = rand(1000, 3);

8-22

Producing Graphics with the Toolbox

The previous line of code generates three columns of uniformly distributed
random weights, but does not guarantee they sum to 1. The following code
segment normalizes the weights of each portfolio so that the total of the three
weights represent a valid portfolio.

Total = sum(Weights, 2); % Add the weights
Total = Total(:,ones(3,1)); % Make size-compatible matrix
Weights = Weights./Total; % Normalize so sum = 1

Given the 1000 random portfolios just created, compute the expected return
and risk of each portfolio associated with the weights.

[PortRisk, PortReturn] = portstats(Returns, Covariances, ...
Weights);

Finally, hold the current graph, and plot the returns and risks of each
portfolio on top of the existing efficient frontier for comparison. After plotting,
annotate the graph with a title and return the graph to default holding status
(any subsequent plots will erase the existing data). The efficient frontier
appears in blue, while the 1000 random portfolios appear as a set of red dots
on or below the frontier.

hold on
plot (PortRisk, PortReturn, '.r')
title('Mean-Variance Efficient Frontier and Random Portfolios')
hold off

8-23

8 Solving Sample Problems

Plotting Sensitivities of an Option
This example creates a three-dimensional plot showing how gamma changes
relative to price for a Black-Scholes option. Recall that gamma is the second
derivative of the option price relative to the underlying security price. The
plot shows a three-dimensional surface whose z-value is the gamma of an
option as price (x-axis) and time (y-axis) vary. It adds yet a fourth dimension
by showing option delta (the first derivative of option price to security price)
as the color of the surface. The file for this example is ftgex2.m.

First set the price range of the options, and set the time range to one year
divided into half-months and expressed as fractions of a year.

Range = 10:70;
Span = length(Range);
j = 1:0.5:12;
Newj = j(ones(Span,1),:)'/12;

8-24

Producing Graphics with the Toolbox

For each time period create a vector of prices from 10 to 70 and create a
matrix of all ones.

JSpan = ones(length(j),1);
NewRange = Range(JSpan,:);
Pad = ones(size(Newj));

Calculate the toolbox gamma and delta sensitivity functions (greeks). (Recall
that gamma is the second derivative of the option price with respect to the
stock price, and delta is the first derivative of the option price with respect to
the stock price.) The exercise price is $40, the risk-free interest rate is 10%,
and volatility is 0.35 for all prices and periods.

ZVal = blsgamma(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
Color = blsdelta(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);

Display the greeks as a function of price and time. Gamma is the z-axis;
delta is the color.

mesh(Range, j, ZVal, Color);
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
title('Call Option Price Sensitivity');
axis([10 70 1 12 -inf inf]);
view(-40, 50);
colorbar('horiz');

8-25

8 Solving Sample Problems

Plotting Sensitivities of a Portfolio of Options
This example plots gamma as a function of price and time for a portfolio of
10 Black-Scholes options. The plot shows a three-dimensional surface. For
each point on the surface, the height (z-value) represents the sum of the
gammas for each option in the portfolio weighted by the amount of each
option. The x-axis represents changing price, and the y-axis represents time.
The plot adds a fourth dimension by showing delta as surface color. This
has applications in hedging.

The file for this example is ftgex3.m.

First set up the portfolio with arbitrary data. Current prices range from $20
to $90 for each option. Set corresponding exercise prices for each option.

Range = 20:90;
PLen = length(Range);
ExPrice = [75 70 50 55 75 50 40 75 60 35];

8-26

Producing Graphics with the Toolbox

Set all risk-free interest rates to 10%, and set times to maturity in days. Set
all volatilities to 0.35. Set the number of options of each instrument, and
allocate space for matrices.

Rate = 0.1*ones(10,1);
Time = [36 36 36 27 18 18 18 9 9 9];
Sigma = 0.35*ones(10,1);
NumOpt = 1000*[4 8 3 5 5.5 2 4.8 3 4.8 2.5];
ZVal = zeros(36, PLen);
Color = zeros(36, PLen);

For each instrument, create a matrix (of size Time by PLen) of prices for
each period.

for i = 1:10
Pad = ones(Time(i),PLen);
NewR = Range(ones(Time(i),1),:);

Create a vector of time periods 1 to Time; and a matrix of times, one column
for each price.

T = (1:Time(i))';
NewT = T(:,ones(PLen,1));

Call the toolbox gamma and delta sensitivity functions to compute gamma
and delta.

ZVal(36-Time(i)+1:36,:) = ZVal(36-Time(i)+1:36,:) ...
+ NumOpt(i) * blsgamma(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

Color(36-Time(i)+1:36,:) = Color(36-Time(i)+1:36,:) ...
+ NumOpt(i) * blsdelta(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

end

Draw the surface as a mesh, set the viewpoint, and reverse the x-axis because
of the viewpoint. The axes range from 20 to 90, 0 to 36, and -∞ to ∞.

mesh(Range, 1:36, ZVal, Color);
view(60,60);

8-27

8 Solving Sample Problems

set(gca, 'xdir','reverse', 'tag', 'mesh_axes_3');
axis([20 90 0 36 -inf inf]);

Add a title and axis labels and draw a box around the plot. Annotate the
colors with a bar and label the colorbar.

title('Call Option Portfolio Sensitivity');
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
set(gca, 'box', 'on');
colorbar('horiz');

8-28

9

Financial Time Series
Analysis

• “Analyzing Financial Time Series” on page 9-2

• “Creating Financial Time Series Objects” on page 9-3

• “Visualizing Financial Time Series Objects” on page 9-18

9 Financial Time Series Analysis

Analyzing Financial Time Series
Financial Toolbox software provides a collection of tools for the analysis of
time series data in the financial markets. The toolbox contains a financial
time series object constructor and several methods that operate on and
analyze the object. Financial engineers working with time series data, such
as equity prices or daily interest fluctuations, can use these tools for more
intuitive data management than by using regular vectors or matrices.

This chapter discusses how to create a financial time series object in one
of two ways:

• “Using the Constructor” on page 9-3

• “Transforming a Text File” on page 9-14

The chapter also discusses chartfts, a graphical tool for visualizing financial
time series objects. You can find this discussion in “Visualizing Financial
Time Series Objects” on page 9-18.

9-2

Creating Financial Time Series Objects

Creating Financial Time Series Objects

In this section...

“Introduction” on page 9-3

“Using the Constructor” on page 9-3

“Transforming a Text File” on page 9-14

Introduction
Financial Toolbox software provides two ways to create a financial time
series object:

• At the command line using the object constructor fints

• From a text data file through the function ascii2fts

The structure of the object minimally consists of a description field, a
frequency indicator field, the date vector field, and at least one data series
vector. The names for the fields are fixed for the first three fields: desc, freq,
and dates. You can specify names of your choice for any data series vectors.
If you do not specify names, the object uses the default names series1,
series2, series3, and so on.

If time-of-day information is incorporated in the date vector, the object
contains an additional field named times.

Using the Constructor
The object constructor function fints has five different syntaxes. These forms
exist to simplify object construction. The syntaxes vary according to the types
of input arguments presented to the constructor. The syntaxes are

• Single Matrix Input

- See “Time-of-Day Information Excluded” on page 9-4.

- See “Time-of-Day Information Included” on page 9-7.

• Separate Vector Input

9-3

9 Financial Time Series Analysis

- See “Time-of-Day Information Excluded” on page 9-8.

- See “Time-of-Day Information Included” on page 9-9.

• See “Data Name Input” on page 9-10.

• See “Frequency Indicator Input” on page 9-12.

• See “Description Field Input” on page 9-14.

Single Matrix Input
The date information provided with this syntax must be in serial date number
format. The date number may or may not include time-of-day information.

Note If you are unfamiliar with the concepts of date strings and serial date
numbers, consult “Handling and Converting Dates” on page 2-4.

Time-of-Day Information Excluded.

fts = fints(dates_and_data)

In this simplest form of syntax, the input must be at least a two-column
matrix. The first column contains the dates in serial date format; the
second column is the data series. The input matrix can have more than two
columns, each additional column representing a different data series or set
of observations.

If the input is a two-column matrix, the output object contains four fields:
desc, freq, dates, and series1. The description field, desc, defaults to
blanks '', and the frequency indicator field, freq, defaults to 0. The dates
field, dates, contains the serial dates from the first column of the input
matrix, while the data series field, series1, has the data from the second
column of the input matrix.

The first example makes two financial time series objects. The first one has
only one data series, while the other has more than one. A random vector
provides the values for the data series. The range of dates is arbitrarily
chosen using the today function:

date_series = (today:today+100)';

9-4

Creating Financial Time Series Objects

data_series = exp(randn(1, 101))';
dates_and_data = [date_series data_series];
fts1 = fints(dates_and_data);

Examine the contents of the object fts1 create. The actual date series you
observe will vary according to the day when you run the example (the value of
today). Also, your values in series1 will differ from those shown, depending
upon the sequence of random numbers generated:

fts1 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series1: (101)'
'12-Jul-1999' [0.3124]
'13-Jul-1999' [3.2665]
'14-Jul-1999' [0.9847]
'15-Jul-1999' [1.7095]
'16-Jul-1999' [0.4885]
'17-Jul-1999' [0.5192]
'18-Jul-1999' [1.3694]
'19-Jul-1999' [1.1127]
'20-Jul-1999' [6.3485]
'21-Jul-1999' [0.7595]
'22-Jul-1999' [9.1390]
'23-Jul-1999' [4.5201]
'24-Jul-1999' [0.1430]
'25-Jul-1999' [0.1863]
'26-Jul-1999' [0.5635]
'27-Jul-1999' [0.8304]
'28-Jul-1999' [1.0090]...

The output is truncated for brevity. There are actually 101 data points in
the object.

Note that the desc field displays as (none) instead of '', and that the contents
of the object display as cell array elements. Although the object displays as
such, it should be thought of as a MATLAB structure containing the default
field names for a single data series object: desc, freq, dates, and series1.

9-5

9 Financial Time Series Analysis

Now create an object with more than one data series in it:

date_series = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
dates_and_data = [date_series data_series1 data_series2];
fts2 = fints(dates_and_data);

Now look at the object created (again in abbreviated form):

fts2 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series1: (101)' 'series2: (101)'
'12-Jul-1999' [0.5816] [1.2816]
'13-Jul-1999' [5.1253] [0.9262]
'14-Jul-1999' [2.2824] [5.6869]
'15-Jul-1999' [1.2596] [5.0631]
'16-Jul-1999' [1.9574] [1.8709]
'17-Jul-1999' [0.6017] [1.0962]
'18-Jul-1999' [2.3546] [0.4459]
'19-Jul-1999' [1.3080] [0.6304]
'20-Jul-1999' [1.8682] [0.2451]
'21-Jul-1999' [0.3509] [0.6876]
'22-Jul-1999' [4.6444] [0.6244]
'23-Jul-1999' [1.5441] [5.7621]
'24-Jul-1999' [0.1470] [2.1238]
'25-Jul-1999' [1.5999] [1.0671]
'26-Jul-1999' [3.5764] [0.7462]
'27-Jul-1999' [1.8937] [1.0863]
'28-Jul-1999' [3.9780] [2.1516]...

The second data series name defaults to series2, as expected.

Before you can perform any operations on the object, you must set the
frequency indicator field freq to the valid frequency of the data series
contained in the object. You can leave the description field desc blank.

9-6

Creating Financial Time Series Objects

To set the frequency indicator field to a daily frequency, enter

fts2.freq = 1, or

fts2.freq = 'daily'

See the fints function description in Chapter 15, “Function Reference” or
Chapter 17, “Functions — Alphabetical List”.

Time-of-Day Information Included. The serial date number used with this
form of the fints function can incorporate time-of-day information. When
time-of-day information is present, the output of the function contains a field
times that indicates the time of day.

If you recode the previous example to include time-of-day information, you
can see the additional column present in the output object:

time_series = (now:now+100)';
data_series = exp(randn(1, 101))';
times_and_data = [time_series data_series];
fts1 = fints(times_and_data);

fts1 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'times: (101)' 'series1: (101)'
'29-Nov-2001' '14:57' [0.5816]
'30-Nov-2001' '14:57' [5.1253]
'01-Dec-2001' '14:57' [2.2824]
'02-Dec-2001' '14:57' [1.2596]...

Separate Vector Input
The date information provided with this syntax can be in serial date number
or date string format. The date information may or may not include
time-of-day information.

9-7

9 Financial Time Series Analysis

Time-of-Day Information Excluded.

fts = fints(dates, data)

In this second syntax the dates and data series are entered as separate
vectors to fints, the financial time series object constructor function. The
dates vector must be a column vector, while the data series data can be a
column vector (if there is only one data series) or a column-oriented matrix
(for multiple data series). A column-oriented matrix, in this context, indicates
that each column is a set of observations. Different columns are different
sets of data series.

Here is an example:

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts = fints(dates, data)
fts =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series1: (101)' 'series2: (101)'
'12-Jul-1999' [0.5816] [1.2816]
'13-Jul-1999' [5.1253] [0.9262]
'14-Jul-1999' [2.2824] [5.6869]
'15-Jul-1999' [1.2596] [5.0631]
'16-Jul-1999' [1.9574] [1.8709]
'17-Jul-1999' [0.6017] [1.0962]
'18-Jul-1999' [2.3546] [0.4459]
'19-Jul-1999' [1.3080] [0.6304]
'20-Jul-1999' [1.8682] [0.2451]
'21-Jul-1999' [0.3509] [0.6876]
'22-Jul-1999' [4.6444] [0.6244]
'23-Jul-1999' [1.5441] [5.7621]
'24-Jul-1999' [0.1470] [2.1238]
'25-Jul-1999' [1.5999] [1.0671]
'26-Jul-1999' [3.5764] [0.7462]

9-8

Creating Financial Time Series Objects

'27-Jul-1999' [1.8937] [1.0863]
'28-Jul-1999' [3.9780] [2.1516]...

The result is exactly the same as the first syntax. The only difference between
the first and second syntax is the way the inputs are entered into the
constructor function.

Time-of-Day Information Included. With this form of the function you can
enter the time-of-day information either as a serial date number or as a date
string. If more than one serial date and time are present, the entry must be in
the form of a column-oriented matrix. If more than one string date and time
are present, the entry must be a column-oriented cell array of dates and times.

With date string input the dates and times can initially be separate
column-oriented date and time series, but you must concatenate them into
a single column-oriented cell array before entering them as the first input
to fints.

For date string input the allowable formats are

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'

• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'

• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'

• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

The next example shows time-of-day information input as serial date numbers
in a column-oriented matrix:

f = fints([now;now+1],(1:2)')

f =

desc: (none)
freq: Unknown (0)

'dates: (2)' 'times: (2)' 'series1: (2)'
'29-Nov-2001' '15:22' [1]
'30-Nov-2001' '15:22' [2]

9-9

9 Financial Time Series Analysis

If the time-of-day information is in date string format, you must provide it to
fints as a column-oriented cell array:

f = fints({'01-Jan-2001 12:00';'02-Jan-2001 12:00'},(1:2)')

f =

desc: (none)
freq: Unknown (0)

'dates: (2)' 'times: (2)' 'series1: (2)'
'01-Jan-2001' '12:00' [1]
'02-Jan-2001' '12:00' [2]

If the dates and times are in date string format and contained in separate
matrices, you must concatenate them before using the date and time
information as input to fints:

dates = ['01-Jan-2001'; '02-Jan-2001'; '03-Jan-2001'];
times = ['12:00';'12:00';'12:00'];
dates_time = cellstr([dates,repmat(' ',size(dates,1),1),times]);
f = fints(dates_time,(1:3)')

f =

desc: (none)
freq: Unknown (0)

'dates: (3)' 'times: (3)' 'series1: (3)'
'01-Jan-2001' '12:00' [1]
'02-Jan-2001' '12:00' [2]
'03-Jan-2001' '12:00' [3]

Data Name Input

fts = fints(dates, data, datanames)

The third syntax lets you specify the names for the data series with the
argument datanames. The datanames argument can be a MATLAB string

9-10

Creating Financial Time Series Objects

for a single data series. For multiple data series names, it must be a cell
array of strings.

Look at two examples, one with a single data series and a second with two.
The first example sets the data series name to the specified name First:

dates = (today:today+100)';
data = exp(randn(1, 101))';
fts1 = fints(dates, data, 'First')

fts1 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'First: (101)'
'12-Jul-1999' [0.4615]
'13-Jul-1999' [1.1640]
'14-Jul-1999' [0.7140]
'15-Jul-1999' [2.6400]
'16-Jul-1999' [0.8983]
'17-Jul-1999' [2.7552]
'18-Jul-1999' [0.6217]
'19-Jul-1999' [1.0714]
'20-Jul-1999' [1.4897]
'21-Jul-1999' [3.0536]
'22-Jul-1999' [1.8598]
'23-Jul-1999' [0.7500]
'24-Jul-1999' [0.2537]
'25-Jul-1999' [0.5037]
'26-Jul-1999' [1.3933]
'27-Jul-1999' [0.3687]...

The second example provides two data series named First and Second:

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts2 = fints(dates, data, {'First', 'Second'})

9-11

9 Financial Time Series Analysis

fts2 =
desc: (none)
freq: Unknown (0)

'dates: (101)' 'First: (101)' 'Second: (101)'
'12-Jul-1999' [1.2305] [0.7396]
'13-Jul-1999' [1.2473] [2.6038]
'14-Jul-1999' [0.3657] [0.5866]
'15-Jul-1999' [0.6357] [0.4061]
'16-Jul-1999' [4.0530] [0.4096]
'17-Jul-1999' [0.6300] [1.3214]
'18-Jul-1999' [1.0333] [0.4744]
'19-Jul-1999' [2.2228] [4.9702]
'20-Jul-1999' [2.4518] [1.7758]
'21-Jul-1999' [1.1479] [1.3780]
'22-Jul-1999' [0.1981] [0.8595]
'23-Jul-1999' [0.1927] [1.3713]
'24-Jul-1999' [1.5353] [3.8332]
'25-Jul-1999' [0.4784] [0.1067]
'26-Jul-1999' [1.7593] [3.6434]
'27-Jul-1999' [0.2505] [0.6849]
'28-Jul-1999' [1.5845] [1.0025]...

Note Data series names must be valid MATLAB variable names. The only
allowed nonalphanumeric character is the underscore (_) character.

Because freq for fts2 has not been explicitly indicated, the frequency
indicator for fts2 is set to Unknown. Set the frequency indicator field freq
before you attempt any operations on the object. You will not be able to use
the object until the frequency indicator field is set to a valid indicator.

Frequency Indicator Input

fts = fints(dates, data, datanames, freq)

9-12

Creating Financial Time Series Objects

With the fourth syntax you can set the frequency indicator field when you
create the financial time series object. The frequency indicator field freq is
set as the fourth input argument. You will not be able to use the financial
time series object until freq is set to a valid indicator. Valid frequency
indicators are

UNKNOWN, Unknown, unknown, U, u,0
DAILY, Daily, daily, D, d,1
WEEKLY, Weekly, weekly, W, w,2
MONTHLY, Monthly, monthly, M, m,3
QUARTERLY, Quarterly, quarterly, Q, q,4
SEMIANNUAL, Semiannual, semiannual, S, s,5
ANNUAL, Annual, annual, A, a,6

The previous example contained sets of daily data. The freq field displayed
as Unknown (0) because the frequency indicator was not explicitly set. The
command

fts = fints(dates, data, {'First', 'Second'}, 1);

sets the freq indicator to Daily(1) when creating the financial time series
object:

fts =

desc: (none)
freq: Daily (1)

'dates: (101)' 'First: (101)' 'Second: (101)'
'12-Jul-1999' [1.2305] [0.7396]
'13-Jul-1999' [1.2473] [2.6038]
'14-Jul-1999' [0.3657] [0.5866]
'15-Jul-1999' [0.6357] [0.4061]
'16-Jul-1999' [4.0530] [0.4096]
'17-Jul-1999' [0.6300] [1.3214]
'18-Jul-1999' [1.0333] [0.4744]...

When you create the object using this syntax, you can use the other valid
frequency indicators for a particular frequency. For a daily data set you can

9-13

9 Financial Time Series Analysis

use DAILY, Daily, daily, D, or d. Similarly, with the other frequencies, you
can use the valid string indicators or their numeric counterparts.

Description Field Input

fts = fints(dates, data, datanames, freq, desc)

With the fifth syntax, you can explicitly set the description field as the fifth
input argument. The description can be anything you want. It is not used in
any operations performed on the object.

This example sets the desc field to 'Test TS'.

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts = fints(dates, data, {'First', 'Second'}, 1, 'Test TS')

fts =
desc: Test TS
freq: Daily (1)

'dates: (101)' 'First: (101)' 'Second: (101)'
'12-Jul-1999' [0.5428] [1.2491]
'13-Jul-1999' [0.6649] [6.4969]
'14-Jul-1999' [0.2428] [1.1163]
'15-Jul-1999' [1.2550] [0.6628]
'16-Jul-1999' [1.2312] [1.6674]
'17-Jul-1999' [0.4869] [0.3015]
'18-Jul-1999' [2.1335] [0.9081]...

Now the description field is filled with the specified string 'Test TS' when
the constructor is called.

Transforming a Text File
The function ascii2fts creates a financial time series object from a text
(ASCII) data file provided that the data file conforms to a general format. The
general format of the text data file is as follows:

9-14

Creating Financial Time Series Objects

• Can contain header text lines.

• Can contain column header information. The column header information
must immediately precede the data series columns unless the skiprows
argument (see below) is specified.

• Leftmost column must be the date column.

• Dates must be in a valid date string format.

- 'ddmmmyy' or 'ddmmmyyyy'

- 'mm/dd/yy' or 'mm/dd/yyyy'

- 'dd-mmm-yy' or 'dd-mmm-yyyy'

- 'mmm.dd,yy' or 'mmm.dd,yyyy'

• Each column must be separated either by spaces or a tab.

Several example text data files are included with the toolbox. These files are in
the ftsdata subdirectory within the directory matlabroot/toolbox/finance.

The syntax of the function

fts = ascii2fts(filename, descrow, colheadrow, skiprows);

takes in the data file name (filename), the row number where the text for
the description field is (descrow), the row number of the column header
information (colheadrow), and the row numbers of rows to be skipped
(skiprows). For example, rows need to be skipped when there are intervening
rows between the column head row and the start of the time series data.

Look at the beginning of the ASCII file disney.dat in the ftsdata
subdirectory:

Walt Disney Company (DIS)
Daily prices (3/29/96 to 3/29/99)
DATE OPEN HIGH LOW CLOSE VOLUME
3/29/99 33.0625 33.188 32.75 33.063 6320500
3/26/99 33.3125 33.375 32.75 32.938 5552800
3/25/99 33.5 33.625 32.875 33.375 7936000
3/24/99 33.0625 33.25 32.625 33.188 6025400...

9-15

9 Financial Time Series Analysis

The command line

disfts = ascii2fts('disney.dat', 1, 3, 2)

uses disney.dat to create time series object disfts. This example

• Reads the text data file disney.dat

• Uses the first line in the file as the content of the description field

• Skips the second line

• Parses the third line in the file for column header (or data series names)

• Parses the rest of the file for the date vector and the data series values

The resulting financial time series object looks like this.

disfts =

desc: Walt Disney Company (DIS)

freq: Unknown (0)

'dates: (782)' 'OPEN: (782)' 'HIGH: (782)' 'LOW: (782)'

'29-Mar-1996' [21.1938] [21.6250] [21.2920]

'01-Apr-1996' [21.1120] [21.6250] [21.4170]

'02-Apr-1996' [21.3165] [21.8750] [21.6670]

'03-Apr-1996' [21.4802] [21.8750] [21.7500]

'04-Apr-1996' [21.4393] [21.8750] [21.5000]

'05-Apr-1996' [NaN] [NaN] [NaN]

'09-Apr-1996' [21.1529] [21.5420] [21.2080]

'10-Apr-1996' [20.7387] [21.1670] [20.2500]

'11-Apr-1996' [20.0829] [20.5000] [20.0420]

'12-Apr-1996' [19.9189] [20.5830] [20.0830]

'15-Apr-1996' [20.2878] [20.7920] [20.3750]

'16-Apr-1996' [20.3698] [20.9170] [20.1670]

'17-Apr-1996' [20.4927] [20.9170] [20.7080]

'18-Apr-1996' [20.4927] [21.0420] [20.7920]

There are 782 data points in this object. Only the first few lines are shown
here. Also, this object has two other data series, the CLOSE and VOLUME data

9-16

Creating Financial Time Series Objects

series, that are not shown here. Note that in creating the financial time series
object, ascii2fts sorts the data into ascending chronological order.

The frequency indicator field, freq, is set to 0 for Unknown frequency. You
can manually reset it to the appropriate frequency using structure syntax
disfts.freq = 1 for Daily frequency.

With a slightly different syntax, the function ascii2fts can create a financial
time series object when time-of-day data is present in the ASCII file. The new
syntax has the form

fts = ascii2fts(filename, timedata, descrow, colheadrow,
skiprows);

Set timedata to 'T' when time-of-day data is present and to 'NT' when there
is no time data. For an example using this function with time-of-day data,
see the reference page for ascii2fts.

9-17

9 Financial Time Series Analysis

Visualizing Financial Time Series Objects

In this section...

“Introduction” on page 9-18

“Using chartfts” on page 9-18

“Zoom Tool” on page 9-21

“Combine Axes Tool” on page 9-24

Introduction
Financial Toolbox software contains the function chartfts, which provides
a visual representation of a financial time series object. chartfts is an
interactive charting and graphing utility for financial time series objects.
With this function, you can observe time series values on the entire range
of dates covered by the time series.

Note Interactive charting is also available from the Graphs menu of the
graphical user interface. See “Interactive Chart” on page 12-17 for additional
information.

Using chartfts
chartfts requires a single input argument, tsobj, where tsobj is the name
of the financial time series object you want to explore. Most equity financial
time series objects contain four price series, such as opening, closing, highest,
and lowest prices, plus an additional series containing the volume traded.
However, chartfts is not limited to a time series of equity prices and volume
traded. It can be used to display any time series data you may have.

To illustrate the use of chartfts, use the equity price and volume traded data
for the Walt Disney Corporation (NYSE: DIS) provided in the file disney.mat:

load disney.mat

whos

9-18

Visualizing Financial Time Series Objects

Name Size Bytes Class

dis 782x5 39290 fints object
dis_CLOSE 782x1 6256 double array
dis_HIGH 782x1 6256 double array
dis_LOW 782x1 6256 double array
dis_OPEN 782x1 6256 double array
dis_VOLUME 782x1 6256 double array
dis_nv 782x4 32930 fints object
q_dis 13x4 2196 fints object

For charting purposes look only at the objects dis (daily equity data including
volume traded) and dis_nv (daily data without volume traded). Both objects
contain the series OPEN, HIGH, LOW, and CLOSE, but only dis contains the
additional VOLUME series.

Use chartfts(dis) to observe the values.

9-19

9 Financial Time Series Analysis

The chart contains five plots, each representing one of the series in the time
series object. Boxes indicate the value of each individual plot. The date box
is always on the left. The number of data boxes on the right depends upon
the number of data series in the time series object, five in this case. The
order in which these boxes are arranged (left to right) matches the plots from
top to bottom. With more than eight data series in the object, the scroll bar
on the right is activated so that additional data from the other series can
be brought into view.

Slide the mouse cursor over the chart. A vertical bar appears across all
plots. This bar selects the set of data shown in the boxes below. Move this
bar horizontally and the data changes accordingly.

Click the plot. A small information box displays the data at the point where
you click the mouse button.

9-20

Visualizing Financial Time Series Objects

Zoom Tool
The zoom feature of chartfts enables a more detailed look at the data during
a selected time frame. The Zoom tool is found under the Chart Tools menu.

Note Due to the specialized nature of this feature, do not use the MATLAB
zoom command or Zoom In and Zoom Out from the Tools menu.

9-21

9 Financial Time Series Analysis

When the feature is turned on, you will see two inactive buttons (ZOOM In
and Reset ZOOM) above the boxes. The buttons become active later after
certain actions have been performed.

The window title bar displays the status of the chart tool that you are using.
With the Zoom tool turned on, you see Zoom ON in the title bar in addition
to the name of the time series you are working with. When the tool is off,
no status is displayed.

To zoom into the chart, you need to define the starting and ending dates.
Define the starting date by moving the cursor over the chart until the desired
date appears at the bottom-left box and click the mouse button. A blue
vertical line indicates the starting date you have selected. Next, again move
the cursor over the chart until the desired ending date appears in the box
and click the mouse once again. This time, a red vertical line appears and
the ZOOM In button is activated.

9-22

Visualizing Financial Time Series Objects

To zoom into the chart, click the ZOOM In button.

The chart is zoomed in. Note that the Reset ZOOM button now becomes
active while the ZOOM In button becomes inactive again. To return the chart

9-23

9 Financial Time Series Analysis

to its original state (not zoomed), click the Reset ZOOM button. To zoom into
the chart even further, repeat the steps above for zooming into the chart.

Turn the Zoom tool off by going back to the Chart Tools menu and choosing
Zoom Off.

With the tool turned off, the chart stays at the last state that it was in. If you
turn it off when the chart is zoomed in, the chart stays zoomed in. If you reset
the zoom before turning it off, the chart becomes the original (not zoomed).

Combine Axes Tool
The Combine Axes tool allows you to combine all axes or specific axes into one.
With axes combined, you can visually spot any trends that can occur among
the data series in a financial time series object.

To illustrate this tool, use dis_nv, the financial time series object that does
not contain volume traded data:

chartfts(dis_nv)

9-24

Visualizing Financial Time Series Objects

To combine axes, choose the Chart Tools menu, followed by Combine Axes
and On.

When the Combine Axes tool is on, check boxes appear beside each individual
plot. An additional check box enables the combination of all plots.

9-25

9 Financial Time Series Analysis

Combining All Axes
To combine all plots, select the Select all plots check box.

9-26

Visualizing Financial Time Series Objects

Now click the Combine Selected Graphs button to combine the chosen
plots. In this case, all plots are combined.

9-27

9 Financial Time Series Analysis

The combined plots have a single plot axis with all data series traced. The
background of each data box has changed to the color corresponding to the
color of the trace that represents the data series. After the axes are combined,
the tool is turned off.

Combining Selected Axes
You can choose any combination of the available axes to combine. For
example, combine the HIGH and LOW price series of the Disney time series.
Click the check boxes next to the corresponding plots. The Combine
Selected Graphs button appears and is active.

9-28

Visualizing Financial Time Series Objects

Click the Combine Selected Graphs button. The chart with the combined
plots looks like the next figure.

9-29

9 Financial Time Series Analysis

The plot with the combined axes is located at the top of the chart while the
remaining plots follow it. The data boxes have also been changed. The boxes
that correspond to the combined axes are relocated to the beginning, and the
background colors are set to the color of the respective traces. The data boxes
for the remaining axes retain their original formats.

Resetting Axes
If you have altered the chart by combining axes, you must reset the axes
before you can visualize additional combinations. Reset the axes with the
Reset Axes menu item under Chart Tools > Combine Axes. Note that now
the On and Off features are turned off.

9-30

Visualizing Financial Time Series Objects

With axes reset, the interactive chart appears in its original format, and you
can proceed with additional axes combinations.

9-31

9 Financial Time Series Analysis

9-32

10

Using Financial Time Series

• “Introduction” on page 10-2

• “Working with Financial Time Series Objects” on page 10-3

• “Financial Time Series Example” on page 10-25

10 Using Financial Time Series

Introduction
This chapter discusses how to manipulate and analyze financial time series
data. The major topics discussed include

• “Financial Time Series Object Structure” on page 10-3

• “Data Extraction” on page 10-4

• “Object-to-Matrix Conversion” on page 10-6

• “Indexing a Financial Time Series Object” on page 10-8

• “Financial Time Series Operations” on page 10-15

• “Data Transformation and Frequency Conversion” on page 10-19

Much of this information is summarized in the “Financial Time Series
Example” on page 10-25.

10-2

Working with Financial Time Series Objects

Working with Financial Time Series Objects

In this section...

“Introduction” on page 10-3

“Financial Time Series Object Structure” on page 10-3

“Data Extraction” on page 10-4

“Object-to-Matrix Conversion” on page 10-6

“Indexing a Financial Time Series Object” on page 10-8

“Financial Time Series Operations” on page 10-15

“Data Transformation and Frequency Conversion” on page 10-19

Introduction
A financial time series object is designed to be used as if it were a MATLAB
structure. (See the MATLAB documentation for a description of MATLAB
structures or how to use MATLAB in general.)

This part of the tutorial assumes that you know how to use MATLAB and
are familiar with MATLAB structures. The terminology is similar to that of
a MATLAB structure. The financial time series object term component is
interchangeable with the MATLAB structure term field.

Financial Time Series Object Structure
A financial time series object always contains three component names: desc
(description field), freq (frequency indicator field), and dates (date vector).
If you build the object using the constructor fints, the default value for the
description field is a blank string (''). If you build the object from a text data
file using ascii2fts, the default is the name of the text data file. The default
for the frequency indicator field is 0 (Unknown frequency). Objects created
from operations can default the setting to 0. For example, if you decide to pick
out values selectively from an object, the frequency of the new object might
not be the same as that of the object from which it came.

10-3

10 Using Financial Time Series

The date vector dates does not have a default set of values. When you create
an object, you have to supply the date vector. You can change the date vector
afterward but, at object creation time, you must provide a set of dates.

The final component of a financial time series object is one or more data series
vectors. If you do not supply a name for the data series, the default name is
series1. If you have multiple data series in an object and do not supply the
names, the default is the name series followed by a number, for example,
series1, series2, and series3.

Data Extraction
Here is an exercise on how to extract data from a financial time series object.
As mentioned before, you can think of the object as a MATLAB structure.
Highlight each line in the exercise in the MATLAB Help browser, press the
right mouse button, and select Evaluate Selection to execute it.

To begin, create a financial time series object called myfts:

dates = (datenum('05/11/99'):datenum('05/11/99')+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
myfts = fints(dates, data);

The myfts object looks like this:

myfts =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series1: (101)' 'series2: (101)'
'11-May-1999' [2.8108] [0.9323]
'12-May-1999' [0.2454] [0.5608]
'13-May-1999' [0.3568] [1.5989]
'14-May-1999' [0.5255] [3.6682]
'15-May-1999' [1.1862] [5.1284]
'16-May-1999' [3.8376] [0.4952]
'17-May-1999' [6.9329] [2.2417]

10-4

Working with Financial Time Series Objects

'18-May-1999' [2.0987] [0.3579]
'19-May-1999' [2.2524] [3.6492]
'20-May-1999' [0.8669] [1.0150]
'21-May-1999' [0.9050] [1.2445]
'22-May-1999' [0.4493] [5.5466]
'23-May-1999' [1.6376] [0.1251]
'24-May-1999' [3.4472] [1.1195]
'25-May-1999' [3.6545] [0.3374]...

There are more dates in the object; only the first few lines are shown here.

Note The actual data in your series1 and series2 will differ from the above
because of the use of random numbers.

Now create another object with only the values for series2:

srs2 = myfts.series2

srs2 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series2: (101)'
'11-May-1999' [0.9323]
'12-May-1999' [0.5608]
'13-May-1999' [1.5989]
'14-May-1999' [3.6682]
'15-May-1999' [5.1284]
'16-May-1999' [0.4952]
'17-May-1999' [2.2417]
'18-May-1999' [0.3579]
'19-May-1999' [3.6492]
'20-May-1999' [1.0150]
'21-May-1999' [1.2445]
'22-May-1999' [5.5466]
'23-May-1999' [0.1251]
'24-May-1999' [1.1195]

10-5

10 Using Financial Time Series

'25-May-1999' [0.3374]...

The new object srs2 contains all the dates in myfts, but the only data series
is series2. The name of the data series retains its name from the original
object, myfts.

Note The output from referencing a data series field or indexing a financial
time series object is always another financial time series object. The
exceptions are referencing the description, frequency indicator, and dates
fields, and indexing into the dates field.

Object-to-Matrix Conversion
The function fts2mat extracts the dates and/or the data series values from an
object and places them into a vector or a matrix. The default behavior extracts
just the values into a vector or a matrix. Look at the next example:

srs2_vec = fts2mat(myfts.series2)

srs2_vec =

0.9323
0.5608
1.5989
3.6682
5.1284
0.4952
2.2417
0.3579
3.6492
1.0150
1.2445
5.5466
0.1251
1.1195
0.3374...

10-6

Working with Financial Time Series Objects

If you want to include the dates in the output matrix, provide a second input
argument and set it to 1. This results in a matrix whose first column is a
vector of serial date numbers:

format long g

srs2_mtx = fts2mat(myfts.series2, 1)

srs2_mtx =

730251 0.932251754559576
730252 0.560845677519876
730253 1.59888712183914
730254 3.6681500883527
730255 5.12842215360269
730256 0.49519254119977
730257 2.24174134286213
730258 0.357918065917634
730259 3.64915665824198
730260 1.01504236943148
730261 1.24446420606078
730262 5.54661849025711
730263 0.12507959735904
730264 1.11953883096805
730265 0.337398214166607

The vector srs2_vec contains just series2 values. The matrix srs2_mtx
contains dates in the first column and the values of the series2 data series
in the second. Dates in the first column are in serial date format. Serial
date format is a representation of the date string format (for example, serial
date = 1 is equivalent to 01-Jan-0000). (The serial date vector can include
time-of-day information.)

The long g display format displays the numbers without exponentiation. (To
revert to the default display format, use format short. (See the format
command in the MATLAB documentation for a description of MATLAB
display formats.) Remember that both the vector and the matrix have 101
rows of data as in the original object myfts but are shown truncated here.

10-7

10 Using Financial Time Series

Indexing a Financial Time Series Object
You can also index into the object as with any other MATLAB variable or
structure. A financial time series object lets you use a date string, a cell
array of date strings, a date string range, or normal integer indexing. You
cannot, however, index into the object using serial dates. If you have serial
dates, you must first use the MATLAB datestr command to convert them
into date strings.

When indexing by date string, note that

• Each date string must contain the day, month, and year. Valid formats are

- 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'

- 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'

- 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'

- 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

• All data falls at the end of the indicated time period, that is, weekly data
falls on Fridays, monthly data falls on the end of each month, and so on,
whenever the data has gone through a frequency conversion.

Indexing with Date Strings
With date string indexing you get the values in a financial time series object
for a specific date using a date string as the index into the object. Similarly,
if you want values for multiple dates in the object, you can put those date
strings into a cell array and use the cell array as the index to the object. Here
are some examples.

This example extracts all values for May 11, 1999 from myfts:

format short
myfts('05/11/99')

ans =

desc: (none)
freq: Unknown (0)

'dates: (1)' 'series1: (1)' 'series2: (1)'

10-8

Working with Financial Time Series Objects

'11-May-1999' [2.8108] [0.9323]

The next example extracts only series2 values for May 11, 1999 from myfts:

myfts.series2('05/11/99')

ans =

desc: (none)
freq: Unknown (0)

'dates: (1)' 'series2: (1)'
'11-May-1999' [0.9323]

The third example extracts all values for three different dates:

myfts({'05/11/99', '05/21/99', '05/31/99'})

ans =

desc: (none)
freq: Unknown (0)

'dates: (3)' 'series1: (3)' 'series2: (3)'
'11-May-1999' [2.8108] [0.9323]
'21-May-1999' [0.9050] [1.2445]
'31-May-1999' [1.4266] [0.6470]

The next example extracts only series2 values for the same three dates:

myfts.series2({'05/11/99', '05/21/99', '05/31/99'})

ans =

desc: (none)
freq: Unknown (0)

'dates: (3)' 'series2: (3)'
'11-May-1999' [0.9323]
'21-May-1999' [1.2445]

10-9

10 Using Financial Time Series

'31-May-1999' [0.6470]

Indexing with Date String Range
A financial time series is unique because it allows you to index into the
object using a date string range. A date string range consists of two date
strings separated by two colons (::). In MATLAB this separator is called
the double-colon operator. An example of a MATLAB date string range is
'05/11/99::05/31/99'. The operator gives you all data points available
between those dates, including the start and end dates.

Here are some date string range examples:

myfts ('05/11/99::05/15/99')

ans =

desc: (none)
freq: Unknown (0)

'dates: (5)' 'series1: (5)' 'series2: (5)'
'11-May-1999' [2.8108] [0.9323]
'12-May-1999' [0.2454] [0.5608]
'13-May-1999' [0.3568] [1.5989]
'14-May-1999' [0.5255] [3.6682]
'15-May-1999' [1.1862] [5.1284]

myfts.series2('05/11/99::05/15/99')

ans =

desc: (none)
freq: Unknown (0)

'dates: (5)' 'series2: (5)'
'11-May-1999' [0.9323]
'12-May-1999' [0.5608]
'13-May-1999' [1.5989]
'14-May-1999' [3.6682]
'15-May-1999' [5.1284]

10-10

Working with Financial Time Series Objects

As with any other MATLAB variable or structure, you can assign the output
to another object variable:

nfts = myfts.series2('05/11/99::05/20/99');

nfts is the same as ans in the second example.

If one of the dates does not exist in the object, an error message indicates that
one or both date indexes are out of the range of the available dates in the
object. You can either display the contents of the object or use the command
ftsbound to determine the first and last dates in the object.

Indexing with Integers
Integer indexing is the normal form of indexing in MATLAB. Indexing starts
at 1 (not 0); index = 1 corresponds to the first element, index = 2 to the second
element, index = 3 to the third element, and so on. Here are some examples
with and without data series reference.

Get the first item in series2:

myfts.series2(1)

ans =

desc: (none)
freq: Unknown (0)

'dates: (1)' 'series2: (1)'
'11-May-1999' [0.9323]

Get the first, third, and fifth items in series2:

myfts.series2([1, 3, 5])

ans =

desc: (none)
freq: Unknown (0)

'dates: (3)' 'series2: (3)'

10-11

10 Using Financial Time Series

'11-May-1999' [0.9323]
'13-May-1999' [1.5989]
'15-May-1999' [5.1284]

Get items 16 through 20 in series2:

myfts.series2(16:20)

ans =

desc: (none)
freq: Unknown (0)

'dates: (5)' 'series2: (5)'
'26-May-1999' [0.2105]
'27-May-1999' [1.8916]
'28-May-1999' [0.6673]
'29-May-1999' [0.6681]
'30-May-1999' [1.0877]

Get items 16 through 20 in the financial time series object myfts:

myfts(16:20)

ans =

desc: (none)
freq: Unknown (0)

'dates: (5)' 'series1: (5)' 'series2: (5)'
'26-May-1999' [0.7571] [0.2105]
'27-May-1999' [1.2425] [1.8916]
'28-May-1999' [1.8790] [0.6673]
'29-May-1999' [0.5778] [0.6681]
'30-May-1999' [1.2581] [1.0877]

Get the last item in myfts:

myfts(end)

10-12

Working with Financial Time Series Objects

ans =

desc: (none)
freq: Unknown (0)

'dates: (1)' 'series1: (1)' 'series2: (1)'
'19-Aug-1999' [1.4692] [3.4238]

This example uses the MATLAB special variable end, which points to the last
element of the object when used as an index. The example returns an object
whose contents are the values in the object myfts on the last date entry.

Indexing When Time-of-Day Data Is Present
Both integer and date string indexing are permitted when time-of-day
information is present in the financial time series object. You can index into
the object with both date and time specifications, but not with time of day
alone. To show how indexing works with time-of-day data present, create a
financial time series object called timeday containing a time specification:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);
timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

timeday =

desc: My first FINTS
freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]
'02-Jan-2001' '11:00' [3]
' " ' '12:00' [4]
'03-Jan-2001' '11:00' [5]
' " ' '12:00' [6]

10-13

10 Using Financial Time Series

Use integer indexing to extract the second and third data items from timeday:

timeday(2:3)

ans =

desc: My first FINTS
freq: Daily (1)

'dates: (2)' 'times: (2)' 'Data1: (2)'
'01-Jan-2001' '12:00' [2]
'02-Jan-2001' '11:00' [3]

For date string indexing, enclose the date and time string in one pair of
quotation marks. If there is one date with multiple times, indexing with only
the date returns the data for all the times for that specific date. For example,
the command timeday('01-Jan-2001') returns the data for all times on
January 1, 2001:

ans =

desc: My first FINTS
freq: Daily (1)

'dates: (2)' 'times: (2)' 'Data1: (2)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]

You can also indicate a specific date and time:

timeday('01-Jan-2001 12:00')

ans =

desc: My first FINTS
freq: Daily (1)

'dates: (1)' 'times: (1)' 'Data1: (1)'
'01-Jan-2001' '12:00' [2]

10-14

Working with Financial Time Series Objects

Use the double-colon operator :: to specify a range of dates and times:

timeday('01-Jan-2001 12:00::03-Jan-2001 11:00')

ans =

desc: My first FINTS
freq: Daily (1)

'dates: (4)' 'times: (4)' 'Data1: (4)'
'01-Jan-2001' '12:00' [2]
'02-Jan-2001' '11:00' [3]
' " ' '12:00' [4]
'03-Jan-2001' '11:00' [5]

Treat timeday as a MATLAB structure if you want to obtain the contents of
a specific field. For example, to find the times of day included in this object,
enter

datestr(timeday.times)

ans =

11:00 AM
12:00 PM
11:00 AM
12:00 PM
11:00 AM
12:00 PM

Financial Time Series Operations
Several MATLAB functions have been overloaded to work with financial time
series objects. The overloaded functions include basic arithmetic functions
such as addition, subtraction, multiplication, and division and other functions
such as arithmetic average, filter, and difference. Also, specific methods have
been designed to work with the financial time series object. For a list of
functions grouped by type, refer to Chapter 15, “Function Reference” or enter

help ftseries

10-15

10 Using Financial Time Series

at the MATLAB command prompt.

Basic Arithmetic
Financial time series objects permit you to do addition, subtraction,
multiplication, and division, either on the entire object or on specific object
fields. This is a feature that MATLAB structures do not allow. You cannot
do arithmetic operations on entire MATLAB structures, only on specific
fields of a structure.

You can perform arithmetic operations on two financial time series objects
as long as they are compatible. (All contents are the same except for the
description and the values associated with the data series.)

Note Compatible time series are not the same as equal time series. Two time
series objects are equal when everything but the description fields is the same.

Here are some examples of arithmetic operations on financial time series
objects.

Load a MAT-file that contains some sample financial time series objects:

load dji30short

One of the objects in dji30short is called myfts1:

myfts1 =

desc: DJI30MAR94.dat

freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994' [3830.90] [3868.04] [3800.50] [3832.30]

'07-Mar-1994' [3851.72] [3882.40] [3824.71] [3856.22]

'08-Mar-1994' [3858.48] [3881.55] [3822.45] [3851.72]

'09-Mar-1994' [3853.97] [3874.52] [3817.95] [3853.41]

'10-Mar-1994' [3852.57] [3865.51] [3801.63] [3830.62]...

Create another financial time series object that is identical to myfts1:

10-16

Working with Financial Time Series Objects

newfts = fints(myfts1.dates, fts2mat(myfts1)/100,...
{'Open','High','Low', 'Close'}, 1, 'New FTS')

newfts =

desc: New FTS
freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close:(20)'
'04-Mar-1994' [38.31] [38.68] [38.01] [38.32]
'07-Mar-1994' [38.52] [38.82] [38.25] [38.56]
'08-Mar-1994' [38.58] [38.82] [38.22] [38.52]
'09-Mar-1994' [38.54] [38.75] [38.18] [38.53]
'10-Mar-1994' [38.53] [38.66] [38.02] [38.31]...

Perform an addition operation on both time series objects:

addup = myfts1 + newfts

addup =

desc: DJI30MAR94.dat

freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994' [3869.21] [3906.72] [3838.51] [3870.62]

'07-Mar-1994' [3890.24] [3921.22] [3862.96] [3894.78]

'08-Mar-1994' [3897.06] [3920.37] [3860.67] [3890.24]

'09-Mar-1994' [3892.51] [3913.27] [3856.13] [3891.94]

'10-Mar-1994' [3891.10] [3904.17] [3839.65] [3868.93]...

Now, perform a subtraction operation on both time series objects:

subout = myfts1 - newfts

subout =

desc: DJI30MAR94.dat

freq: Daily (1)

10-17

10 Using Financial Time Series

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994' [3792.59] [3829.36] [3762.49] [3793.98]

'07-Mar-1994' [3813.20] [3843.58] [3786.46] [3817.66]

'08-Mar-1994' [3819.90] [3842.73] [3784.23] [3813.20]

'09-Mar-1994' [3815.43] [3835.77] [3779.77] [3814.88]

'10-Mar-1994' [3814.04] [3826.85] [3763.61] [3792.31]...

Operations with Objects and Matrices
You can also perform operations involving a financial time series object and a
matrix or scalar:

addscalar = myfts1 + 10000

addscalar =

desc: DJI30MAR94.dat

freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994' [13830.90] [13868.04] [13800.50] [13832.30]

'07-Mar-1994' [13851.72] [13882.40] [13824.71] [13856.22]

'08-Mar-1994' [13858.48] [13881.55] [13822.45] [13851.72]

'09-Mar-1994' [13853.97] [13874.52] [13817.95] [13853.41]

'10-Mar-1994' [13852.57] [13865.51] [13801.63] [13862.70]...

For operations with both an object and a matrix, the size of the matrix must
match the size of the object. For example, a matrix to be subtracted from
myfts1 must be 20-by-4, since myfts1 has 20 dates and four data series:

submtx = myfts1 - randn(20, 4)

submtx =

desc: DJI30MAR94.dat

freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994' [3831.33] [3867.75] [3802.10] [3832.63]

'07-Mar-1994' [3853.39] [3883.74] [3824.45] [3857.06]

10-18

Working with Financial Time Series Objects

'08-Mar-1994' [3858.35] [3880.84] [3823.51] [3851.22]

'09-Mar-1994' [3853.68] [3872.90] [3816.53] [3851.92]

'10-Mar-1994' [3853.72] [3866.20] [3802.44] [3831.17]...

Arithmetic Operations with Differing Data Series Names
Arithmetic operations on two objects that have the same size but contain
different data series names require the function fts2mat. This function
extracts the values in an object and puts them into a matrix or vector,
whichever is appropriate.

To see an example, create another financial time series object the same size
as myfts1 but with different values and data series names:

newfts2 = fints(myfts1.dates, fts2mat(myfts1/10000),...
{'Rat1','Rat2', 'Rat3','Rat4'}, 1, 'New FTS')

If you attempt to add (or subtract, and so on) this new object to myfts1, an
error indicates that the objects are not identical. Although they contain the
same dates, number of dates, number of data series, and frequency, the two
time series objects do not have the same data series names. Use fts2mat to
bypass this problem:

addother = myfts1 + fts2mat(newfts2);

This operation adds the matrix that contains the contents of the data series in
the object newfts2 to myfts1. You should carefully consider the effects on your
data before deciding to combine financial time series objects in this manner.

Other Arithmetic Operations
In addition to the basic arithmetic operations, several other mathematical
functions operate directly on financial time series objects. These functions
include exponential (exp), natural logarithm (log), common logarithm (log10),
and many more. See Chapter 15, “Function Reference” for more details.

Data Transformation and Frequency Conversion
The data transformation and the frequency conversion functions convert a
data series into a different format.

10-19

10 Using Financial Time Series

Data Transformation Functions

Function Purpose

boxcox Box-Cox transformation

diff Differencing

fillts Fill missing values

filter Filter

lagts Lag time series object

leadts Lead time series object

peravg Periodic average

smoothts Smooth data

tsmovavg Moving average

Frequency Conversion Functions

Function New Frequency

convertto As specified

resamplets As specified

toannual Annual

todaily Daily

tomonthly Monthly

toquarterly Quarterly

tosemi Semiannually

toweekly Weekly

As an example look at boxcox, the Box-Cox transformation function. This
function transforms the data series contained in a financial time series object
into another set of data series with relatively normal distributions.

10-20

Working with Financial Time Series Objects

First create a financial time series object from the supplied whirlpool.dat
data file.

whrl = ascii2fts('whirlpool.dat', 1, 2, []);

Fill any missing values denoted with NaNs in whrl with values calculated
using the linear method:

f_whrl = fillts(whrl);

Transform the nonnormally distributed filled data series f_whrl into a
normally distributed one using Box-Cox transformation:

bc_whrl = boxcox(f_whrl);

Compare the result of the Close data series with a normal (Gaussian)
probability distribution function and the nonnormally distributed f_whrl:

subplot(2, 1, 1);
hist(f_whrl.Close);
grid; title('Nonnormally Distributed Data');
subplot(2, 1, 2);
hist(bc_whrl.Close);
grid; title('Box-Cox Transformed Data');

10-21

10 Using Financial Time Series

Box-Cox Transformation

The bar chart on the top represents the probability distribution function of
the filled data series, f_whrl, which is the original data series whrl with
the missing values interpolated using the linear method. The distribution
is skewed toward the left (not normally distributed). The bar chart on
the bottom is less skewed to the left. If you plot a Gaussian probability
distribution function (PDF) with similar mean and standard deviation, the
distribution of the transformed data is very close to normal (Gaussian).

When you examine the contents of the resulting object bc_whrl, you find
an identical object to the original object whrl but the contents are the
transformed data series. If you have the Statistics Toolbox software, you can
generate a Gaussian PDF with mean and standard deviation equal to those of
the transformed data series and plot it as an overlay to the second bar chart.
In the next figure, you can see that it is an approximately normal distribution.

10-22

Working with Financial Time Series Objects

Overlay of Gaussian PDF

The next example uses the smoothts function to smooth a time series.

To begin, transform ibm9599.dat, a supplied data file, into a financial time
series object:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

Fill the missing data for holidays with data interpolated using the fillts
function and the Spline fill method:

f_ibm = fillts(ibm, 'Spline');

Smooth the filled data series using the default Box (rectangular window)
method:

sm_ibm = smoothts(f_ibm);

Now, plot the original and smoothed closing price series for IBM stock:

plot(f_ibm.CLOSE('11/01/97::02/28/98'), 'r')
datetick('x', 'mmmyy')
hold on
plot(sm_ibm.CLOSE('11/01/97::02/28/98'), 'b')
hold off
datetick('x', 'mmmyy')
legend('Filled', 'Smoothed')

10-23

10 Using Financial Time Series

title('Filled IBM Close Price vs. Smoothed Series')

Smoothed Data Series

These examples give you an idea of what you can do with a financial time
series object. This toolbox provides some MATLAB functions that have been
overloaded to work directly with the these objects. The overloaded functions
are those most commonly needed to work with time series data.

10-24

Financial Time Series Example

Financial Time Series Example

In this section...

“Overview” on page 10-25

“Loading the Data” on page 10-26

“Create Financial Time Series Objects” on page 10-26

“Create Closing Prices Adjustment Series” on page 10-27

“Adjust Closing Prices and Make Them Spot Prices” on page 10-28

“Create Return Series” on page 10-28

“Regress Return Series Against Metric Data” on page 10-28

“Plot the Results” on page 10-29

“Calculate the Dividend Rate” on page 10-30

Overview
This example demonstrates a practical use of financial time series objects,
predicting the return of a stock from a given set of data. The data is a series
of closing stock prices, a series of dividend payments from the stock, and an
explanatory series (in this case a market index). Additionally, the example
calculates the dividend rate from the stock data provided.

Note You can find a file for this demonstration program in the directory
matlabroot/toolbox/finance/ftsdemos on your MATLAB path. The file is
named predict_ret.m.

To perform these computations:

1 Load the data.

2 Create financial time series objects from the loaded data.

3 Create the series from dividend payment for adjusting the closing prices.

4 Adjust the closing prices and make them the spot prices.

10-25

10 Using Financial Time Series

5 Create the return series.

6 Regress the return series against the metric data (for example, a market
index) using the MATLAB \ operator.

7 Plot the results.

8 Calculate the dividend rate.

Loading the Data
The data for this demonstration is found in the MAT-file
predict_ret_data.mat:

load predict_ret_data.mat

The MAT-file contains six vectors:

• Dates corresponding to the closing stock prices, sdates

• Closing stock prices, sdata

• Dividend dates, divdates

• Dividend paid, divdata

• Dates corresponding to the metric data, expdates

• Metric data, expdata

Use the whos command to see the variables in your MATLAB workspace.

Create Financial Time Series Objects
It is useful to work with financial time series objects rather than with the
vectors now in the workspace. By using objects, you can easily keep track of
the dates. Also, you can easily manipulate the data series based on dates
because the object keeps track of the administration of time series for you.

Use the object constructor fints to construct three financial time series
objects.

t0 = fints(sdates, sdata, {'Close'}, 'd', 'Inc');
d0 = fints(divdates, divdata, {'Dividends'}, 'u', 'Inc');

10-26

Financial Time Series Example

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index');

The variables t0, d0, and x0 are financial time series objects containing
the stock closing prices, dividend payments, and the explanatory data,
respectively. To see the contents of an object, type its name at the MATLAB
command prompt and press Enter. For example:

d0
d0 =

'desc:' 'Inc'
'freq:' 'Unknown (0)'

'' ''
'dates: (4)' 'Dividends: (4)'
'04/15/99' '0.2000'
'06/30/99' '0.3500'
'10/02/99' '0.2000'
'12/30/99' '0.1500'

Create Closing Prices Adjustment Series
The price of a stock is affected by the dividend payment. On the day before
the dividend payment date, the stock price reflects the amount of dividend
to be paid the next day. On the dividend payment date, the stock price is
decreased by the amount of dividend paid. Create a time series that reflects
this adjustment factor:

dadj1 = d0;
dadj1.dates = dadj1.dates-1;

Now create the series that adjust the prices at the day of dividend payment;
this is an adjustment of 0. You also need to add the previous dividend
payment date since the stock price data reflect the period subsequent to that
day; the previous dividend date was December 31, 1998:

dadj2 = d0;
dadj2.Dividends = 0;
dadj2 = fillts(dadj2,'linear','12/31/98');
dadj2('12/31/98') = 0;

Combining the two objects above gives the data needed to adjust the prices.
However, since the stock price data is daily data and the effect of the dividend

10-27

10 Using Financial Time Series

is linearly divided during the period, use the fillts function to make a daily
time series from the adjustment data. Use the dates from the stock price data
to make the dates of the adjustment the same:

dadj3 = [dadj1; dadj2];
dadj3 = fillts(dadj3, 'linear', t0.dates);

Adjust Closing Prices and Make Them Spot Prices
The stock price recorded already reflects the dividend effect. To obtain the
“correct” price, subtract the dividend amount from the closing prices. Put the
result inside the same object t0 with the data series name Spot.

To make sure that adjustments correspond, index into the adjustment series
using the dates from the stock price series t0. Use the datestr command
because t0.dates returns the dates in serial date format. Also, since the
data series name in the adjustment series dadj3 does not match the one in
t0, use the function fts2mat:

t0.Spot = t0.Close - fts2mat(dadj3(datestr(t0.dates)));

Create Return Series
Now calculate the return series from the stock price data. A stock return is
calculated by dividing the difference between the current closing price and the
previous closing price by the previous closing price.

tret = (t0.Spot - lagts(t0.Spot, 1)) ./ lagts(t0.Spot, 1);
tret = chfield(tret, 'Spot', 'Return');

Ignore any warnings you receive during this sequence. Since the operation on
the first line above preserves the data series name Spot, it has to be changed
with the chfield command to reflect the contents correctly.

Regress Return Series Against Metric Data
The explanatory (metric) data set is a weekly data set while the stock price
data is a daily data set. The frequency needs to be the same. Use todaily
to convert the weekly series into a daily series. The constant needs to be
included here to get the constant factor from the regression:

x1 = todaily(x0);

10-28

Financial Time Series Example

x1.Const = 1;

Get all the dates common to the return series calculated above and the
explanatory (metric) data. Then combine the contents of the two series that
have dates in common into a new time series:

dcommon = intersect(tret.dates, x1.dates);
regts0 = [tret(datestr(dcommon)), x1(datestr(dcommon))];

Remove the contents of the new time series that are not finite:

finite_regts0 = find(all(isfinite(fts2mat(regts0)), 2));
regts1 = regts0(finite_regts0);

Now, place the data to be regressed into a matrix using the function fts2mat.
The first column of the matrix corresponds to the values of the first data
series in the object, the second column to the second data series, and so on. In
this case, the first column is regressed against the second and third column:

DataMatrix = fts2mat(regts1);
XCoeff = DataMatrix(:, 2:3) \ DataMatrix(:, 1);

Using the regression coefficients, calculate the predicted return from the
stock price data. Put the result into the return time series tret as the data
series PredReturn:

RetPred = DataMatrix(:,2:3) * XCoeff;
tret.PredReturn(datestr(regts1.dates)) = RetPred;

Plot the Results
Plot the results in a single figure window. The top plot in the window has the
actual closing stock prices and the dividend-adjusted stock prices (spot prices).
The bottom plot shows the actual return of the stock and the predicted stock
return through regression:

subplot(2, 1, 1);
plot(t0);
title('Spot and Closing Prices of Stock');
subplot(2, 1, 2);
plot(tret);

10-29

10 Using Financial Time Series

title('Actual and Predicted Return of Stock');

Closing Prices and Returns

Calculate the Dividend Rate
The last part of the task is to calculate the dividend rate from the stock price
data. Calculate the dividend rate by dividing the dividend payments by the
corresponding closing stock prices.

First check to see if you have the stock price data on all the dividend dates:

datestr(d0.dates, 2)
ans =

04/15/99
06/30/99
10/02/99
12/30/99
t0(datestr(d0.dates))
ans =

'desc:' 'Inc' ''

10-30

Financial Time Series Example

'freq:' 'Daily (1)' ''
'' '' ''

'dates: (3)' 'Close: (3)' 'Spot: (3)'
'04/15/99' '10.3369' '10.3369'
'06/30/99' '11.4707' '11.4707'
'12/30/99' '11.2244' '11.2244'

Note that stock price data for October 2, 1999 does not exist. The fillts
function can overcome this situation; fillts allows you to insert a date and
interpolate a value for the date from the existing values in the series. There
are a number of interpolation methods. See fillts in Chapter 15, “Function
Reference” for details.

Use fillts to create a new time series containing the missing date from the
original data series. Then set the frequency indicator to daily:

t1 = fillts(t0,'nearest',d0.dates);
t1.freq = 'd';

Calculate the dividend rate:

tdr = d0./fts2mat(t1.Close(datestr(d0.dates)))
tdr =

'desc:' 'Inc'
'freq:' 'Unknown (0)'

'' ''
'dates: (4)' 'Dividends: (4)'
'04/15/99' '0.0193'
'06/30/99' '0.0305'
'10/02/99' '0.0166'
'12/30/99' '0.0134'

10-31

10 Using Financial Time Series

10-32

11

Financial Time Series Tool
(FTSTool)

• “What Is the Financial Time Series Tool?” on page 11-2

• “Getting Started with FTSTool” on page 11-4

• “Loading Data with FTSTool” on page 11-5

• “Using FTSTool for Supported Tasks” on page 11-10

• “Using FTSTool with Other Time Series GUIs” on page 11-18

11 Financial Time Series Tool (FTSTool)

What Is the Financial Time Series Tool?
The Financial Time Series Tool (ftstool) provides a graphical user interface
to create and manage financial time series (fints) objects. ftstool
interoperates with the Financial Time Series Graphical User Interface
(ftsgui) and Interactive Chart (chartfts). In addition, you can use Datafeed
Toolbox™ or Database Toolbox™ software to connect to external data sources.

A financial time series object minimally consists of:

• Desc, which is the description field.

• Freq, which is a frequency indicator field.

• Dates, which is a date vector field. If the date vector incorporates
time-of-day information, the object contains an additional field named
times.

• In addition, you can have at least one data series vector. You can specify
names for any data series vectors. If you do not specify names, the object
uses the default names series1, series2, series3, and so on.

In general, the workflow for using FTSTool is:

1 Acquire data.

2 Create a variable.

3 Convert the variable to fints.

4 Convert fints to a MATLAB double object.

To obtain the data for ftstool, you need to use a MATLAB double object or a
financial time series (fints) object. You can use previously stored internal
data on your computer or you can connect to external data sources using
Datafeed Toolbox or Database Toolbox software.

Note You must obtain a license for these products from MathWorks before
you can use either of these toolboxes.

11-2

What Is the Financial Time Series Tool?

After creating a financial time series object, you can use ftstool to change the
characteristics of the time series object, including merging with other financial
time series objects, removing rows or columns, and changing the frequency.
You can also use ftstool to generate various forms of plotted output and you
can reconvert a fints object to a MATLAB double-precision matrix.

11-3

11 Financial Time Series Tool (FTSTool)

Getting Started with FTSTool
To start the Financial Time Series Tool:

1 At the MATLAB command prompt, enter

ftstool

The Financial Time Series Tool opens.

2 If you plan to load data from Database Toolbox or Datafeed Toolbox
software, ensure you have a license. For more information on using these
toolboxes, see the Database Toolbox User’s Guide and Datafeed Toolbox
User’s Guide documentation.

11-4

Loading Data with FTSTool

Loading Data with FTSTool

In this section...

“Overview” on page 11-5

“Obtaining External Data” on page 11-5

“Obtaining Internal Data” on page 11-7

“Viewing the MATLAB Workspace” on page 11-8

Overview
The Data source pane in the Financial Time Series Tool window lets you
do the following:

• Obtain live data from various external data servers using either Datafeed
Toolbox or Database Toolbox software.

• Load data you previously obtained and stored in a file.

• View data contained within the MATLAB workspace.

Obtaining External Data
You can obtain external data using Datafeed Toolbox or Database Toolbox
software. Datafeed Toolbox software lets you obtain data from several
financial data servers, including:

• Bloomberg®

• eSignal®

• FactSet®

• Federal Reserve Economic Data (FRED)

• Haver Analytics® financial data

• Interactive Data™

• Kx Systems®, Inc. kdb+ database

• Thomson Reuters™

• SIX Telekurs™

11-5

11 Financial Time Series Tool (FTSTool)

• Yahoo!®

Except for Federal Reserve Economic Data (FRED) and Yahoo!, these data
servers require that you obtain a license from the vendor before you can
access their data.

Tip If you open Datafeed Toolbox or Database Toolbox software before
starting FTSTool, FTSTool is unable to recognize the toolboxes. When
working with FTSTool, select File > Load to open these toolboxes.

Obtaining External Data with Datafeed Toolbox Software

1 From the Financial Time Series Tool window, select File > Load >
Datafeed Toolbox to open the toolbox.

2 Click the Connection tab in Datafeed Toolbox software to select the data
source you want to load into FTSTool.

3 Click the Data tab in Datafeed Toolbox software to select the security and
the associated data that you want to load into FTSTool.

4 After using Datafeed Toolbox software to define the connection, security,
data, and MATLAB variable name, click Get Data and then, using
FTSTool, click Refresh variable list. The Data source field in FTSTool
displays the name of the security you selected from the Data tab in
Datafeed Toolbox software. The FTSTool Active variable field indicates
the name of the MATLAB workspace variable you chose for this security.

5 Click Close to exit Datafeed Toolbox software. FTSTool clears the Data
source and Active variable fields.

Obtaining External Data with Database Toolbox Software

11-6

Loading Data with FTSTool

1 From the Financial Time Series Tool window, select File > Load >
Database Toolbox to open the toolbox.

2 From the Visual Query Builder window, select the data you want to load
into FTSTool.

3 After using Database Toolbox software to select data and name the
MATLAB workspace variable, click Execute and then, using FTSTool,
click Refresh variable list. The Data source field in FTSTool displays
the name of the highlighted data source that you selected from the Data
list box in the Visual Query Builder window. The FTSTool Active variable
field indicates the name of the MATLAB workspace variable you chose for
the security in the Visual Query Builder window.

4 From the Database Toolbox software, select Query > Close Visual Query
Builder, FTSTool clears the Data source and Active variable fields.

Obtaining Internal Data
You can use FTSTool to load data from files previously stored on your
computer. The types of data files you can load are as follows:

• MATLAB .mat files, with or without fints objects

• ASCII text files (.dat or .txt suffixes)

• Excel .xls files

To obtain internal data:

1 From the Financial Time Series Tool window, select File > Load > File to
open the Load a MAT, ASCII, .XLS File dialog box.

2 Select the data you want to load into FTSTool.

• If you load a MATLAB MAT-file, the variables in the file are placed
into the MATLAB workspace. The MATLAB Workspace Variables
list box shows the variables that have been added to the workspace.
For example, if you load the file disney.mat, which is distributed with

11-7

11 Financial Time Series Tool (FTSTool)

the toolbox, the MATLAB Workspace Variables list box displays the
variables in that MAT-file.

Note FTSTool automatically generates a line plot for each workspace
variables unless you disable this feature by resetting the default action
under File > Preferences > Generate line plot on load.

• If you load a .dat or an ASCII .txt file, the ASCII File Parameters
dialog box opens. Use this dialog box to transform a text data file into
a MATLAB financial time series fints object. (See the reference page
for ascii2fts for further explanation of the fields in the ASCII File
Parameters dialog box.

• If you load an Excel .xls file, the Excel File Parameters dialog box
opens. Use this dialog box to transform Excel worksheet data into a
MATLAB financial time series (fints) object.

3 From the Financial Time Series Tool window, select File > Save to save
the data you gave loaded from an internal file.

Viewing the MATLAB Workspace
TheMATLAB Workspace Variables list box displays all existing MATLAB
workspace variables. Double-click any variable to display the data in the
Data Table. You can only display financial time series (fints) objects,
MATLAB doubles, and cell arrays of double data in the Data Table.

11-8

Loading Data with FTSTool

In addition, you can click Refresh variable list to refresh the MATLAB
Workspace Variables list box. You need to refresh this list periodically
because it is refreshed automatically only for operations performed with
FTSTool, not for operations performed within MATLAB itself.

Click Remove variable(s) to remove variable from the MATLAB
Workspace Variables list and from the MATLAB workspace.

11-9

11 Financial Time Series Tool (FTSTool)

Using FTSTool for Supported Tasks

In this section...

“Creating a Financial Time Series Object” on page 11-10

“Merging Financial Time Series Objects” on page 11-11

“Converting a Financial Time Series Object to a MATLAB Double-Precision
Matrix” on page 11-12

“Plotting the Output in Several Formats” on page 11-12

“Viewing Data for a Financial Time Series Object in the Data Table” on
page 11-13

“Modifying Data for a Financial Time Series Object in the Data Table” on
page 11-15

“Viewing and Modifying the Properties for a FINTS Object” on page 11-17

Creating a Financial Time Series Object
Using the Create tab in the FINTS Objects and Outputs pane for FTSTool,
you can create a financial time series (fints) object from one or more selected
variables.

Note When you first start FTSTool, the Create tab appears on top, unless
you reset the default using File > Preferences > Show Create tab when
ftstool starts.

To create a financial time series (fints) object from one or more selected
variables:

1 Load data into FTSTool from either an external data source using Datafeed
Toolbox or Database Toolbox software or an internal data source using
File > Load > File.

2 Select one or more variables from the MATLAB Workspace Variables
list.

11-10

Using FTSTool for Supported Tasks

3 Click the Create tab and then click Active variable.

When combining multiple variables, you can type a new variable name
for the combined variables in the MATLAB workspace variable box.
The new variable name is added to the MATLAB Workspace Variables
list. (If you do not choose a name for theMATLAB workspace variable,
FTSTool uses the default name myFts.)

4 Click Create FINTS object to display the result in the Data Table.

Merging Financial Time Series Objects
Using the Create tab in the FINTS Objects and Outputs pane for FTSTool,
you can create a new financial time series object by merging (joining) multiple
existing financial time series objects.

Note When you first start FTSTool, the Create tab appears on top, unless
you reset the default using File > Preferences.

To create a financial time series (fints) object by merging multiple existing
financial time series objects:

1 Load data into FTSTool from either an external data source using Datafeed
Toolbox or Database Toolbox software or an internal data source using
File > Load > File.

2 To merge multiple existing financial time series objects, click the Create
tab, click Components, and then select a value for the Time vector
source and one or more items from the Data sources list.

Note You can merge at once multiple financial time series objects. For
more information on merging fints objects, see merge.

3 Click Create FINTS object to display the result in the Data Table.

11-11

11 Financial Time Series Tool (FTSTool)

Converting a Financial Time Series Object to a
MATLAB Double-Precision Matrix
Using the Convert tab in the FINTS Objects and Outputs pane for
FTSTool, you can convert a financial time series (fints) object to a MATLAB
double-precision matrix.

To create a financial time series object from one or more selected variables:

1 Load data into FTSTool from either an external data source using Datafeed
Toolbox or Database Toolbox software or an internal data source using
File > Load > File.

2 Select a variable from the MATLAB Workspace Variables list box.

3 Click the Convert tab and then determine whether to include or exclude
dates in the conversion by clicking Include dates or Exclude dates.

4 Type a variable name in the Output variable name box. (If you do not
choose a variable name, FTSTool uses the default name myDbl.)

5 Click Convert FINTS to double matrix. (This operation is equivalent to
performing fts2mat on a financial time series object.)

Plotting the Output in Several Formats
Using the Plot tab in the FINTS Objects and Outputs pane for FTSTool,
you can create several forms of plotted output by using a selection list. You
can create four types of bar charts, candle plots, high-low plots, line plots, and
interactive charts (the latter is created by using the interoperation of FTSTool
with the function chartfts).

The set of plots supported by FTSTool are identical to the set provided by the
Graphs menu of the Financial Time Series GUI. (See “Graphs Menu” on page
12-15.) You can find more detailed information for the supported plots by
consulting the reference page for each individual type of plot.

To create a plotted output:

11-12

Using FTSTool for Supported Tasks

1 Load data into FTSTool from either an external data source using Datafeed
Toolbox or Database Toolbox software or an internal data source using
File > Load > File.

2 Select a variable from the MATLAB Workspace Variables list box or
select data from the Data Table.

3 Click the Plot tab and indicate whether you are plotting based on a
workspace variable or data from the Data Table.

4 From the Type drop-down list, select the type of plot.

5 Click Plot. The plot is displayed.

Note If the selected workspace variable that you are plotting is not a
fints object, a fints object is created when you click Plot. The new fints
object uses the name designated by the MATLAB workspace variable
box on the Create tab.

Viewing Data for a Financial Time Series Object in
the Data Table
Once a financial time series (fints) object is created, the FTSTool Data
Table displays user-designated data, including financial time series objects,
MATLAB double-precision variables, and cell arrays of doubles. (Cell arrays of
doubles is often the resulting format when using Database Toolbox software.)

When displaying double variables (or a cell array of doubles) in the Data
Table, the column headings for a double variable or cell array of doubles
displayed in the Data Table are labeled A, B, C, and so on.

Overwriting Data in the Data Table Display
If you use the command line to overwrite data previously retrieved using
Datafeed Toolbox or Database Toolbox software, two events could occur:

• If the new data contains the same number of columns as before, the headers
remain unchanged when you attempt to create a financial time series
(fints) object using the modified data.

11-13

11 Financial Time Series Tool (FTSTool)

• If the data contains a different number of columns, a warning dialog box
appears.

For example, assume that you use Datafeed Toolbox software to obtain Close,
High, Low, and Volume data for the equity GlaxoSmithkline. You store the
data in the MATLAB workspace with the variable name glaxo. From the
command line, if you redefine the variable glaxo, eliminating the second
column (Close)

glaxo(:,2) = []

and then return to FTSTool and attempt to create a financial time series
object, a warning dialog box appears.

11-14

Using FTSTool for Supported Tasks

Modifying Data for a Financial Time Series Object in
the Data Table
FTSTool lets you update your data displayed in the Data Table by adding or
removing rows or columns.

Note Modifying data in the Data Table will not update the MATLAB
workspace variable. To update the workspace variable after modifying the
Data Table, click Update workspace variable.

Adding and Removing Rows
To add a row of data displayed in the Data Table:

1 Select a row from the Data Table display where you want to add a row.
Click Additional options to open the Data Table Options dialog box.

2 Click Add row. The default is to add the row up. To add a row down,
select Insertion option and then click Add down. In addition, you can
select the Insertion option of Date to designate a specific date. (If a date
is not specified, the added row will contain a date that is chronologically in
order with respect to the initial row.)

When you add rows, the Data Table display is immediately updated.

To remove a row of data from the Data Table:

1 Select one or more rows in theData Table display that you want to remove.
Click Additional options to open the Data Table Options dialog box.

2 Click Remove row(s). The default is to remove the selected rows. In
addition, to remove selected rows, select Removal options and then select
other options for row removal from the Remove rows list box. You can
specify a Start and End date or you can click the Non-uniform range
setting option to designate a range.

When you remove rows, the Data Table display is updated immediately.

11-15

11 Financial Time Series Tool (FTSTool)

Adding and Removing Columns
To add a column of data displayed in the Data Table:

1 Select a column from the Data Table display where you want to add a
column. Click Additional options to open the Data Table Options dialog
box.

2 Click Add column. The default is to add the column to the left of the
selected column.

Note For time series objects, you cannot add a column to the left of the
Date/Times column; there is no restriction for double data.

To add a column to the right, select Insertion option and then click Add
right. In addition, you can use the Insertion option of New Column
Name to designate a specific column name. (If a New Column Name is
not specified, an added column will contain a column name of series1,
series2, and so on.)

When you add columns, the Data Table display is updated immediately.

To remove a column of data displayed in the Data Table:

1 Select one or more columns in the Data Table display that you want to
remove. Click Additional options to open the Data Table Options dialog
box.

2 Click Remove column(s). The default is to remove the selected rows. In
addition, to remove selected columns, select Removal options and then
select columns for removal from the Remove columns list box.

When you remove columns, the Data Table display is updated
immediately.

11-16

Using FTSTool for Supported Tasks

Viewing and Modifying the Properties for a FINTS
Object
The FINTS Object Properties pane in FTSTool lets you modify financial
time series (fints) object properties. This area becomes active whenever the
Data Table displays a financial time series object.

To modify the properties for a fints object:

1 After you create a fints object, double-click the object name in the
MATLAB Workspace Variables list box to open the Data Table and
display the fints object properties.

2 Click to modify the Description, Frequency, or Series Names fields.

The Frequency drop-down list supports the following conversion functions:

Function New Frequency

toannual Annual

todaily Daily

tomonthy Monthly

toquarterly Quarterly

tosemi Semiannually

toweekly Weekly

3 Click Update properties to save the changes. This action also updates
the associated workspace variable.

11-17

11 Financial Time Series Tool (FTSTool)

Using FTSTool with Other Time Series GUIs
FTSTool works with Datafeed Toolbox and Database Toolbox software to
load data. In addition, FTSTool interoperates with chartfts to display an
interactive plot and ftsgui to perform further time series data analysis.

The workflow for using FTSTool with chartfts is:

1 After loading data from either Datafeed Toolbox or Database Toolbox
software or an internal file, select a variable from the MATLAB
Workspace Variables list box.

2 Click the Plot tab, click Type, and then select Interactive Chart.

3 Click Plot. The interactive plot is displayed in chartfts. You can then use
chartfts menu items for further display options.

For more information on chartfts, select Help > Graphics Help.

The workflow for using FTSTool with the Financial Time Series GUI (ftsgui)
is:

1 After loading data from either Datafeed Toolbox or Database Toolbox
software or an internal file, select a variable from the MATLAB
Workspace Variables list box.

2 Select Tools > FTSGUI to open the Financial Time Series GUI window.

3 Select a variable from theMATLAB Workspace Variables list box. Click
the Plot tab and then select one of the following from the Type drop-down
list: Line Plot, High-Low Plot, or Candlestick Plot.

4 Click Plot. The plot is displayed in a MATLAB graphic window. In
addition, the Financial Time Series GUI window displays an entry for the
plotted fints object. You can then use the menu items in the Financial
Time Series GUI window to perform further analysis.

For more information on ftsgui, select Help > Help on Financial Time
Series GUI.

11-18

Using FTSTool with Other Time Series GUIs

Note If the selected workspace variable that you are plotting is not a
fints object, a fints object is created when you click Plot. The new fints
object uses the name designated by the MATLAB workspace variable
box on the Create tab.

11-19

11 Financial Time Series Tool (FTSTool)

11-20

12

Financial Time Series
Graphical User Interface

• “Introduction” on page 12-2

• “Using the Financial Time Series GUI” on page 12-7

12 Financial Time Series Graphical User Interface

Introduction
Use the financial time series graphical user interface (GUI) to analyze your
time series data and display the results graphically without resorting to the
command line. The GUI lets you visualize the data and the results at the
same time.

“Using the Financial Time Series GUI” on page 12-7 discusses how to use
this GUI.

Main Window
Start the financial time series GUI with the command

ftsgui

The Financial Time Series GUI window opens.

The title bar acts as an active time series object indicator (indicates the
currently active financial time series object). For example, if you load the file
disney.mat and want to use the time series data in the file dis, the title bar
on the main GUI would read as shown.

12-2

Introduction

The menu bar consists of six menu items: File, Data, Analysis, Graphs,
Window, and Help. Under the menu bar is a status box that displays the
steps you are doing.

File Menu

The File menu contains the commands for input and output. You can read
and save (Load, Save, and Save As) MATLAB MAT-files, ASCII (text) data
files. To load MATLAB MAT-files, the MAT-file must contain a fints object.
You can also import (Import) Excel XLS files. MATLAB software does not
support the export of Excel XLS files at this time.

The Filemenu also contains the printing suite (Page Setup, Print Preview,
and Print). Lastly, from this menu you can close the GUI itself (Close FTS
GUI) and quit MATLAB (Exit MATLAB).

12-3

12 Financial Time Series Graphical User Interface

Data Menu

The Data menu provides a collection of data manipulation functions and data
conversion functions.

To use any of the functions here, make sure that the correct financial time
series object is displayed in the title bar of the main GUI window.

Analysis Menu

12-4

Introduction

The Analysis menu provides

• A set of exponentiation and logarithmic functions.

• Statistical tools (Basic Statistics), which calculate and display the
minimum, maximum, average (mean), standard deviation, and variance
of the current (active) time series object; these basic statistics numbers
are displayed in a dialog window.

• Data difference (Difference) and periodic average (Periodic Average)
calculations. Data difference generates a vector of data that is the
difference between the first data point and the second, the second and the
third, and so on. The periodic average function calculates the average per
defined length period, for example, averages of every five days.

• Technical analysis functions. See Chapter 14, “Technical Analysis” for a
list of the provided technical analysis functions.

As with the Data menu, to use any of the Analysis menu functions, make
sure that the correct financial time series object is displayed in the title bar of
the main GUI window.

Graphs Menu

The Graphs menu contains functions that graphically display the current
(active) financial time series object. You can also start up the interactive
charting function (chartfts) from this menu.

12-5

12 Financial Time Series Graphical User Interface

Window Menu

TheWindow menu lists open windows under the current MATLAB session.

Help Menu

The Help menu provides a standard set of Help menu links.

12-6

Using the Financial Time Series GUI

Using the Financial Time Series GUI

In this section...

“Getting Started” on page 12-7

“Data Menu” on page 12-9

“Analysis Menu” on page 12-13

“Graphs Menu” on page 12-15

“Saving Time Series Data” on page 12-19

Getting Started
To use the Financial Time Series GUI, first start the financial time series GUI
with the command ftsgui. Then load (or import) the time series data.

For example, if your data is in a MATLAB MAT-file, select Load from the
File menu.

12-7

12 Financial Time Series Graphical User Interface

For illustration purposes, choose the file ftsdata.mat from the dialog
presented.

If you don’t see the MAT-file, look in the directory
matlabroot\toolbox\finance\findemos, where matlabroot is the MATLAB
root directory (the directory where MATLAB is installed).

Note Data loaded through the Financial Time Series GUI is not available
in the MATLAB workspace. You can access this data only through the GUI
itself, not with any MATLAB command-line functions.

Each financial time series object inside the MAT-file is presented as a line
plot in a separate window. The status window is updated accordingly.

12-8

Using the Financial Time Series GUI

Whirlpool (WHR) is the last plot displayed, as indicated on the title bar
of the main window.

Data Menu
The Data menu provides functions that manipulate time series data.

Here are some example tasks that illustrate the use of the functions on this
menu.

12-9

12 Financial Time Series Graphical User Interface

Fill Missing Data
First, look at filling missing data. The Fill Missing Data item uses the
toolbox function fillts. With the data loaded from the file ftsdata, you have
three time series: IBM Corp. (IBM), Walt Disney Co. (DIS), and Whirlpool
(WHR). Click on the window that shows the time series data for Walt Disney
Co. (DIS).

To view any missing data in this time series data set, zoom into the plot
using the Zoom tool (the magnifying glass icon with the plus sign) from the
toolbar and select a region.

12-10

Using the Financial Time Series GUI

The gaps represent the missing data in the series. To fill these gaps, select
Data > Fill Missing Data. This selection automatically fills the gaps and
generates a new plot that displays the filled time series data.

12-11

12 Financial Time Series Graphical User Interface

You cannot see the filled gaps when you display the entire data set. However,
when you zoom into the plot, you see that the gaps have been eliminated.
Note that the title bar has changed; the title has been prefixed with the word
Filled to reflect the filled time series data.

Frequency Conversion
The Data menu also provides access to frequency conversion functions.

This example changes the DIS time series data frequency from daily to
monthly. Close the Filled Walt Disney Company (DIS) window, and click the
Walt Disney Company (DIS) window to make it active (current) again. Then,
from the Data menu, select Convert Data Frequency To and To Monthly.

A new figure window displays the result of this conversion.

12-12

Using the Financial Time Series GUI

The title reflects that the data displayed had its frequency changed to
monthly.

Analysis Menu
The Analysis menu provides functions that analyze time series data,
including the technical analysis functions. (See Chapter 14, “Technical
Analysis” for a complete list of the technical analysis functions and several
usage examples.)

For example, you can use the Analysis menu to calculate the natural
logarithm (log) of the data contained within the data set ftsdata.mat. This
data file provides time series data for IBM (IBM), Walt Disney (DIS), and
Whirlpool (WHR). Click the window displaying the data for IBM Corporation
(IBM) to make it active (current). Then select the Analysis menu, followed by
Log(...). The result appears in its own window.

12-13

12 Financial Time Series Graphical User Interface

Close the above window and click again on the IBM data window to make it
active (current).

Note Before proceeding with any time series analysis, make certain that the
title bar confirms that the active data series is the correct one.

From the Analysis menu on the main window, select Technical Analysis
and MACD. The result, again, is displayed in its own window.

12-14

Using the Financial Time Series GUI

Other analysis functions work similarly.

Graphs Menu
The Graphs menu displays time series data using the provided graphics
functions. Included in the Graphs menu are several types of bar charts (bar,
barh and bar3, bar3h), line plot (plot), candle plot (candle), and High-Low
plot (highlow). The Graphs menu also provides access to the interactive
charting function, chartfts.

Candle Plot
For example, you can display the candle plot of a set of time series data and
start up the interactive chart on the same data set.

Load the ftsdata.mat data set, and click the window that displays the
Whirlpool (WHR) time series data to make it active (current). From the main
window, select the Graphs menu and then Candle Plot.

12-15

12 Financial Time Series Graphical User Interface

The result is shown below.

This does not look much like a candle plot because there are too many data
points in the data set. All the candles are too compressed for effective

12-16

Using the Financial Time Series GUI

viewing. However, when you zoom into a region of this plot, the candles
become apparent.

Interactive Chart
To create an interactive chart (chartfts) on the Whirlpool data, click the
window that displays the Whirlpool (WHR) data to make it active (current).
Then, go to the Graphs menu and select Interactive Chart.

12-17

12 Financial Time Series Graphical User Interface

The chart that results is shown below.

12-18

Using the Financial Time Series GUI

You can use this interactive chart as if you had invoked it with the chartfts
command from the MATLAB command line. For a tutorial on the use of
chartfts, see “Visualizing Financial Time Series Objects” on page 9-18.

Saving Time Series Data
The Save and Save As items on the main window File menu let you save
the time series data that results from your analyses and computations. These
items save all time series data that has been loaded or processed during the
current session, even if the window displaying the results of a computation
has previously been dismissed.

Note The Save and Save As items on the File menu of the individual plot
windows will not save the time series data, but will save the actual plot.

You can save your time series data in two ways:

12-19

12 Financial Time Series Graphical User Interface

• Into the latest MAT-file loaded (Save)

• Into a MAT-file chosen (or named) from the window (Save As)

To illustrate this, start by loading the data file testftsdata.mat (located
in matlabroot/toolbox/finance/findemos). Then, convert the Disney
(DIS) data from daily (the original frequency) to monthly data. Next, run the
MACD analysis on the Whirlpool (WHR) data. You now have a set of five
open figure windows.

Saving into the Original File (Save)
To save the data back into the original file (testftsdata.mat), select Save
from the File menu.

A confirmation window appears. It confirms that the data has been saved in
the latest MAT-file loaded (testftsdata.mat in this example).

12-20

Using the Financial Time Series GUI

Saving into a New File (Save As)
To save the data in a different file, choose Save As from the File menu.

The dialog box that appears lets you choose an existing MAT-file from a list or
type in the name of a new MAT-file you want to create.

After you click the Save button, another confirmation window appears.

12-21

12 Financial Time Series Graphical User Interface

This confirmation window indicates that the data has been saved in a new file
named myftstestdata.mat.

12-22

13

Trading Date Utilities

• “Trading Calendars Graphical User Interface” on page 13-2

• “UICalendar Graphical User Interface” on page 13-4

13 Trading Date Utilities

Trading Calendars Graphical User Interface
Use the createholidays function to open the Trading Calendars graphical
user interface.

The createholidays function supports http://www.FinancialCalendar.com
trading calendars. This function can be used from the command line or from
the Trading Calendars graphical user interface. For more information on
using the command line to programmatically generate the market specific
holidays.m files without displaying the interface, see createholidays.

To use the Trading Calendars graphical user interface:

1 From the command line, type the following command to open the Trading
Calendars graphical user interface.

createholidays

13-2

http://www.FinancialCalendar.com

Trading Calendars Graphical User Interface

2 Click Choose data file to select the data file.

3 Click Choose codes file to select the codes file.

4 Click Choose info file to select the info file.

5 Click Choose directory for writing holiday files to select the output
directory.

6 Select Include weekends to include weekends in the holiday list and
click Prompt for target directory to be prompted for the file location for
each holidays.m file that is created.

7 Click Create holiday files to convert FinancialCalendar.com financial
center holiday data into market-specific holidays.m files.

The market-specific holidays.m files can be used in place of the standard
holidays.m that ships with Financial Toolbox software.

13-3

13 Trading Date Utilities

UICalendar Graphical User Interface

In this section...

“Using UICalendar in Standalone Mode” on page 13-4

“Using UICalendar with an Application” on page 13-5

Using UICalendar in Standalone Mode
You can use the UICalendar graphical user interface in standalone mode to
look up any date. To use the standalone mode:

1 Type the following command to open the UICalendar GUI:

uicalendar

The UICalendar interface is displayed:

2 Click the date and year controls to locate any date.

13-4

UICalendar Graphical User Interface

Using UICalendar with an Application
You can use the UICalendar graphical user interface with an application
to look up any date. To use the UICalendar graphical interface with an
application, use the following command:

uicalendar('PARAM1', VALUE1, 'PARAM2', VALUE2', ...)

For more information, see uicalendar.

Example of Using UICalendar with an Application
The UICalendar example creates a function that displays a graphical user
interface that lets you select a date from the UICalendar graphical user
interface and fill in a text field with that date.

1 Create a figure.

function uicalendarGUIExample
f = figure('Name', 'uicalendarGUIExample');

2 Add a text control field.

dateTextHandle = uicontrol(f, 'Style', 'Text', ...
'String', 'Date:', ...
'Horizontalalignment', 'left', ...
'Position', [100 200 50 20]);

3 Add a uicontrol editable text field to display the selected date.

dateEditBoxHandle = uicontrol(f, 'Style', 'Edit', ...
'Position', [140 200 100 20], ...
'BackgroundColor', 'w');

4 Create a push button that startups the UICalendar.

calendarButtonHandle = uicontrol(f, 'Style', 'PushButton', ...
'String', 'Select a single date', ...
'Position', [275 200 200 20], ...
'callback', @pushbutton_cb);

5 To startup UICalendar, create a nested function (callback function) for the
push button.

13-5

13 Trading Date Utilities

function pushbutton_cb(hcbo, eventStruct)
% Create a UICALENDAR with the following properties:
% 1) Highlight weekend dates.
% 2) Only allow a single date to be selected at a time.
% 3) Send the selected date to the edit box uicontrol.
uicalendar('Weekend', [1 0 0 0 0 0 1], ...
'SelectionType', 1, ...
'DestinationUI', dateEditBoxHandle);
end
end

6 Run the function uicalendarGUIExample to display the application interface:

7 Click Select a single date to display the UICalendar graphical user
interface:

13-6

UICalendar Graphical User Interface

8 Select a date and click OK to display the date in the text field:

13-7

13 Trading Date Utilities

13-8

14

Technical Analysis

• “Technical Indicators” on page 14-2

• “Examples” on page 14-4

14 Technical Analysis

Technical Indicators
Technical analysis (or charting) is used by some investment managers to
help manage portfolios. Technical analysis relies heavily on the availability
of historical data. Investment managers calculate different indicators from
available data and plot them as charts. Observations of price, direction,
and volume on the charts assist managers in making decisions on their
investment portfolios.

The technical analysis functions in this toolbox are tools to help analyze your
investments. The functions in themselves will not make any suggestions or
perform any qualitative analysis of your investment.

Technical Analysis: Oscillators

Function Type

adosc Accumulation/distribution oscillator

chaikosc Chaikin oscillator

macd Moving Average
Convergence/Divergence

stochosc Stochastic oscillator

tsaccel Acceleration

tsmom Momentum

Technical Analysis: Stochastics

Function Type

chaikvolat Chaikin volatility

fpctkd Fast stochastics

spctkd Slow stochastics

willpctr Williams %R

14-2

Technical Indicators

Technical Analysis: Indexes

Function Type

negvolidx Negative volume index

posvolidx Positive volume index

rsindex Relative strength index

Technical Analysis: Indicators

Function Type

adline Accumulation/distribution line

bollinger Bollinger band

hhigh Highest high

llow Lowest low

medprice Median price

onbalvol On balance volume

prcroc Price rate of change

pvtrend Price-volume trend

typprice Typical price

volroc Volume rate of change

wclose Weighted close

willad Williams accumulation/distribution

14-3

14 Technical Analysis

Examples

In this section...

“Overview” on page 14-4

“Moving Average Convergence/Divergence (MACD)” on page 14-4

“Williams %R” on page 14-6

“Relative Strength Index (RSI)” on page 14-7

“Relative Strength Index (RSI))” on page 14-8

Overview
To illustrate some the technical analysis functions, this section uses the IBM
stock price data contained in the supplied file ibm9599.dat. First create a
financial time series object from the data using ascii2fts:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

The time series data contains the open, close, high, and low prices, as well
as the volume traded on each day. The time series dates start on January
3, 1995, and end on April 1, 1999, with some values missing for weekday
holidays; weekend dates are not included.

Moving Average Convergence/Divergence (MACD)
Moving Average Convergence/Divergence (MACD) is an oscillator function
used by technical analysts to spot overbought and oversold conditions. Look
at the portion of the time series covering the 3-month period between October
1, 1995 and December 31, 1995. At the same time fill any missing values due
to holidays within the time period specified:

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Now calculate the MACD, which when plotted produces two lines; the first line
is the MACD line itself and the second is the nine-period moving average line:

macd_ibm = macd(part_ibm);

14-4

Examples

Note When you call macd without giving it a second input argument to specify
a particular data series name, it searches for a closing price series named
Close (in all combinations of letter cases).

Plot the MACD lines and the High-Low plot of the IBM stock prices in two
separate plots in one window.

subplot(2, 1, 1);
plot(macd_ibm);
title('MACD of IBM Close Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy')

The following figure shows the result.

14-5

14 Technical Analysis

Williams %R
Williams %R is an indicator that measures overbought and oversold levels.
The function willpctr is from the stochastics category. All the technical
analysis functions can accept a different name for a required data series. If,
for example, a function needs the high, low, and closing price series but your
time series object does not have the data series names exactly as High, Low,
and Close, you can specify the correct names as follows.

wpr = willpctr(tsobj, 14, 'HighName', 'Hi', 'LowName', 'Lo',...
'CloseName', 'Closing')

The function willpctr now assumes that your high price series is named Hi,
low price series is named Lo, and closing price series is named Closing.

Since the time series object part_ibm has its data series names identical to
the required names, name adjustments are not needed. The input argument
to the function is only the name of the time series object itself.

Calculate and plot the Williams %R indicator for IBM stock along with the
price range using these commands:

wpctr_ibm = willpctr(part_ibm);
subplot(2, 1, 1);
plot(wpctr_ibm);
title('Williams %R of IBM stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
hold on;
plot(wpctr_ibm.dates, -80*ones(1, length(wpctr_ibm)),...
'color', [0.5 0 0], 'linewidth', 2)
plot(wpctr_ibm.dates, -20*ones(1, length(wpctr_ibm)),...
'color', [0 0.5 0], 'linewidth', 2)
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

The next figure shows the results. The top plot has the Williams %R line plus
two lines at -20% and -80%. The bottom plot is the High-Low plot of the IBM
stock price for the corresponding time period.

14-6

Examples

Relative Strength Index (RSI)
The Relative Strength Index (RSI) is a momentum indicator that measures
an equity’s price relative to itself and its past performance. The function
name is rsindex.

The rsindex function needs a series that contains the closing price of a stock.
The default period length for the RSI calculation is 14 periods. This length
can be changed by providing a second input argument to the function. Similar
to the previous commands, if your closing price series is not named Close, you
can provide the correct name.

Calculate and plot the RSI for IBM stock along with the price range using
these commands:

rsi_ibm = rsindex(part_ibm);
subplot(2, 1, 1);
plot(rsi_ibm);
title('RSI of IBM stock, 10/01/95-12/31/95');

14-7

14 Technical Analysis

datetick('x', 'mm/dd/yy');
hold on;
plot(rsi_ibm.dates, 30*ones(1, length(wpctr_ibm)),...
'color', [0.5 0 0], 'linewidth', 2)
plot(rsi_ibm.dates, 70*ones(1, length(wpctr_ibm)),...
'color',[0 0.5 0], 'linewidth', 2)
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

The next figure shows the result.

Relative Strength Index (RSI))
On-Balance Volume (OBV) relates volume to price change. The function
onbalvol requires you to have the closing price (Close) series as well as
the volume traded (Volume) series.

Calculate and plot the OBV for IBM stock along with the price range using
these commands:

14-8

Examples

obv_ibm = onbalvol(part_ibm);
subplot(2, 1, 1);
plot(obv_ibm);
title('On-Balance Volume of IBM Stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

The next figure shows the result.

14-9

14 Technical Analysis

14-10

15

Function Reference

Dates (p. 15-3) Work with dates

Currency and Price (p. 15-7) Work with currency and price data

Financial Data Charts (p. 15-8) Create charts

Cash Flows (p. 15-9) Work with cash flows

Fixed-Income Securities (p. 15-12) Work with fixed-income securities

Portfolio Optimization Objects
(p. 15-15)

Create and manage portfolios using
portfolio objects

Portfolio Analysis (p. 15-19) Analyze and measure performance
for portfolios

Financial Statistics (p. 15-22) Perform statistical analysis of
financial data

Derivatives (p. 15-25) Price and analyze derivatives

Credit Risk Utilities (p. 15-26) Measure and analyze credit risk

GARCH Processes (p. 15-27) Introduce GARCH analysis

Financial Time Series Object and
File Construction (p. 15-28)

Functions for creating financial time
series

Financial Time Series Arithmetic
(p. 15-29)

Arithmetic in financial time series

Financial Time Series Math
(p. 15-30)

Mathematical calculations in
financial time series

Financial Time Series Descriptive
Statistics (p. 15-31)

Statistics in financial time series

15 Function Reference

Financial Time Series Utility
(p. 15-32)

Utility work with financial time
series

Financial Time Series Data
Transformation (p. 15-33)

Data transformations of financial
time series

Financial Time Series Indicator
(p. 15-34)

Work with indicators for financial
time series

Financial Time Series GUI (p. 15-36) Work with Financial Time Series
GUI

Financial Time Series Tool (p. 15-37) Work with Financial Time Series
Tool

15-2

Dates

Dates

Current Time and Date (p. 15-3) Work with current date and time

Date and Time Components (p. 15-3) Compute dates and times

Date Conversion (p. 15-4) Convert dates

Financial Dates (p. 15-4) Compute financial dates

Coupon Bond Dates (p. 15-6) Compute coupon bond dates

Current Time and Date

now Current date and time

today Current date

Date and Time Components

datefind Indices of date numbers in matrix

datevec Date components

day Day of month

eomdate Last date of month

eomday Last day of month

hour Hour of date or time

lweekdate Date of last occurrence of weekday
in month

minute Minute of date or time

month Month of date

months Number of whole months between
dates

nweekdate Date of specific occurrence of
weekday in month

second Seconds of date or time

15-3

15 Function Reference

weekday Day of week

weeknum Week in a year

year Year of date

yeardays Number of days in year

Date Conversion

date2time Time and frequency from dates

datedisp Display date entries

datenum Create date number

datestr Create date string

dec2thirtytwo Decimal to thirty-second quotation

m2xdate MATLAB serial date number to
Excel serial date number

thirtytwo2dec Thirty-second quotation to decimal

time2date Dates from time and frequency

uicalendar Graphical calendar

x2mdate Excel serial date number to
MATLAB serial date number

Financial Dates

busdate Next or previous business day

busdays Business days in serial date format

createholidays Create trading calendars

datemnth Date of day in future or past month

datewrkdy Date of future or past workday

days252bus Number of business days between
dates

15-4

Dates

days360 Days between dates based on
360-day year

days360e Days between dates based on
360-day year (European)

days360isda Days between dates based on
360-day year (International
Swap Dealer Association (ISDA)
compliant)

days360psa Days between dates based on
360-day year (Public Securities
Association (PSA) compliant)

days365 Days between dates based on
365-day year

daysact Actual number of days between
dates

daysadd Date away from starting date for any
day-count basis

daysdif Days between dates for any
day-count basis

fbusdate First business date of month

holidays Holidays and nontrading days

isbusday True for dates that are business days

lbusdate Last business date of month

nyseclosures New York Stock Exchange closures
from 1885 to 2050

thirdwednesday Find third Wednesday of month

wrkdydif Number of working days between
dates

yearfrac Fraction of year between dates

15-5

15 Function Reference

Coupon Bond Dates

accrfrac Fraction of coupon period before
settlement

cfamounts Cash flow and time mapping for
bond portfolio

cfdates Cash flow dates for fixed-income
security

cfport Portfolio form of cash flow amounts

cftimes Time factors corresponding to bond
cash flow dates

cpncount Coupon payments remaining until
maturity

cpndaten Next coupon date for fixed-income
security

cpndatenq Next quasi coupon date for fixed
income security

cpndatep Previous coupon date for
fixed-income security

cpndatepq Previous quasi coupon date for fixed
income security

cpndaysn Number of days to next coupon date

cpndaysp Number of days since previous
coupon date

cpnpersz Number of days in coupon period

15-6

Currency and Price

Currency and Price

cur2frac Decimal currency values to fractional
values

cur2str Bank-formatted text

dec2thirtytwo Decimal to thirty-second quotation

frac2cur Fractional currency value to decimal
value

thirtytwo2dec Thirty-second quotation to decimal

15-7

15 Function Reference

Financial Data Charts
bar, barh Bar chart

bar3, bar3h 3-D bar chart

bolling Bollinger band chart

candle Candlestick chart

candle (fts) Time series candle plot

chartfts Interactive display

dateaxis Convert serial-date axis labels to
calendar-date axis labels

highlow High, low, open, close chart

highlow (fts) Time series High-Low plot

kagi Kagi chart

linebreak Line break chart

movavg Leading and lagging moving
averages chart

plot Plot data series

pointfig Point and figure chart

priceandvol Price and volume chart

renko Renko chart

volarea Price and volume chart

15-8

Cash Flows

Cash Flows

Annuities (p. 15-9) Work with annuities

Amortization and Depreciation
(p. 15-9)

Work with amortization and
depreciation

Present Value (p. 15-10) Work with present values

Future Value (p. 15-10) Work with future values

Payment Calculations (p. 15-10) Work with payment calculations

Rates of Return (p. 15-10) Work with rates of return

Cash Flow Sensitivities (p. 15-11) Work with cash flow sensitivities

Annuities

annurate Periodic interest rate of annuity

annuterm Number of periods to obtain value

Amortization and Depreciation

amortize Amortization schedule

depfixdb Fixed declining-balance depreciation
schedule

depgendb General declining-balance
depreciation schedule

deprdv Remaining depreciable value

depsoyd Sum of years’ digits depreciation

depstln Straight-line depreciation schedule

15-9

15 Function Reference

Present Value

pvfix Present value with fixed periodic
payments

pvvar Present value of varying cash flow

Future Value

fvdisc Future value of discounted security

fvfix Future value with fixed periodic
payments

fvvar Future value of varying cash flow

Payment Calculations

payadv Periodic payment given number of
advance payments

payodd Payment of loan or annuity with odd
first period

payper Periodic payment of loan or annuity

payuni Uniform payment equal to varying
cash flow

Rates of Return

effrr Effective rate of return

elpm Compute expected lower partial
moments for normal asset returns

irr Internal rate of return

mirr Modified internal rate of return

nomrr Nominal rate of return

15-10

Cash Flows

taxedrr After-tax rate of return

xirr Internal rate of return for
nonperiodic cash flow

Cash Flow Sensitivities

cfconv Cash flow convexity

cfdur Cash-flow duration and modified
duration

15-11

15 Function Reference

Fixed-Income Securities

Accrued Interest (p. 15-12) Work with accrued interest

Prices (p. 15-12) Work with prices

Term Structure of Interest Rates
(p. 15-12)

Work with term structure of interest
rates

Yields (p. 15-13) Work with yields

Spreads (p. 15-13) Work with spreads

Interest Rate Sensitivities (p. 15-14) Work with interest rate sensitivities

Accrued Interest

acrubond Accrued interest of security with
periodic interest payments

acrudisc Accrued interest of discount security
paying at maturity

Prices

bndprice Price fixed income security from
yield to maturity

prdisc Price of discounted security

prmat Price with interest at maturity

prtbill Price of Treasury bill

Term Structure of Interest Rates

disc2zero Zero curve given discount curve

fwd2zero Zero curve given forward curve

prbyzero Price bonds in portfolio by set of zero
curves

15-12

Fixed-Income Securities

pyld2zero Zero curve given par yield curve

tbl2bond Treasury bond parameters given
Treasury bill parameters

tr2bonds Term-structure parameters given
Treasury bond parameters

zbtprice Zero curve bootstrapping from
coupon bond data given price

zbtyield Zero curve bootstrapping from
coupon bond data given yield

zero2disc Discount curve given zero curve

zero2fwd Forward curve given zero curve

zero2pyld Par yield curve given zero curve

Yields

beytbill Bond equivalent yield for Treasury
bill

bndyield Yield to maturity for fixed income
security

discrate Bank discount rate of money market
security

ylddisc Yield of discounted security

yldmat Yield with interest at maturity

yldtbill Yield of Treasury bill

Spreads

bndspread Static spread over spot curve

15-13

15 Function Reference

Interest Rate Sensitivities

bndconvp Bond convexity given price

bndconvy Bond convexity given yield

bnddurp Bond duration given price

bnddury Bond duration given yield

bndkrdur Bond key rate duration given zero
curve

15-14

Portfolio Optimization Objects

Portfolio Optimization Objects

Portfolio Objects (p. 15-15) Construct portfolio object

Get Methods (p. 15-15) Obtain portfolio object information

Set Methods (p. 15-16) Set portfolio object information

Add Methods (p. 15-17) Add portfolio object information

Preprocessing Methods (p. 15-17) Preprocess portfolio object
information

Efficient Portfolio Estimation
Methods (p. 15-18)

Efficient portfolio estimation
methods for portfolio object

Efficient Frontier Methods (p. 15-18) Efficient frontier methods for
portfolio object

Utility Methods (p. 15-18) Utility methods for portfolio object

Portfolio Objects

AbstractPortfolio Abstract portfolio object for portfolio
optimization and analysis

Portfolio Portfolio object for mean-variance
portfolio optimization and analysis

Get Methods

getAssetMoments (Portfolio) Obtain mean and covariance of asset
returns from portfolio object

getBounds (Portfolio) Obtain bounds for portfolio weights
from portfolio object

getBudget (Portfolio) Obtain budget constraint bounds
from portfolio object

getCosts (Portfolio) Obtain buy and sell transaction costs
from portfolio object

15-15

15 Function Reference

getEquality (Portfolio) Obtain equality constraint arrays
from portfolio object

getGroupRatio (Portfolio) Obtain group ratio constraint arrays
from portfolio object

getGroups (Portfolio) Obtain group constraint arrays from
portfolio object

getInequality (Portfolio) Obtain inequality constraint arrays
from portfolio object

Set Methods

getOneWayTurnover (Portfolio) Obtain one-way turnover constraints
from portfolio object

setAssetList (Portfolio) Set up list of identifiers for assets

setAssetMoments (Portfolio) Set moments (mean and covariance)
of asset returns

setBounds (Portfolio) Set up bounds for portfolio weights

setBudget (Portfolio) Set up budget constraints

setCosts (Portfolio) Set up proportional transaction costs

setDefaultConstraints (Portfolio) Set up portfolio constraints with
nonnegative weights that must sum
to 1

setEquality (Portfolio) Set up linear equality constraints for
portfolio weights

setGroupRatio (Portfolio) Set up group ratio constraints for
portfolio weights

setGroups (Portfolio) Set up group constraints for portfolio
weights

setInequality (Portfolio) Set up linear inequality constraints
for portfolio weights

setInitPort (Portfolio) Set up initial or current portfolio

15-16

Portfolio Optimization Objects

setOneWayTurnover (Portfolio) Set up one-way portfolio turnover
constraints

setOptions (Portfolio) Set hidden properties in portfolio
object

setSolver (Portfolio) Choose main solver and specify
associated solver options for portfolio
optimization

setTurnover (Portfolio) Set up maximum portfolio turnover
constraint

Add Methods

addEquality (Portfolio) Add linear equality constraints
for portfolio weights to existing
constraints

addGroupRatio (Portfolio) Add group ratio constraints for
portfolio weights to existing group
ratio constraints

addGroups (Portfolio) Add group constraints for portfolio
weights to existing group constraints

addInequality (Portfolio) Add linear inequality constraints
for portfolio weights to existing
constraints

Preprocessing Methods

estimateAssetMoments (Portfolio) Estimate mean and covariance of
asset returns from data

15-17

15 Function Reference

Efficient Portfolio Estimation Methods

estimateFrontier (Portfolio) Estimate specified number of
optimal portfolios over entire
efficient frontier

estimateFrontierByReturn
(Portfolio)

Estimate optimal portfolios with
targeted portfolio returns

estimateFrontierByRisk (Portfolio) Estimate optimal portfolios with
targeted portfolio risks

estimateFrontierLimits (Portfolio) Estimate optimal portfolios at
endpoints of efficient frontier

Efficient Frontier Methods

estimateMaxSharpeRatio (Portfolio) Estimate efficient portfolio to
maximize Sharpe ratio

estimatePortMoments (Portfolio) Estimate moments of portfolio
returns

estimatePortReturn (Portfolio) Estimate mean of portfolio returns
(portfolio return)

estimatePortRisk (Portfolio) Estimate standard deviation of
portfolio returns (portfolio risk)

plotFrontier (Portfolio) Plot efficient frontier

Utility Methods

checkFeasibility (Portfolio) Check feasibility of input portfolios
against a portfolio object

estimateBounds (Portfolio) Estimate global lower and upper
bounds for set of portfolios

15-18

Portfolio Analysis

Portfolio Analysis

Basic Portfolio Optimization
(p. 15-19)

Perform portfolio analysis

Performance Metrics (p. 15-20) Calculate portfolio performance
metrics

Portfolio Utilities (p. 15-20) Work with portfolio statistics

Basic Portfolio Optimization

frontcon Mean-variance efficient frontier

frontier Rolling efficient frontier

pcalims Linear inequalities for individual
asset allocation

pcgcomp Linear inequalities for asset group
comparison constraints

pcglims Linear inequalities for asset group
minimum and maximum allocation

pcpval Linear inequalities for fixing total
portfolio value

portalloc Optimal capital allocation to efficient
frontier portfolios

portcons Portfolio constraints

portopt Portfolios on constrained efficient
frontier

portror Portfolio expected rate of return

selectreturn Portfolio configurations from 3-D
efficient frontier

targetreturn Portfolio weight accuracy

15-19

15 Function Reference

Performance Metrics

emaxdrawdown Compute expected maximum
drawdown for Brownian motion

inforatio Calculate information ratio for one
or more assets

lpm Compute sample lower partial
moments of data

maxdrawdown Compute maximum drawdown for
one or more price series

portalpha Compute risk-adjusted alphas and
returns for one or more assets

sharpe Compute Sharpe ratio for one or
more assets

Portfolio Utilities

abs2active Convert constraints from absolute to
active format

active2abs Convert constraints from active to
absolute format

arith2geom Arithmetic to geometric moments of
asset returns

corr2cov Convert standard deviation and
correlation to covariance

cov2corr Convert covariance to standard
deviation and correlation coefficient

ewstats Expected return and covariance from
return time series

geom2arith Geometric to arithmetic moments of
asset returns

holdings2weights Portfolio holdings into weights

15-20

Portfolio Analysis

periodicreturns Periodic total returns from total
return prices

portrand Randomized portfolio risks, returns,
and weights

portsim Monte Carlo simulation of correlated
asset returns

portstats Portfolio expected return and risk

portvar Variance for portfolio of assets

portvrisk Portfolio value at risk (VaR)

ret2tick Convert return series to price series

ret2tick (fts) Convert return series to price series
for time series object

tick2ret Convert price series to return series

tick2ret (fts) Convert price series to return series
for time series object

totalreturnprice Total return price time series

weights2holdings Portfolio values and weights into
holdings

15-21

15 Function Reference

Financial Statistics

Expectation Conditional
Maximization (p. 15-22)

Work with expectation conditional
maximization

Multivariate Normal Regression
(p. 15-23)

Work with multivariate normal
regression

Expectation Conditional
Maximization – Multivariate
Normal Regression (p. 15-23)

Work with expectation conditional
maximization and multivariate
normal regression

Expectation Conditional
Maximization – Least-Squares
Regression (p. 15-24)

Work with least-squares regression

Seemingly Unrelated Regression
(p. 15-24)

Work with unrelated regression

Expectation Conditional Maximization

ecmnfish Fisher information matrix

ecmnhess Hessian of negative log-likelihood
function

ecmninit Initial mean and covariance

ecmnmle Mean and covariance of incomplete
multivariate normal data

ecmnobj Multivariate normal negative
log-likelihood function

ecmnstd Standard errors for mean and
covariance of incomplete data

15-22

Financial Statistics

Multivariate Normal Regression

mvnrfish Fisher information matrix for
multivariate normal or least-squares
regression

mvnrmle Multivariate normal regression
(ignore missing data)

mvnrobj Log-likelihood function for
multivariate normal regression
without missing data

mvnrstd Evaluate standard errors for
multivariate normal regression
model

Expectation Conditional Maximization – Multivariate
Normal Regression

ecmmvnrfish Fisher information matrix for
multivariate normal regression
model

ecmmvnrmle Multivariate normal regression with
missing data

ecmmvnrobj Log-likelihood function for
multivariate normal regression
with missing data

ecmmvnrstd Evaluate standard errors for
multivariate normal regression
model

15-23

15 Function Reference

Expectation Conditional Maximization –
Least-Squares Regression

ecmlsrmle Least-squares regression with
missing data

ecmlsrobj Log-likelihood function for
least-squares regression with
missing data

Seemingly Unrelated Regression

convert2sur Convert multivariate normal
regression model to seemingly
unrelated regression (SUR) model

15-24

Derivatives

Derivatives

Option Valuation and Sensitivity
(p. 15-25)

Work with option valuation and
sensitivity

Option Valuation and Sensitivity

binprice Binomial put and call pricing

blkimpv Implied volatility for futures options
from Black’s model

blkprice Black’s model for pricing futures
options

blsdelta Black-Scholes sensitivity to
underlying price change

blsgamma Black-Scholes sensitivity to
underlying delta change

blsimpv Black-Scholes implied volatility

blslambda Black-Scholes elasticity

blsprice Black-Scholes put and call option
pricing

blsrho Black-Scholes sensitivity to interest
rate change

blstheta Black-Scholes sensitivity to
time-until-maturity change

blsvega Black-Scholes sensitivity to
underlying price volatility

opprofit Option profit

15-25

15 Function Reference

Credit Risk Utilities

Estimation of Transition
Probabilities (p. 15-26)

Estimate transition probabilities

Estimation of Transition Probabilities

transprob Estimation of transition probabilities
from credit ratings data

transprobbytotals Estimate transition probabilities
using totals structure input

transprobfromthresholds Convert from credit quality
thresholds to transition probabilities

transprobgrouptotals Aggregate credit ratings information
into fewer rating categories

transprobprep Preprocess credit ratings data to
estimate transition probabilities

transprobtothresholds Convert from transition probabilities
to credit quality thresholds

15-26

GARCH Processes

GARCH Processes

Univariate GARCH Processes
(p. 15-27)

Work with univariate GARCH
processes

Univariate GARCH Processes

ugarch Univariate GARCH(P,Q) parameter
estimation with Gaussian
innovations

ugarchllf Log-likelihood objective function of
univariate GARCH(P,Q) processes
with Gaussian innovations

ugarchpred Forecast conditional variance of
univariate GARCH(P,Q) processes

ugarchsim Simulate univariate GARCH(P,Q)
process with Gaussian innovations

15-27

15 Function Reference

Financial Time Series Object and File Construction

ascii2fts Create financial time series object
from ASCII data file

fints Construct financial time series object

fts2ascii Write elements of time-series data
into ASCII file

fts2mat Convert to matrix

merge Merge multiple financial time series
objects

15-28

Financial Time Series Arithmetic

Financial Time Series Arithmetic
end Last date entry

horzcat Concatenate financial time series
objects horizontally

length Get number of dates (rows)

minus Financial time series subtraction

mrdivide Financial time series matrix division

mtimes Financial time series matrix
multiplication

plus Financial time series addition

power Financial time series power

rdivide Financial time series division

size Number of dates and data series

subsasgn Content assignment

subsref Subscripted reference

times Financial time series multiplication

uminus Unary minus of financial time series
object

uplus Unary plus of financial time series
object

vertcat Concatenate financial time series
objects vertically

15-29

15 Function Reference

Financial Time Series Math
cumsum Cumulative sum

exp Exponential values

hist Histogram

log Natural logarithm

log10 Common logarithm

log2 Base 2 logarithm

max Maximum value

mean Arithmetic average

min Minimum value

std Standard deviation

15-30

Financial Time Series Descriptive Statistics

Financial Time Series Descriptive Statistics

corrcoef Correlation coefficients

cov Covariance matrix

isempty True for empty financial time series
objects

nancov Covariance ignoring NaNs

nanmax Maximum ignoring NaNs

nanmean Mean ignoring NaNs

nanmedian Median ignoring NaNs

nanmin Minimum ignoring NaNs

nanstd Standard deviation ignoring NaNs

nansum Sum ignoring NaNs

nanvar Variance ignoring NaNs

var Variance

15-31

15 Function Reference

Financial Time Series Utility

chfield Change data series name

eq (fts) Multiple financial times series object
equality

extfield Data series extraction

fetch Data from financial time series
object

fieldnames Get names of fields

freqnum Convert string frequency indicator
to numeric frequency indicator

freqstr Convert numeric frequency indicator
to string representation

ftsbound Start and end dates

ftsinfo Financial time series object
information

ftsuniq Determine uniqueness

getfield Content of specific field

getnameidx Find name in list

iscompatible Structural equality

isequal Multiple object equality

isfield Check whether string is field name

issorted Check whether dates and times are
monotonically increasing

rmfield Remove data series

setfield Set content of specific field

sortfts Sort financial time series

15-32

Financial Time Series Data Transformation

Financial Time Series Data Transformation
boxcox Box-Cox transformation

convert2sur Convert multivariate normal
regression model to seemingly
unrelated regression (SUR) model

convertto Convert to specified frequency

diff Differencing

fillts Fill missing values in time series

filter Linear filtering

lagts Lag time series object

leadts Lead time series object

peravg Periodic average of FINTS object

resamplets Downsample data

smoothts Smooth data

toannual Convert to annual

todaily Convert to daily

todecimal Fractional to decimal conversion

tomonthly Convert to monthly

toquarterly Convert to quarterly

toquoted Decimal to fractional conversion

tosemi Convert to semiannual

toweekly Convert to weekly

tsmovavg Moving average

15-33

15 Function Reference

Financial Time Series Indicator
adline Accumulation/Distribution line

adosc Accumulation/Distribution oscillator

bollinger Time series Bollinger band

chaikosc Chaikin oscillator

chaikvolat Chaikin volatility

fpctkd Fast stochastics

hhigh Highest high

llow Lowest low

macd Moving Average
Convergence/Divergence (MACD)

medprice Median price

negvolidx Negative volume index

onbalvol On-Balance Volume (OBV)

posvolidx Positive volume index

prcroc Price rate of change

pvtrend Price and Volume Trend (PVT)

rsindex Relative Strength Index (RSI)

spctkd Slow stochastics

stochosc Stochastic oscillator

tsaccel Acceleration between times

tsmom Momentum between times

typprice Typical price

volroc Volume rate of change

wclose Weighted close

15-34

Financial Time Series Indicator

willad Williams Accumulation/Distribution
line

willpctr Williams %R

15-35

15 Function Reference

Financial Time Series GUI

ftsgui Financial time series GUI

15-36

Financial Time Series Tool

Financial Time Series Tool

ftstool Financial time series tool

15-37

15 Function Reference

15-38

16

Class Reference

AbstractPortfolio Abstract portfolio object for portfolio
optimization and analysis

Portfolio Portfolio object for mean-variance
portfolio optimization and analysis

16 Class Reference

16-2

17

Functions — Alphabetical
List

abs2active

Purpose Convert constraints from absolute to active format

Syntax ActiveConSet = abs2active(AbsConSet, Index)

Description ActiveConSet = abs2active(AbsConSet, Index) transforms a
constraint matrix to an equivalent matrix expressed in active weight
format (relative to the index).

Input
Arguments

AbsConSet

Portfolio linear inequality constraint matrix expressed in absolute
weight format. AbsConSet is formatted as [A b] such that A*w <= b,
where A is a number of constraints (NCONSTRAINTS) by number of assets
(NASSETS) weight coefficient matrix, and b and w are column vectors
of length NASSETS. The value w represents a vector of absolute asset
weights whose elements sum to the total portfolio value. See the output
ConSet from portcons for additional details about constraint matrices.

Index

NASSETS-by-1 vector of index portfolio weights. The sum of the index
weights must equal the total portfolio value (for example, a standard
portfolio optimization imposes a sum-to-one budget constraint).

Output
Arguments

ActiveConSet

The transformed portfolio linear inequality constraint matrix expressed
in active weight format, also of the form [A b] such that A*w <= b. The
value w represents a vector of active asset weights (relative to the index
portfolio) whose elements sum to zero.

Definitions abs2active transforms a constraint matrix to an equivalent matrix
expressed in active weight format (relative to the index). The
transformation equation is

17-2

abs2active

Aw A w w babsolute active index absolute= +() ≤ .

Therefore

Aw b Aw bactive absolute index active≤ − = .

The initial constraint matrix consists of NCONSTRAINTS portfolio linear
inequality constraints expressed in absolute weight format. The index
portfolio vector contains NASSETS assets.

Examples Set up constraints for a portfolio optimization for portfolio w0 with
constraints in the form A*w <= b, where w is absolute portfolio weights.
(Absolute weights do not depend on the tracking portfolio.) Use
abs2active to convert constraints in terms of absolute weights into
constraints in terms of active portfolio weights, defined relative to the
tracking portfolio w0. Assume three assets with the following mean
and covariance of asset returns:

m = [0.14; 0.10; 0.05];

C = [0.29^2 0.4*0.29*0.17 0.1*0.29*0.08; 0.4*0.29*0.17 0.17^2 0.3*0.17*0.08;...

0.1*0.29*0.08 0.3*0.17*0.08 0.08^2];

Absolute portfolio constraints are the typical ones (weights sum to 1 and
fall from 0 through 1), create the A and b matrices using portcons:

AbsCons = portcons('PortValue',1,3,'AssetLims', [0; 0; 0], [1; 1; 1;]);

The efficient frontier is:

portopt(m, C, [], [], AbsCons);

The tracking portfolio w0 is:

w0 = [0.1; 0.55; 0.35];

Use abs2active to compute the constraints for active portfolio weights:

ActCons = abs2active(AbsCons, w0)

17-3

abs2active

This returns:

ActCons =

1.0000 1.0000 1.0000 0
-1.0000 -1.0000 -1.0000 0
1.0000 0 0 0.9000

0 1.0000 0 0.4500
0 0 1.0000 0.6500

-1.0000 0 0 0.1000
0 -1.0000 0 0.5500
0 0 -1.0000 0.3500

The efficient frontier demonstrates expected returns and risk relative to
the tracking portfolio w0:

portopt(m, C, [], [], ActCons);

The returns:

17-4

abs2active

See Also active2abs | pcalims | pcgcomp | pcglims | pcpval | portcons

17-5

AbstractPortfolio

Purpose Abstract portfolio object for portfolio optimization and analysis

Description The portfolio object implements mean-variance portfolio optimization
and is derived from the abstract class AbstractPortfolio.

Construction There is no constructor for the abstract class. To construct a portfolio
object, see the Portfolio class.

Properties Name

Name for instance of the portfolio object ([] or [string]).

Attributes:

SetAccess public

GetAccess public

NumAssets

Number of assets in universe ([] or [integer scalar]).

Attributes:

SetAccess public

GetAccess public

AssetList

Names or symbols of assets in universe ([] or [vector cell of
strings]).

Attributes:

SetAccess public

GetAccess public

InitPort

17-6

AbstractPortfolio

Initial portfolio ([] or vector).

Attributes:

SetAccess public

GetAccess public

AInequality

Linear inequality constraint matrix ([] or [matrix]).

Attributes:

SetAccess public

GetAccess public

bInequality

Linear inequality constraint vector ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

AEquality

Linear equality constraint matrix ([] or [matrix]).

Attributes:

SetAccess public

GetAccess public

bEquality

Linear equality constraint vector ([] or [vector]).

Attributes:

17-7

AbstractPortfolio

SetAccess public

GetAccess public

LowerBound

Lower-bound constraint ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

UpperBound

Upper-bound constraint ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

LowerBudget

Lower-bound budget constraint ([] or [scalar]).

Attributes:

SetAccess public

GetAccess public

UpperBudget

Upper-bound budget constraint ([] or [scalar]).

Attributes:

SetAccess public

GetAccess public

17-8

AbstractPortfolio

GroupMatrix

Group membership matrix ([] or [matrix]).

Attributes:

SetAccess public

GetAccess public

LowerGroup

Lower-bound group constraint ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

UpperGroup

Upper-bound group constraint ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

GroupA

Group A weights to be bounded by weights in group B ([] or
[matrix]).

Attributes:

SetAccess public

GetAccess public

GroupB

Group B weights ([] or [matrix]).

17-9

AbstractPortfolio

Attributes:

SetAccess public

GetAccess public

LowerRatio

Minimum ratio of allocations between groups A and B ([] or
[vector]).

Attributes:

SetAccess public

GetAccess public

UpperRatio

Maximum ratio of allocations between groups A and B ([] or
[vector]).

Attributes:

SetAccess public

GetAccess public

Methods
addEquality Add linear equality constraints

for portfolio weights to existing
constraints

addGroupRatio Add group ratio constraints for
portfolio weights to existing group
ratio constraints

addGroups Add group constraints for
portfolio weights to existing
group constraints

17-10

AbstractPortfolio

addInequality Add linear inequality constraints
for portfolio weights to existing
constraints

checkFeasibility Check feasibility of input
portfolios against a portfolio
object

estimateBounds Estimate global lower and upper
bounds for set of portfolios

estimateFrontier Estimate specified number of
optimal portfolios over entire
efficient frontier

estimateFrontierByReturn Estimate optimal portfolios with
targeted portfolio returns

estimateFrontierByRisk Estimate optimal portfolios with
targeted portfolio risks

estimateFrontierLimits Estimate optimal portfolios at
endpoints of efficient frontier

estimateMaxSharpeRatio Estimate efficient portfolio to
maximize Sharpe ratio

estimatePortReturn Estimate mean of portfolio
returns (portfolio return)

estimatePortRisk Estimate standard deviation of
portfolio returns (portfolio risk)

getBounds Obtain bounds for portfolio
weights from portfolio object

getBudget Obtain budget constraint bounds
from portfolio object

getEquality Obtain equality constraint arrays
from portfolio object

17-11

AbstractPortfolio

getGroupRatio Obtain group ratio constraint
arrays from portfolio object

getGroups Obtain group constraint arrays
from portfolio object

getInequality Obtain inequality constraint
arrays from portfolio object

plotFrontier Plot efficient frontier

setAssetList Set up list of identifiers for assets

setBounds Set up bounds for portfolio
weights

setBudget Set up budget constraints

setDefaultConstraints Set up portfolio constraints with
nonnegative weights that must
sum to 1

setEquality Set up linear equality constraints
for portfolio weights

setGroupRatio Set up group ratio constraints for
portfolio weights

setGroups Set up group constraints for
portfolio weights

setInequality Set up linear inequality
constraints for portfolio weights

setInitPort Set up initial or current portfolio

setOptions Set hidden properties in portfolio
object

setSolver Choose main solver and specify
associated solver options for
portfolio optimization

17-12

AbstractPortfolio

Instance
Hierarchy

The AbstractPortfolio class has one subclass, Portfolio, that
inherits properties and methods from theAbstractPortfolio class.

Attributes
Abstract true

To learn about attributes of classes, see Class Attributes in the
MATLAB Object-Oriented Programming documentation.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Alternatives You can perform portfolio optimization using a collection of
special-purpose functions in Financial Toolbox software. For more
information, see “Portfolio Optimization Functions” on page 3-3.

See Also Portfolio

How To • Class Attributes

• Property Attributes

17-13

accrfrac

Purpose Fraction of coupon period before settlement

Syntax Fraction = accrfrac(Settle, Maturity)
Fraction = accrfrac(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Description Fraction = accrfrac(Settle, Maturity) returns the fraction of the
coupon period before settlement.

Fraction = accrfrac(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) returns the fraction of the coupon period before settlement
with optional inputs.

Use accrfrac for computing accrued interest.

Input
Arguments

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

17-14

accrfrac

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

FirstCouponDate

17-15

accrfrac

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Future implementation.

Output
Arguments

Fraction

The cash flow matrix of a portfolio of bonds. Each row represents the
cash flow vector of a single bond. Each element in a column represents
a specific cash flow for that bond.

Examples Find the accrued interest for given bond data:

Settle = '14-Mar-1997';
Maturity = ['30-Nov-2000'

'31-Dec-2000'
'31-Jan-2001'];

Period = 2;
Basis = 0;

17-16

accrfrac

EndMonthRule = 1;

Fraction = accrfrac(Settle, Maturity, Period, Basis,...
EndMonthRule)

This returns:

Fraction =
0.5714
0.4033
0.2320

See Also cfdates | cfamounts | cpncount | cpndaten | cpndatenq | cpndatep
| cpndatepq | cpndaysn | cpndaysp | cpnpersz

17-17

acrubond

Purpose Accrued interest of security with periodic interest payments

Syntax AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face,
CouponRate, Period, Basis)

Arguments

IssueDate Enter as serial date number or date string.

Settle Enter as serial date number or date string.

FirstCouponDate Enter as serial date number or date string.

Face Redemption (par, face) value.

CouponRate Enter as decimal fraction.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

17-18

acrubond

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

Description AccruInterest = acrubond(IssueDate, Settle,
FirstCouponDate, Face, CouponRate, Period, Basis)
returns the accrued interest for a security with periodic interest
payments. This function computes the accrued interest for securities
with standard, short, and long first coupon periods.

Note cfamounts or accrfrac is recommended when calculating
accrued interest beyond the first period.

Examples AccruInterest = acrubond('31-jan-1983', '1-mar-1993', ...
'31-jul-1983', 100, 0.1, 2, 0)

AccruInterest =
0.8011

See Also accrfrac | acrudisc | bndprice | bndyield | cfamounts | datenum

17-19

acrudisc

Purpose Accrued interest of discount security paying at maturity

Syntax AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period,
Basis)

Arguments

Settle Enter as serial date number or date string.
Settle must be earlier than Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Discount rate of the security. Enter as decimal
fraction.

Period (Optional) Coupons per year of the bond. A vector
of integers. Allowed values are 0, 1, 2 (default), 3,
4, 6, and 12.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

17-20

acrudisc

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description AccruInterest = acrudisc(Settle, Maturity, Face, Discount,
Period, Basis) returns the accrued interest of a discount security
paid at maturity.

Examples AccruInterest = acrudisc('05/01/1992', '07/15/1992', ...
100, 0.1, 2, 0)

AccruInterest =
2.0604 (or $2.06)

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd
edition. Formula D.

See Also acrubond | prdisc | prmat | ylddisc | yldmat

17-21

active2abs

Purpose Convert constraints from active to absolute format

Syntax AbsConSet = active2abs(ActiveConSet, Index)

Arguments

ActiveConSet Portfolio linear inequality constraint
matrix expressed in active weight format.
ActiveConSet is formatted as [A b] such that
A*w <= b, where A is a number of constraints
(NCONSTRAINTS) by number of assets (NASSETS)
weight coefficient matrix, and b and w are
column vectors of length NASSETS. The value
w represents a vector of active asset weights
(relative to the index portfolio) whose elements
sum to 0.

See the output ConSet from portcons for
additional details about constraint matrices.

Index NASSETS-by-1 vector of index portfolio weights.
The sum of the index weights must equal the
total portfolio value (for example, a standard
portfolio optimization imposes a sum-to-one
budget constraint).

Description AbsConSet = active2abs(ActiveConSet, Index) transforms a
constraint matrix to an equivalent matrix expressed in absolute weight
format. The transformation equation is

Aw A w w bactive absolute index active= −() ≤ .

Therefore

17-22

active2abs

Aw b Aw babsolute active index absolute≤ + = .

The initial constraint matrix consists of NCONSTRAINTS portfolio linear
inequality constraints expressed in active weight format (relative to the
index portfolio). The index portfolio vector contains NASSETS assets.

AbsConSet is the transformed portfolio linear inequality constraint
matrix expressed in absolute weight format, also of the form [A b]
such that A*w <= b. The value w represents a vector of active asset
weights (relative to the index portfolio) whose elements sum to the total
portfolio value.

See Also abs2active | pcalims | pcgcomp | pcglims | pcpval | portcons

17-23

Portfolio.addEquality

Superclasses AbstractPortfolio

Purpose Add linear equality constraints for portfolio weights to existing
constraints

Syntax obj = addEquality(obj, AEquality, bEquality)

Description obj = addEquality(obj, AEquality, bEquality) to add linear
equality constraints for portfolio weights to existing constraints.

Given a linear equality constraint matrix AEquality and vector
bEquality, every weight in a portfolio Port must satisfy:

AEquality * Port = bEquality

An results if AEquality is empty and bEquality is nonempty, or if
AEquality is nonempty and bEquality is empty.

This method "stacks" additional linear equality constraints onto any
existing linear equality constraints that already exist in the input
portfolio object. If no constraints already exist, this method is the same
as setEquality.

Tips • Use dot notation to add the linear equality constraints for portfolio
weights:

obj = obj.addEquality(AEquality, bEquality)

• To remove linear equality constraints from a portfolio object:

obj = obj.setEquality([], [])

Input
Arguments

obj

A portfolio object [Portfolio].

AEquality

Matrix to form linear equality constraints [matrix].

17-24

Portfolio.addEquality

bEquality

Vector to form linear equality constraints [vector].

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples To add another linear equality constraint to ensure that the last 3
assets constitute 50% of a portfolio, use addEquality to build up linear
equality constraints:

p = Portfolio;
A = [1 1 1 0 0]; % first equality constraint
b = 0.5;
p = p.setEquality(A, b);

A = [0 0 1 1 1]; % second equality constraint
b = 0.5;
p = p.addEquality(A, b);

disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

5

1 1 1 0 0
0 0 1 1 1

17-25

Portfolio.addEquality

0.5000
0.5000

See Also setEquality | Portfolio

17-26

Portfolio.addGroupRatio

Superclasses AbstractPortfolio

Purpose Add group ratio constraints for portfolio weights to existing group ratio
constraints

Syntax obj = addGroupRatio(obj, GroupA, GroupB, LowerRatio)
obj = addGroupRatio(obj, GroupA, GroupB, LowerRatio,
UpperRatio)

Description obj = addGroupRatio(obj, GroupA, GroupB, LowerRatio) to add
group ratio constraints for the portfolio weights to existing group ratio
constraints with just a lower bound on the ratio between groups.

obj = addGroupRatio(obj, GroupA, GroupB, LowerRatio,
UpperRatio) to add group ratio constraints for the portfolio weights
to existing group ratio constraints with an additional option for
UpperRatio.

Given base and comparison group matrices GroupA and GroupB and,
either LowerRatio, or UpperRatio bounds, group ratio constraints
require any portfolio in Port to satisfy:

(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

Caution

This collection of constraints usually require that portfolio weights
be nonnegative and that the products GroupA * Port and GroupB *
Port are always nonnegative. Although negative portfolio weights and
non-Boolean group ratio matrices are supported, use with caution.

Tips • Use dot notation to add group ratio constraints for the portfolio
weights to existing group ratio constraints:

obj = obj.addGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio)

17-27

Portfolio.addGroupRatio

• To remove group ratio constraints from a portfolio object, enter empty
arrays for the corresponding arrays.

Input
Arguments

obj

A portfolio object [Portfolio].

GroupA

Matrix that forms base groups for comparison [matrix].

GroupB

Matrix that forms comparison groups [matrix].

Note The group matrices GroupA and GroupB are usually
indicators of membership in groups, which means that their
elements are usually either 0 or 1. Because of this interpretation,
the GroupA and GroupB matrices can be logical or numerical
arrays.

LowerGroup

Lower-bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion
to be conformable with the group matrices.

UpperRatio

(Optional) Upper-bound for ratio of GroupB groups to GroupA
groups [vector].

17-28

Portfolio.addGroupRatio

Note If input is scalar, UpperRatio undergoes scalar expansion
to be conformable with the group matrices.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples To add another group ratio constraint to ensure that the weight
in odd-numbered assets constitute at least 20% of the weight in
nonfinancial assets of a portfolio, use addGroupRatio to build up group
ratio constraints by creating another group matrix for the second group
constraint:

p = Portfolio;

GA = [true true true false false false]; % financial companies

GB = [false false false true true true]; % non-financial companies

p = p.setGroupRatio(GA, GB, [], 0.5);

GA = [true false true false true false]; % odd-numbered companies

GB = [false false false true true true]; % non-financial companies

p = p.addGroupRatio(GA, GB, 0.2);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.LowerRatio);

17-29

Portfolio.addGroupRatio

disp(p.UpperRatio);

6

1 1 1 0 0 0

1 0 1 0 1 0

0 0 0 1 1 1

0 0 0 1 1 1

-Inf

0.2000

0.5000

Inf

See Also setGroupRatio | Portfolio

17-30

Portfolio.addGroups

Superclasses AbstractPortfolio

Purpose Add group constraints for portfolio weights to existing group constraints

Syntax obj = addGroups(obj, GroupMatrix, LowerGroup)
obj = addGroups(obj, GroupMatrix, LowerGroup, UpperGroup)

Description obj = addGroups(obj, GroupMatrix, LowerGroup) to add group
constraints for portfolio weights to existing group constraints subject to
a lower bound on groups.

obj = addGroups(obj, GroupMatrix, LowerGroup, UpperGroup)
to add the group constraints for portfolio weights to existing group
constraints with an additional option for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio
Port must satisfy:

LowerGroup <= GroupMatrix * Port <= UpperGroup

Tips • Use dot notation to add group constraints for portfolio weights:

obj = obj.addGroups(GroupMatrix, LowerGroup, UpperGroup)

• To remove group constraints from a portfolio object, enter empty
arrays for the corresponding arrays.

Input
Arguments

obj

A portfolio object [Portfolio].

GroupMatrix

Group constraint matrix [matrix].

17-31

Portfolio.addGroups

Note The group matrix GroupMatrix is usually an indicator of
membership in groups, which means that its elements are usually
either 0 or 1. Because of this interpretation,GroupMatrix can be
a logical or numerical matrix.

LowerGroup

Lower bound for group constraints [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion
to be conformable with GroupMatrix.

UpperGroup

(Optional) Upper bound for group constraints [vector].

Note If input is scalar, UpperGroup undergoes scalar expansion
to be conformable with GroupMatrix.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

17-32

Portfolio.addGroups

Examples To add another group constraint to ensure that the odd-numbered
assets constitute at least 20% of a portfolio, use addGroups to build up
group constraints by creating another group matrix for a second group
constraint:

p = Portfolio;

G = [true true true false false]; % group matrix for first group constraint

p = p.setGroups(G, [], 0.3);

G = [true false true false true]; % group matrix for second group constraint

p = p.addGroups(G, 0.2);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

5

1 1 1 0 0

1 0 1 0 1

-Inf

0.2000

0.3000

Inf

See Also setGroupRatio | Portfolio

17-33

Portfolio.addInequality

Superclasses AbstractPortfolio

Purpose Add linear inequality constraints for portfolio weights to existing
constraints

Syntax obj = addInequality(obj, AInequality, bInequality)

Description obj = addInequality(obj, AInequality, bInequality) to add
linear inequality constraints for portfolio weights to existing constraints.

Given linear inequality constraint matrix AInequality and vector
bInequality, every weight in a portfolio Port must satisfy:

AInequality * Port <= bInequality

Tips • Use dot notation to add linear inequality constraints for portfolio
weights to existing constraints:

obj = obj.addInequality(AInequality, bInequality)

• To remove linear inequality constraints for portfolio weights from a
portfolio object:

obj = obj.setInequality([], [])

Input
Arguments

obj

A portfolio object [Portfolio].

AEquality

Matrix to form linear inequality constraints [matrix].

bEquality

Vector to form linear inequality constraints [vector].

17-34

Portfolio.addInequality

Note An error results if AInequality is empty and bInequality is
nonempty, or if AInequality is nonempty and bInequality is empty.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples To add another linear inequality constraint to ensure that the last
three assets constitute at least 50% of a portfolio, use addInequality
to build up linear inequality constraints by creating another system
of inequalities:

p = Portfolio;
A = [1 1 1 0 0]; % first inequality constraint
b = 0.5;
p = p.setInequality(A, b);

A = [0 0 -1 -1 -1]; % second inequality constraint
b = -0.5;
p = p.addInequality(A, b);

disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

5

17-35

Portfolio.addInequality

1 1 1 0 0
0 0 -1 -1 -1

0.5000
-0.5000

See Also setInequality | Portfolio

17-36

adline

Purpose Accumulation/Distribution line

Syntax adln = adline(highp, lowp, closep, tvolume)
adln = adline([highp lowp closep tvolume])
adlnts = adline(tsobj)
adlnts = adline(tsobj, ParameterName, ParameterValue, ...)

Arguments

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

tvolume Volume traded (vector)

tsobj Time series object

Description adln = adline(highp, lowp, closep, tvolume) computes the
Accumulation/Distribution line for a set of stock price and volume
traded data. The prices required for this function are the high (highp),
low (lowp), and closing (closep) prices.

adln = adline([highp lowp closep tvolume]) accepts a
four-column matrix as input. The first column contains the high prices,
the second contains the low prices, the third contains the closing prices,
and the fourth contains the volume traded.

adlnts = adline(tsobj) computes the Williams
Accumulation/Distribution line for a set of stock price data
contained in the financial time series object tsobj. The object must
contain the high, low, and closing prices plus the volume traded. The
function assumes that the series are named High, Low, Close, and

17-37

adline

Volume. All are required. adlnts is a financial time series object with
the same dates as tsobj but with a single series named ADLine.

adlnts = adline(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs
specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

• VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the Accumulation/Distribution line for Disney stock and plot
the results:

load disney.mat
dis_ADLine = adline(dis)
plot(dis_ADLine)
title('Accumulation/Distribution Line for Disney')

17-38

adline

References Achelis, Steven B., Technical Analysis from A to Z, Second Edition,
McGraw-Hill, 1995, pp. 56-58.

See Also adosc | willad | willpctr

17-39

adosc

Purpose Accumulation/Distribution oscillator

Syntax ado = adosc(highp, lowp, openp, closep)
ado = adosc([highp lowp openp closep])
adots = adosc(tsobj)
adots = adosc(tsojb, ParameterName, ParameterValue, ...)

Arguments

highp High price (vector)

lowp Low price (vector)

openp Opening price (vector)

closep Closing price (vector)

tsobj Time series object

Description ado = adosc(highp, lowp, openp, closep) returns a vector, ado,
that represents the Accumulation/Distribution (A/D) oscillator. The A/D
oscillator is calculated based on the high, low, opening, and closing
prices of each period. Each period is treated individually.

ado = adosc([highp lowp openp closep]) accepts a four-column
matrix as input. The order of the columns must be high, low, opening,
and closing prices.

adots = adosc(tsobj) calculates the Accumulation/Distribution
(A/D) oscillator, adots, for the set of stock price data contained in the
financial time series object tsobj. The object must contain the high,
low, opening, and closing prices. The function assumes that the series
are named High, Low, Open, and Close. All are required. adots is a
financial time series object with similar dates to tsobj and only one
series named ADOsc.

adots = adosc(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name-parameter value pairs as input. These pairs

17-40

adosc

specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• OpenName: opening prices series name

• CloseName: closing prices series name

Parameter values are the strings that represents the valid parameter
names.

Examples Compute the Accumulation/Distribution oscillator for Disney stock and
plot the results:

load disney.mat
dis_ADOsc = adosc(dis)
plot(dis_ADOsc)
title('A/D Oscillator for Disney')

17-41

adosc

See Also adline | willad

17-42

amortize

Purpose Amortization schedule

Syntax [Principal, Interest, Balance, Payment] = amortize(Rate,
NumPeriods, PresentValue, FutureValue, Due)

Arguments

Rate Interest rate per period, as a decimal fraction.

NumPeriods Number of payment periods.

PresentValue Present value of the loan.

FutureValue (Optional) Future value of the loan. Default = 0.

Due (Optional) When payments are due: 0 = end of
period (default), or 1 = beginning of period.

Description [Principal, Interest, Balance, Payment] = amortize(Rate,
NumPeriods, PresentValue, FutureValue, Due) returns the
principal and interest payments of a loan, the remaining balance of the
original loan amount, and the periodic payment.

Principal Principal paid in each period. A
1-by-NumPeriods vector.

Interest Interest paid in each period. A 1-by-NumPeriods
vector.

Balance Remaining balance of the loan in each payment
period. A 1-by-NumPeriods vector.

Payment Payment per period. A scalar.

17-43

amortize

Examples Compute an amortization schedule for a conventional 30-year, fixed-rate
mortgage with fixed monthly payments. Assume a fixed rate of 12%
APR and an initial loan amount of $100,000.

Rate = 0.12/12; % 12 percent APR = 1 percent per month

NumPeriods = 30*12; % 30 years = 360 months

PresentValue = 100000;

[Principal, Interest, Balance, Payment] = amortize(Rate, ...

NumPeriods, PresentValue);

The output argument Payment contains the fixed monthly payment.

format bank

Payment

Payment =

1028.61

Finally, summarize the amortization schedule graphically by plotting
the current outstanding loan balance, the cumulative principal, and the
interest payments over the life of the mortgage. In particular, note that
total interest paid over the life of the mortgage exceeds $270,000, far in
excess of the original loan amount.

plot(Balance,'b'), hold('on')

plot(cumsum(Principal),'--k')

plot(cumsum(Interest),':r')

xlabel('Payment Month')

ylabel('Dollars')

grid('on')

title('Outstanding Balance, Cumulative Principal & Interest')

legend('Outstanding Balance', 'Cumulative Principal', ...

'Cumulative Interest')

17-44

amortize

The solid blue line represents the declining principal over the 30-year
period. The dotted red line indicates the increasing cumulative interest
payments. Finally, the dashed black line represents the cumulative
principal payments, reaching $100,000 after 30 years.

See Also annurate | annuterm | payadv | payodd | payper

17-45

annurate

Purpose Periodic interest rate of annuity

Syntax Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue,
Due)

Arguments

NumPeriods Number of payment periods.

Payment Payment per period.

PresentValue Present value of the loan or annuity.

FutureValue (Optional) Future value of the loan or annuity.
Default = 0.

Due (Optional) When payments are due: 0 = end of
period (default), or 1 = beginning of period.

Description Rate = annurate(NumPeriods, Payment, PresentValue,
FutureValue, Due) returns the periodic interest rate paid on a loan
or annuity.

Examples Find the periodic interest rate of a four-year, $5000 loan with a $130
monthly payment made at the end of each month.

Rate = annurate(4*12, 130, 5000, 0, 0)

Rate =
0.0094

(Rate multiplied by 12 gives an annual interest rate of 11.32% on the
loan.)

See Also amortize | annuterm | bndyield | irr

17-46

annuterm

Purpose Number of periods to obtain value

Syntax NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue,
Due)

Arguments

Rate Interest rate per period, as a decimal fraction.

Payment Payment per period.

PresentValue Present value.

FutureValue (Optional) Future value. Default = 0.

Due (Optional) When payments are due: 0 = end of
period (default), or 1 = beginning of period.

Description NumPeriods = annuterm(Rate, Payment, PresentValue,
FutureValue, Due) calculates the number of periods needed to obtain
a future value. To calculate the number of periods needed to pay off a
loan, enter the payment or the present value as a negative value.

Examples A savings account has a starting balance of $1500. $200 is added at
the end of each month and the account pays 9% interest, compounded
monthly. How many years will it take to save $5,000?

NumPeriods = annuterm(0.09/12, 200, 1500, 5000, 0)

NumPeriods =
15.68 months or 1.31 years.

See Also annurate | amortize | fvfix | pvfix

17-47

arith2geom

Purpose Arithmetic to geometric moments of asset returns

Syntax [mg, Cg] = arith2geom(ma, Ca);
[mg, Cg] = arith2geom(ma, Ca, t);

Arguments

ma Arithmetic mean of asset-return data (n-vector).

Ca Arithmetic covariance of asset-return data (n-by-n
symmetric, positive-semidefinite matrix.

t (Optional) Target period of geometric moments in
terms of periodicity of arithmetic moments with
default value 1 (scalar).

Description arith2geom transforms moments associated with a simple Brownian
motion into equivalent continuously-compounded moments associated
with a geometric Brownian motion with a possible change in periodicity.

[mg, Cg] = arith2geom(ma, Ca, t) returns mg,
continuously-compounded or "geometric" mean of asset
returns over the target period (n-vector), and Cg, which is a
continuously-compounded or "geometric" covariance of asset returns
over the target period (n-by-n matrix).

Arithmetic returns over period tA are modeled as multivariate normal
random variables with moments

E A[]X m=

and

cov()X C= A

Geometric returns over period tG are modeled as multivariate lognormal
random variables with moments

17-48

arith2geom

E G[]Y m= +1

cov()Y C= G

Given t = tG / tA, the transformation from geometric to arithmetic
moments is

1
1
2

+ = +m m CG A Ai i ii
t texp()

C m m C
jG G G Aijij i

t= + + −()()(exp())1 1 1

For i,j = 1,..., n.

Note If t = 1, then Y = exp(X).

This function has no restriction on the input mean ma but requires the
input covariance Ca to be a symmetric positive-semidefinite matrix.

The functions arith2geom and geom2arith are complementary so that,
given m, C, and t, the sequence

[mg, Cg] = arith2geom(m, C, t);
[ma, Ca] = geom2arith(mg, Cg, 1/t);

yields ma = m and Ca = C.

Examples Example 1. Given arithmetic mean m and covariance C of monthly total
returns, obtain annual geometric mean mg and covariance Cg. In this
case, the output period (1 year) is 12 times the input period (1 month)
so that t = 12 with

[mg, Cg] = arith2geom(m, C, 12);

17-49

arith2geom

Example 2. Given annual arithmetic mean m and covariance C of asset
returns, obtain monthly geometric mean mg and covariance Cg. In this
case, the output period (1 month) is 1/12 times the input period (1 year)
so that t = 1/12 with

[mg, Cg] = arith2geom(m, C, 1/12);

Example 3. Given arithmetic means m and standard deviations
s of daily total returns (derived from 260 business days per year),
obtain annualized continuously-compounded mean mg and standard
deviations sg with

[mg, Cg] = arith2geom(m, diag(s .^2), 260);
sg = sqrt(diag(Cg));

Example 4. Given arithmetic mean m and covariance C of monthly total
returns, obtain quarterly continuously-compounded return moments.
In this case, the output is 3 of the input periods so that t = 3 with

[mg, Cg] = arith2geom(m, C, 3);

Example 5. Given arithmetic mean m and covariance C of 1254
observations of daily total returns over a 5-year period, obtain
annualized continuously-compounded return moments. Since the
periodicity of the arithmetic data is based on 1254 observations for a
5-year period, a 1-year period for geometric returns implies a target
period of t = 1254/5 so that

[mg, Cg] = arith2geom(m, C, 1254/5);

See Also geom2arith

17-50

ascii2fts

Purpose Create financial time series object from ASCII data file

Syntax tsobj = ascii2fts(filename, descrow, colheadrow, skiprows)
tsobj = ascii2fts(filename, timedata, descrow, colheadrow,
skiprows)

Arguments

filename ASCII data file

descrow (Optional) Row number in the data file that contains
the description to be used for the description field of
the financial time series object

colheadrow (Optional) Row number that has the column
headers/names

skiprows (Optional) Scalar or vector of row numbers to be
skipped in the data file

timedata Set to 'T' if time-of-day data is present in the ASCII
data file or to 'NT' if no time-of-day data is present.

Description tsobj = ascii2fts(filename, descrow, colheadrow, skiprows)
creates a financial time series object tsobj from the ASCII file named
filename. This form of the function can only read a data file without
time-of-day information and create a financial time series object without
time information. If time information is present in the ASCII file, an
error message appears.

The general format of the text data file is

• Can contain header text lines.

• Can contain column header information. The column header
information must immediately precede the data series columns
unless skiprows is specified.

17-51

ascii2fts

• Leftmost column must be the date column.

• Dates must be in a valid date string format:

- 'ddmmmyy' or 'ddmmmyyyy'

- 'mm/dd/yy' or 'mm/dd/yyyy'

- 'dd-mmm-yy' or 'dd-mmm-yyyy'

- 'mmm.dd,yy' or 'mmm.dd,yyyy'

• Each column must be separated either by spaces or a tab.

tsobj = ascii2fts(filename, timedata, descrow, colheadrow,
skiprows) creates a financial time series object containing time-of-day
data. Set timedata to 'T' to create a financial time series object
containing time-of-day data.

Examples Example 1. If your data file contains no description or column header
rows,

1/3/95 36.75 36.9063 36.6563 36.875 1167900
1/4/95 37 37.2813 36.625 37.1563 1994700 ...

you can create a financial time series object from it with the simplest
form of the ascii2fts function:

myinc = ascii2fts('my_inc.dat');

myinc =

desc: my_inc.dat

freq: Unknown (0)

'dates: (2)' 'series1: (2)' 'series2: (2)' 'series3: (2)'...

'03-Jan-1995' [36.7500] [36.9063] [36.6563]

'04-Jan-1995' [37] [37.2813] [36.6250]

17-52

ascii2fts

Example 2: If your data file contains description and column header
information with the data series immediately following the column
header row,

International Business Machines Corporation (IBM)
Daily prices (1/3/95 to 4/5/99)
DATE OPEN HIGH LOW CLOSE VOLUME
1/3/95 36.75 36.9063 36.6563 36.875 1167900
1/4/95 37 37.2813 36.625 37.1563 1994700 ...

you must specify the row numbers containing the description and
column headers:

ibm = ascii2fts('ibm9599.dat', 1, 3);

ibm =

desc: International Business Machines Corporation (IBM)

freq: Unknown (0)

'dates: (2)' 'OPEN: (2)' 'HIGH: (2)' 'LOW: (2)' ...

'03-Jan-1995' [36.7500] [36.9063] [36.6563]

'04-Jan-1995' [37] [37.2813] [36.6250]

Example 3: If your data file contains rows between the column headers
and the data series, for example,

Staples, Inc. (SPLS)
Daily prices
DATE OPEN HIGH LOW CLOSE VOLUME
Starting date: 04/08/1996
Ending date: 04/07/1999
4/8/96 19.50 19.75 19.25 19.375 548500
4/9/96 19.75 20.125 19.375 20 1135900 ...

you need to indicate to ascii2fts the rows in the file that must be
skipped. Assume that you have called the data file containing the
Staples data above staples.dat. The command

17-53

ascii2fts

spls = ascii2fts('staples.dat', 1, 3, [4 5]);

indicates that the fourth and fifth rows in the file should be skipped in
creating the financial time series object:

spls =

desc: Staples, Inc. (SPLS)
freq: Unknown (0)

'dates: (2)' 'OPEN: (2)' 'HIGH: (2)' 'LOW: (2)'
'08-Apr-1996' [19.5000] [19.7500] [19.2500]
'09-Apr-1996' [19.7500] [20.1250] [19.3750]

Example 4: Create a financial time series object containing time-of-day
information.

First create a data file with time information:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

serial_dates_times = [datenum(dates), datenum(times)];

data = round(10*rand(6,2));

stat = fts2ascii('myfts_file2.txt',serial_dates_times,data, ...

{'dates';'times';'Data1';'Data2'},'My FTS with Time');

Now read the data file back and create a financial time series object:

MyFts = ascii2fts('myfts_file2.txt','t',1,2,1)

MyFts =

desc: My FTS with Time

freq: Unknown (0)

'dates: (6)' 'times: (6)' 'Data1: (6)' 'Data2: (6)'

'01-Jan-2001' '11:00' [9] [4]

17-54

ascii2fts

' " ' '12:00' [7] [9]

'02-Jan-2001' '11:00' [2] [1]

' " ' '12:00' [4] [4]

'03-Jan-2001' '11:00' [9] [8]

' " ' '12:00' [9] [0]

See Also fints | fts2ascii

17-55

bar, barh

Purpose Bar chart

Syntax bar(tsobj)
bar(tsobj, width)
bar(..., 'style')
hbar = bar(...)

barh(...)
hbarh = barh(...)

Arguments

tsobj Financial time series object.

width Width of the bars and separation of bars within a
group. (Default = 0.8.) If width is 1, the bars within
a group touch one another. Values > 1 produce
overlapping bars.

style 'grouped' (default) or 'stacked'.

Description bar, barh draw vertical and horizontal bar charts.

bar(tsobj) draws the columns of data series of the object tsobj. The
number of data series dictates the number of vertical bars per group.
Each group is the data for one particular date.

bar(tsobj, width) specifies the width of the bars.

bar(..., 'style') changes the style of the bar chart.

hbar = bar(...) returns a vector of bar handles.

Use the MATLAB command shading faceted to put edges on the bars.
Use shading flat to turn edges off.

Examples Create bar charts for Disney stock showing high, low, opening, and
closing prices.

17-56

bar, barh

load disney
bar(q_dis)
title('Bar Chart of Disney Prices')

load disney
barh(q_dis)
title('Horizontal Bar Chart of Disney Prices')

17-57

bar, barh

See Also bar3, bar3h | candle | highlow

17-58

bar3, bar3h

Purpose 3-D bar chart

Syntax bar3(tsobj)
bar3(tsobj, width)
bar3(..., 'style')
hbar3 = bar3(...)

bar3h(...)
hbar3h = bar3h(...)

Arguments

tsobj Financial time series object.

width Width of the bars and separation of bars within a
group. (Default = 0.8.) If width is 1, the bars within
a group touch one another. Values > 1 produce
overlapping bars.

style 'detached' (default), 'grouped', or 'stacked'.

Description bar3, bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(tsobj) draws the columns of data series of the object tsobj. The
number of data series dictates the number of vertical bars per group.
Each group is the data for one particular date.

bar3(tsobj, width) specifies the width of the bars.

bar3(..., 'style') changes the style of the bar chart.

hbar3 = bar3(...) returns a vector of bar handles.

Use the MATLAB command shading faceted to put edges on the bars.
Use shading flat to turn edges off.

Examples Create three-dimensional bar charts for Disney stock showing high,
low, opening, and closing prices.

17-59

bar3, bar3h

load disney
bar3(q_dis, 'stacked')
title('Three-Dimensional Bar Chart of Disney Prices')

17-60

bar3, bar3h

load disney

bar3(q_dis, 'stacked')

title('Three-Dimensional Bar Chart of Disney Prices (Stacked)')

See Also bar, barh | candle | highlow

17-61

beytbill

Purpose Bond equivalent yield for Treasury bill

Syntax Yield = beytbill(Settle, Maturity, Discount)

Arguments

Settle Enter as serial date numbers or date strings.
Settle must be earlier than Maturity.

Maturity Enter as serial date numbers or date strings.

Discount Discount rate of the Treasury bill. Enter as decimal
fraction.

Description Yield = beytbill(Settle, Maturity, Discount) returns the bond
equivalent yield for a Treasury bill.

Examples The settlement date of a Treasury bill is February 11, 2000, the
maturity date is August 7, 2000, and the discount rate is 5.77%. The
bond equivalent yield is

Yield = beytbill('2/11/2000', '8/7/2000', 0.0577)

Yield =
0.0602

See Also datenum | prtbill | yldtbill

17-62

binprice

Purpose Binomial put and call pricing

Syntax [AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time,
Increment, Volatility, Flag, DividendRate, Dividend, ExDiv)

Arguments

Price Underlying asset price. A scalar.

Strike Option exercise price. A scalar.

Rate Risk-free interest rate. A scalar. Enter as a
decimal fraction.

Time Option’s time until maturity in years. A scalar.

Increment Time increment. A scalar. Increment is
adjusted so that the length of each interval is
consistent with the maturity time of the option.
(Increment is adjusted so that Time divided
by Increment equals an integer number of
increments.)

Volatility Asset’s volatility. A scalar.

Flag Specifies whether the option is a call (Flag =
1) or a put (Flag = 0). A scalar.

DividendRate (Optional) The dividend rate, as a decimal
fraction. A scalar. Default = 0. If you enter
a value for DividendRate, set Dividend
and ExDiv = 0 or do not enter them. If you
enter values for Dividend and ExDiv, set
DividendRate = 0.

17-63

binprice

Dividend (Optional) The dividend payment at an
ex-dividend date, ExDiv. A row vector. For
each dividend payment, there must be a
corresponding ex-dividend date. Default = 0. If
you enter values for Dividend and ExDiv, set
DividendRate = 0.

ExDiv (Optional) Ex-dividend date, specified in
number of periods. A row vector. Default = 0.

Description [AssetPrice, OptionValue] = binprice(Price, Strike, Rate,
Time, Increment, Volatility, Flag, DividendRate, Dividend,
ExDiv) prices an option using the Cox-Ross-Rubinstein binomial
pricing model.

Examples Consider a put option with an exercise price of $50 that matures in
5 months. The current asset price is $52, the risk-free interest rate
is 10%, and the volatility is 40%. There is one dividend payment of
$2.06 in 3-1/2 months. To specify the input argument ExDiv in terms of
number of periods, divide the ex-dividend date, specified in years, by
the time Increment.

ExDiv = (3.5/12) / (1/12) = 3.5

[Price, Option] = binprice(52, 50, 0.1, 5/12, 1/12, 0.4, 0, 0, 2.06, 3.5)

returns the asset price and option value at each node of the binary tree.

Price =

52.0000 58.1367 65.0226 72.7494 79.3515 89.0642

0 46.5642 52.0336 58.1706 62.9882 70.6980

0 0 41.7231 46.5981 49.9992 56.1192

0 0 0 37.4120 39.6887 44.5467

0 0 0 0 31.5044 35.3606

0 0 0 0 0 28.0688

Option =

17-64

binprice

4.4404 2.1627 0.6361 0 0 0

0 6.8611 3.7715 1.3018 0 0

0 0 10.1591 6.3785 2.6645 0

0 0 0 14.2245 10.3113 5.4533

0 0 0 0 18.4956 14.6394

0 0 0 0 0 21.9312

References Cox, J., S. Ross, and M. Rubenstein, “Option Pricing: A Simplified
Approach”, Journal of Financial Economics 7, Sept. 1979, pp. 229-263.

Hull, John C., Options, Futures, and Other Derivative Securities, 2nd
edition, Chapter 14.

See Also blkprice | blsprice

17-65

blkimpv

Purpose Implied volatility for futures options from Black’s model

Syntax Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, ...
Tolerance, Class)

Arguments

Price Current price of the underlying asset (a futures
contract).

Strike Exercise price of the futures option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Value Price of a European futures option from which the
implied volatility of the underlying asset is derived.

Limit (Optional) Positive scalar representing the upper
bound of the implied volatility search interval. If
Limit is empty or unspecified, the default = 10, or
1000% per annum.

Tolerance (Optional) Implied volatility termination tolerance.
A positive scalar. Default = 1e-6.

Class (Optional) Option class (call or put) indicating the
option type from which the implied volatility is
derived. May be either a logical indicator or a cell
array of characters. To specify call options, set
Class = true or Class = {'call'}; to specify put
options, set Class = false or Class = {'put'}. If
Class is empty or unspecified, the default is a call
option.

17-66

blkimpv

Description Volatility = blkimpv(Price, Strike, Rate, Time, CallPrice,
MaxIterations, Tolerance) computes the implied volatility of a
futures price from the market value of European futures options using
Black’s model.

Volatility is the implied volatility of the underlying asset derived
from European futures option prices, expressed as a decimal number.
If no solution is found, blkimpv returns NaN.

Any input argument may be a scalar, vector, or matrix. When a value is
a scalar, that value is used to compute the implied volatility of all the
options. If more than one input is a vector or matrix, the dimensions of
all nonscalar inputs must be identical.

Rate and Time must be expressed in consistent units of time.

Examples Consider a European call futures option that expires in four months,
trading at $1.1166, with an exercise price of $20. Assume that the
current underlying futures price is also $20 and that the risk-free rate
is 9% per annum. Furthermore, assume that you are interested in
implied volatilities no greater than 0.5 (50% per annum). Under these
conditions, the following commands all return an implied volatility of
0.25, or 25% per annum:

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5)

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [],

{'Call'})

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], true)

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003, pp. 287-288.

Black, Fischer, “The Pricing of Commodity Contracts,” Journal of
Financial Economics, March 3, 1976, pp. 167-79.

See Also blkprice | blsimpv | blsprice

17-67

blkprice

Purpose Black’s model for pricing futures options

Syntax [Call, Put] = blkprice(Price, Strike, Rate, Time, Volatility)

Arguments

Price Current price of the underlying asset (a futures
contract).

Strike Strike or exercise price of the futures option.

Rate Annualized, continuously compounded, risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time until expiration of the option, expressed in
years. Must be greater than 0.

Volatility Annualized futures price volatility, expressed as a
positive decimal number.

Description [Call, Put] = blkprice(ForwardPrice, Strike, Rate, Time,
Volatility) uses Black’s model to compute European put and call
futures option prices.

Any input argument may be a scalar, vector, or matrix. When a value is
a scalar, that value is used to compute the implied volatility from all
options. If more than one input is a vector or matrix, the dimensions of
all non-scalar inputs must be identical.

Rate, Time, and Volatility must be expressed in consistent units of
time.

Examples Consider European futures options with exercise prices of $20 that
expire in four months. Assume that the current underlying futures
price is also $20 with a volatility of 25% per annum. The risk-free rate
is 9% per annum. Using this data

17-68

blkprice

[Call, Put] = blkprice(20, 20, 0.09, 4/12, 0.25)

returns equal call and put prices of $1.1166.

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003, pp. 287-288.

Black, Fischer, “The Pricing of Commodity Contracts,” Journal of
Financial Economics, March 3, 1976, pp. 167-179.

See Also binprice | blsprice

17-69

blsdelta

Purpose Black-Scholes sensitivity to underlying price change

Syntax [CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time,
Volatility, Yield)

Arguments

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized
standard deviation of the continuously compounded
asset return), expressed as a positive decimal
number.

Yield (Optional) Annualized, continuously compounded
yield of the underlying asset over the life of the
option, expressed as a decimal number. (Default
= 0.) For example, for options written on stock
indices, Yield could represent the dividend yield.
For currency options, Yield could be the foreign
risk-free interest rate.

Description [CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time,
Volatility, Yield) returns delta, the sensitivity in option value
to change in the underlying asset price. Delta is also known as the
hedge ratio.

17-70

blsdelta

Note blsdelta can handle other types of underlies like Futures and
Currencies. When pricing Futures (Black model), enter the input
argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input
argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples [CallDelta, PutDelta] = blsdelta(50, 50, 0.1, 0.25, 0.3, 0)

CallDelta =
0.5955

PutDelta =
-0.4045

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003.

See Also blsgamma | blslambda | blsprice | blsrho | blstheta | blsvega

17-71

blsgamma

Purpose Black-Scholes sensitivity to underlying delta change

Syntax Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized
standard deviation of the continuously compounded
asset return), expressed as a positive decimal
number.

Yield (Optional) Annualized, continuously compounded
yield of the underlying asset over the life of the
option, expressed as a decimal number. (Default
= 0.) For example, for options written on stock
indices, Yield could represent the dividend yield.
For currency options, Yield could be the foreign
risk-free interest rate.

Description Gamma = blsgamma(Price, Strike, Rate, Time, Volatility,
Yield) returns gamma, the sensitivity of delta to change in the
underlying asset price.

17-72

blsgamma

Note blsgamma can handle other types of underlies like Futures and
Currencies. When pricing Futures (Black model), enter the input
argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input
argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples Gamma = blsgamma(50, 50, 0.12, 0.25, 0.3, 0)

Gamma =
0.0512

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003.

See Also blsdelta | blslambda | blsprice | blsrho | blstheta | blsvega

17-73

blsimpv

Purpose Black-Scholes implied volatility

Syntax Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, ...
Yield, Tolerance, Class)

Arguments

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Value Price of a European option from which the implied
volatility of the underlying asset is derived.

Limit (Optional) Positive scalar representing the upper
bound of the implied volatility search interval. If
Limit is empty or unspecified, the default = 10, or
1000% per annum.

Yield (Optional) Annualized, continuously compounded
yield of the underlying asset over the life of the
option, expressed as a decimal number. (Default
= 0.) For example, for options written on stock
indices, Yield could represent the dividend yield.
For currency options, Yield could be the foreign
risk-free interest rate.

17-74

blsimpv

Tolerance (Optional) Implied volatility termination tolerance.
A positive scalar. Default = 1e-6.

Class (Optional) Option class (call or put) indicating the
option type from which the implied volatility is
derived. May be either a logical indicator or a cell
array of characters. To specify call options, set
Class = true or Class = {'call'}; to specify put
options, set Class = false or Class = {'put'}. If
Class is empty or unspecified, the default is a call
option.

Description Volatility = blsimpv(Price, Strike, Rate, Time, Value,
Limit, Yield, Tolerance, Class) using a Black-Scholes model
computes the implied volatility of an underlying asset from the market
value of European call and put options.

Volatility is the implied volatility of the underlying asset derived
from European option prices, expressed as a decimal number. If no
solution is found, blsimpv returns NaN.

Any input argument may be a scalar, vector, or matrix. When a value
is a scalar, that value is used to price all the options. If more than one
input is a vector or matrix, the dimensions of all non-scalar inputs must
be identical.

Rate, Time, and Yield must be expressed in consistent units of time.

Examples Consider a European call option trading at $10 with an exercise price
of $95 and three months until expiration. Assume that the underlying
stock pays no dividend and trades at $100. The risk-free rate is 7.5%
per annum. Furthermore, assume that you are interested in implied
volatilities no greater than 0.5 (50% per annum).

Under these conditions, the following statements all compute an
implied volatility of 0.3130, or 31.30% per annum.

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5)

17-75

blsimpv

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], {'Call'})

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], true)

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003.

Luenberger, David G., Investment Science, Oxford University Press,
1998.

See Also blsdelta | blsgamma | blslambda | blsprice | blsrho | blstheta

17-76

blslambda

Purpose Black-Scholes elasticity

Syntax [CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility,
Yield)

Arguments

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized
standard deviation of the continuously compounded
asset return), expressed as a positive decimal
number.

Yield (Optional) Annualized, continuously compounded
yield of the underlying asset over the life of the
option, expressed as a decimal number. (Default
= 0.) For example, for options written on stock
indices, Yield could represent the dividend yield.
For currency options, Yield could be the foreign
risk-free interest rate.

Description [CallEl, PutEl] = blslambda(Price, Strike, Rate, Time,
Volatility, yield) returns the elasticity of an option. CallEl
is the call option elasticity or leverage factor, and PutEl is the put
option elasticity or leverage factor. Elasticity (the leverage of an option
position) measures the percent change in an option price per one
percent change in the underlying asset price.

17-77

blslambda

Note blslambda can handle other types of underlies like Futures
and Currencies. When pricing Futures (Black model), enter the input
argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input
argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples [CallEl, PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)

CallEl =
8.1274

PutEl =
-8.6466

References Daigler, Advanced Options Trading, Chapter 4.

See Also blsdelta | blsgamma | blsprice | blsrho | blstheta | blsvega

17-78

blsprice

Purpose Black-Scholes put and call option pricing

Syntax [Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized
standard deviation of the continuously compounded
asset return), expressed as a positive decimal
number.

Yield (Optional) Annualized, continuously compounded
yield of the underlying asset over the life of the
option, expressed as a decimal number. (Default
= 0.) For example, for options written on stock
indices, Yield could represent the dividend yield.
For currency options, Yield could be the foreign
risk-free interest rate.

Description [Call, Put] = blsprice(Price, Strike, Rate, Time,
Volatility, Yield) computes European put and call option prices
using a Black-Scholes model.

Any input argument may be a scalar, vector, or matrix. When a value
is a scalar, that value is used to price all the options. If more than one
input is a vector or matrix, the dimensions of all non-scalar inputs must
be identical.

17-79

blsprice

Rate, Time, Volatility, and Yield must be expressed in consistent
units of time.

Note blsprice can handle other types of underlies like Futures and
Currencies. When pricing Futures (Black model), enter the input
argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input
argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples Consider European stock options that expire in three months with
an exercise price of $95. Assume that the underlying stock pays no
dividend, trades at $100, and has a volatility of 50% per annum. The
risk-free rate is 10% per annum. Using this data

[Call, Put] = blsprice(100, 95, 0.1, 0.25, 0.5)

returns call and put prices of $13.70 and $6.35, respectively.

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003.

Luenberger, David G., Investment Science, Oxford University Press,
1998.

See Also blkprice | blsdelta | blsgamma | blsimpv | blslambda | blsrho |
blstheta | blsvega

17-80

blsrho

Purpose Black-Scholes sensitivity to interest rate change

Syntax [CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility,
Yield)

Arguments

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized
standard deviation of the continuously compounded
asset return), expressed as a positive decimal
number.

Yield (Optional) Annualized, continuously compounded
yield of the underlying asset over the life of the
option, expressed as a decimal number. (Default
= 0.) For example, for options written on stock
indices, Yield could represent the dividend yield.
For currency options, Yield could be the foreign
risk-free interest rate.

Description [CallRho, PutRho]= blsrho(Price, Strike, Rate, Time,
Volatility, Yield) returns the call option rho CallRho, and the
put option rho PutRho. Rho is the rate of change in value of derivative
securities with respect to interest rates.

17-81

blsrho

Note blsrho can handle other types of underlies like Futures and
Currencies. When pricing Futures (Black model), enter the input
argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input
argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples [CallRho, PutRho] = blsrho(50, 50, 0.12, 0.25, 0.3, 0)

CallRho =
6.6686

PutRho =
-5.4619

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003.

See Also blsdelta | blsgamma | blslambda | blsprice | blstheta | blsvega

17-82

blstheta

Purpose Black-Scholes sensitivity to time-until-maturity change

Syntax [CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time,
Volatility, Yield)

Arguments

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized
standard deviation of the continuously compounded
asset return), expressed as a positive decimal
number.

Yield (Optional) Annualized, continuously compounded
yield of the underlying asset over the life of the
option, expressed as a decimal number. (Default
= 0.) For example, for options written on stock
indices, Yield could represent the dividend yield.
For currency options, Yield could be the foreign
risk-free interest rate.

Description [CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time,
Volatility, Yield) returns the call option theta CallTheta, and
the put option theta PutTheta. Theta is the sensitivity in option value
with respect to time.

17-83

blstheta

Note blstheta can handle other types of underlies like Futures and
Currencies. When pricing Futures (Black model), enter the input
argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input
argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples [CallTheta, PutTheta] = blstheta(50, 50, 0.12, 0.25, 0.3, 0)

CallTheta =

-8.9630

PutTheta =

-3.1404

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003.

See Also blsdelta | blsgamma | blslambda | blsprice | blsrho | blsvega

17-84

blsvega

Purpose Black-Scholes sensitivity to underlying price volatility

Syntax Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate
of return over the life of the option, expressed as a
positive decimal number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized
standard deviation of the continuously compounded
asset return), expressed as a positive decimal
number.

Yield (Optional) Annualized, continuously compounded
yield of the underlying asset over the life of the
option, expressed as a decimal number. (Default
= 0.) For example, for options written on stock
indices, Yield could represent the dividend yield.
For currency options, Yield could be the foreign
risk-free interest rate.

Description Vega = blsvega(Price, Strike, Rate, Time, Volatility,
Yield) returns vega, the rate of change of the option value with respect
to the volatility of the underlying asset.

17-85

blsvega

Note blsvega can handle other types of underlies like Futures and
Currencies. When pricing Futures (Black model), enter the input
argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input
argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples Vega = blsvega(50, 50, 0.12, 0.25, 0.3, 0)

Vega =
9.6035

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall,
5th edition, 2003.

See Also blsdelta | blsgamma | blslambda | blsprice | blsrho | blstheta

17-86

bndconvp

Purpose Bond convexity given price

Syntax [YearConvexity, PerConvexity] = bndconvp(Price, CouponRate,
Settle, Maturity)
[YearConvexity, PerConvexity] = bndconvp(Price,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate,
Face)
[YearConvexity, PerConvexity] = bndconvp(Price,
CouponRate, Settle, Maturity, 'ParameterName',
'ParameterValue ...)

Description [YearConvexity, PerConvexity] = bndconvp(Price, CouponRate,
Settle, Maturity) computes the convexity of NUMBONDS fixed income
securities given a clean price for each bond.

[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate,
Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face)

[YearConvexity, PerConvexity] = bndconvp(Price,CouponRate,
Settle, Maturity, 'ParameterName','ParameterValue
...) accepts optional inputs as one or more comma-separated
parameter/value pairs. ParameterName' is the name of the parameter
inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter/value pairs in any order. Names
are case-insensitive.

Input
Arguments

Price

Clean price (excludes accrued interest).

CouponRate

Decimal number indicating the annual percentage rate used to
determine the coupons payable on a bond.

17-87

bndconvp

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as
parameter/value pairs. You cannot mix ordered syntax with
parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

17-88

bndconvp

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon

17-89

bndconvp

structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases
(0-7) and BUS/252 use a semiannual compounding convention and
ISMA bases (8-12) use an annual compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The
default behavior is for SIA bases to use the actual/actual day count to
compute discount factors. If you use ISMA day counts and BUS/252, the
specified bases are used.

Output
Arguments

YearConvexity

NUMBONDS-by-1 vector for the yearly (annualized) convexity.

17-90

bndconvp

PerConvexity

NUMBONDS-by-1 vector for the periodic convexity reported on a
semiannual bond basis (in accordance with SIA convention).

Definitions bndconvp determines the convexity for a bond whether the first or
last coupon periods in the coupon structure are short or long (that
is, whether the coupon structure is synchronized to maturity). This
function also determines the convexity of a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1
or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an
empty matrix ([]) as a placeholder for an optional argument. Fill in
unspecified entries input vectors with NaNs. Dates can be serial date
numbers or date strings.

Examples Find the convexity of three bonds given their prices:

Price = [106; 100; 98];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;

[YearConvexity, PerConvexity] = bndconvp(Price,...
CouponRate,Settle, Maturity, Period, Basis)

This returns:

YearConvexity =

21.4447
21.0363
20.8951

PerConvexity =

17-91

bndconvp

85.7788
84.1454
83.5803

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

See Also cfconv | bndconvy | bnddurp | bnddury | cfdur

How To • “Yield Conventions” on page 2-31

17-92

bndconvy

Purpose Bond convexity given yield

Syntax [YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate,
Settle, Maturity)
[YearConvexity, PerConvexity] = bndconvy(Yield,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate,
Face)
[YearConvexity, PerConvexity] = bndconvy(Yield,
CouponRate, Settle, Maturity, 'ParameterName',
'ParameterValue ...)

Description [YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate,
Settle, Maturity) computes the convexity of NUMBONDS fixed income
securities given the yield to maturity for each bond.

[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate,
Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face)

[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate,
Settle, Maturity, 'ParameterName','ParameterValue
...) accepts optional inputs as one or more comma-separated
parameter/value pairs. 'ParameterName' is the name of the parameter
inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter/value pairs in any order. Names
are case-insensitive.

Input
Arguments

Yield

Yield to maturity on a semiannual basis.

CouponRate

Decimal number indicating the annual percentage rate used to
determine the coupons payable on a bond.

17-93

bndconvy

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as
parameter/value pairs. You cannot mix ordered syntax with
parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

17-94

bndconvy

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon

17-95

bndconvy

structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases
(0-7) and BUS/252 use a semiannual compounding convention and
ISMA bases (8-12) use an annual compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The
default behavior is for SIA bases to use the actual/actual day count to
compute discount factors. If you use ISMA day counts and BUS/252, the
specified bases are used.

Output
Arguments

YearConvexity

NUMBONDS-by-1 vector for the yearly (annualized) convexity.

17-96

bndconvy

PerConvexity

NUMBONDS-by-1 vector for the periodic convexity reported on a
semiannual bond basis (in accordance with SIA convention).

Definitions bndconvy determines the convexity for a bond whether the first or
last coupon periods in the coupon structure are short or long (that
is, whether the coupon structure is synchronized to maturity). This
function also determines the convexity of a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1
or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an
empty matrix ([]) as a placeholder for an optional argument. Fill in
unspecified entries input vectors with NaNs. Dates can be serial date
numbers or date strings.

Examples Find the convexity of a bond at three different yield values:

Yield = [0.04; 0.055; 0.06];

CouponRate = 0.055;

Settle = '02-Aug-1999';

Maturity = '15-Jun-2004';

Period = 2;

Basis = 0;

[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,...

Settle, Maturity, Period, Basis)

This returns:

YearConvexity =

21.4825
21.0358
20.8885

PerConvexity =

17-97

bndconvy

85.9298
84.1434
83.5541

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

See Also cfconv | bndconvp | bnddurp | bnddury | cfdur

How To • “Yield Conventions” on page 2-31

17-98

bnddurp

Purpose Bond duration given price

Syntax [ModDuration, YearDuration, PerDuration] = bnddurp(Price,
CouponRate, Settle, Maturity)
[ModDuration, YearDuration, PerDuration] = bnddurp(Price,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate,
Face)
[ModDuration, YearDuration, PerDuration] = bnddurp(Price,
CouponRate, Settle, Maturity, 'ParameterName',
'ParameterValue ...)

Description [ModDuration, YearDuration, PerDuration] = bnddurp(Price,
CouponRate, Settle, Maturity) computes the convexity of NUMBONDS
fixed income securities given a clean price for each bond.

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate,
Face)

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,
CouponRate, Settle, Maturity, 'ParameterName',
'ParameterValue ...) accepts optional inputs as one or more
comma-separated parameter/value pairs. 'ParameterName' is the
name of the parameter inside single quotes. ParameterValue is the
value corresponding to 'ParameterName'. Specify parameter/value
pairs in any order. Names are case-insensitive.

Input
Arguments

Price

Clean price (excludes accrued interest).

CouponRate

Decimal number indicating the annual percentage rate used to
determine the coupons payable on a bond.

17-99

bnddurp

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as
parameter/value pairs. You cannot mix ordered syntax with
parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

17-100

bnddurp

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon

17-101

bnddurp

structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases
(0-7) and BUS/252 use a semiannual compounding convention and
ISMA bases (8-12) use an annual compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The
default behavior is for SIA bases to use the actual/actual day count to
compute discount factors. If you use ISMA day counts and BUS/252, the
specified bases are used.

17-102

bnddurp

Output
Arguments

ModDuration

NUMBONDS-by-1 vector for the modified duration in years, reported on a
semiannual bond basis (in accordance with SIA convention).

YearDuration

NUMBONDS-by-1 vector for the Macaulay duration in years.

PerDuration

NUMBONDS-by-1 vector for the periodic Macaulay duration reported on a
semiannual bond basis (in accordance with SIA convention).

Definitions bnddurp determines the Macaulay and modified duration for a bond
whether the first or last coupon periods in the coupon structure are
short or long (that is, whether the coupon structure is synchronized to
maturity). This function also determines the Macaulay and modified
duration for a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1
or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an
empty matrix ([]) as a placeholder for an optional argument. Fill in
unspecified entries input vectors with NaNs. Dates can be serial date
numbers or date strings.

Examples Find the duration of three bonds given their prices:

Price = [106; 100; 98];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,...
CouponRate, Settle, Maturity, Period, Basis)

This returns:

17-103

bnddurp

ModDuration =

4.2400
4.1925
4.1759

YearDuration =

4.3275
4.3077
4.3007

PerDuration =

8.6549
8.6154
8.6014

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

See Also bndconvy | bndconvp | bnddury | bndkrdur

How To • “Yield Conventions” on page 2-31

17-104

bnddury

Purpose Bond duration given yield

Syntax [ModDuration, YearDuration, PerDuration] = bnddury(Yield,
CouponRate, Settle, Maturity)
[ModDuration, YearDuration, PerDuration] = bnddury(Yield,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate,
Face)
[ModDuration, YearDuration, PerDuration] = bnddury(Yield,
CouponRate, Settle, Maturity, 'ParameterName',
'ParameterValue ...)

Description [ModDuration, YearDuration, PerDuration] = bnddury(Yield,
CouponRate, Settle, Maturity) computes the Macaulay and
modified duration of NUMBONDS fixed income securities given yield to
maturity for each bond.

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate,
Face)

[ModDuration, YearDuration, PerDuration] =
bnddury(Yield, CouponRate, Settle, Maturity,
'ParameterName','ParameterValue ...) accepts optional
inputs as one or more comma-separated parameter/value pairs.
'ParameterName' is the name of the parameter inside single quotes.
ParameterValue is the value corresponding to 'ParameterName'.
Specify parameter/value pairs in any order. Names are case-insensitive.

Input
Arguments

Yield

Yield to maturity on a semiannual basis.

CouponRate

Decimal number indicating the annual percentage rate used to
determine the coupons payable on a bond.

17-105

bnddury

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as
parameter/value pairs. You cannot mix ordered syntax with
parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

17-106

bnddury

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon

17-107

bnddury

structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

(Optional) Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases
(0-7) and BUS/252 use a semiannual compounding convention and
ISMA bases (8-12) use an annual compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The
default behavior is for SIA bases to use the actual/actual day count to
compute discount factors. If you use ISMA day counts and BUS/252, the
specified bases are used.

17-108

bnddury

Output
Arguments

ModDuration

NUMBONDS-by-1 vector for the modified duration in years, reported on a
semiannual bond basis (in accordance with SIA convention).

YearDuration

NUMBONDS-by-1 vector for the Macaulay duration in years.

PerDuration

NUMBONDS-by-1 vector for the periodic Macaulay duration reported on a
semiannual bond basis (in accordance with SIA convention).

Definitions bnddurp determines the duration for a bond whether the first or
last coupon periods in the coupon structure are short or long (that
is, whether the coupon structure is synchronized to maturity). This
function also determines the Macaulay and modified duration for a
zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1
or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an
empty matrix ([]) as a placeholder for an optional argument. Fill in
unspecified entries input vectors with NaNs. Dates can be serial date
numbers or date strings.

Examples Find the duration of a bond at three different yield values:

Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;

[ModDuration,YearDuration,PerDuration]=bnddury(Yield,...
CouponRate, Settle, Maturity, Period, Basis)

This returns:

17-109

bnddury

ModDuration =

4.2444
4.1924
4.1751

YearDuration =

4.3292
4.3077
4.3004

PerDuration =

8.6585
8.6154
8.6007

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

See Also bndconvp | bndconvy | bnddurp | bndkrdur

How To • “Yield Conventions” on page 2-31

17-110

bndkrdur

Purpose Bond key rate duration given zero curve

Syntax KRDUR = bndkrdur(ZeroData, CouponRate,
Settle, Maturity)
KRDUR = bndkrdur(ZeroData, CouponRate, Settle,
Maturity, 'Parameter1', Value1, 'Parameter2',
Value2, ...)

Arguments

ZeroData Zero curve represented as a numRates-by-2
matrix where the first column is a MATLAB
date number and the second column is
accompanying zero rates.

CouponRate numBonds-by-1 vector of coupon rates in decimal
form.

Settle Scalar MATLAB date number for the
settlement date for all the bonds and the zero
data. Settle must be the same settlement date
for all the bonds and the zero curve.

Maturity numBonds-by-1 vector of maturity dates.

Period (Optional) Coupons per year of the bond. A
vector of integers. Acceptable values are 0, 1, 2
(default), 3, 4, 6, and 12.

InterpMethod (Optional) Interpolation method used to obtain
points from the zero curve. Acceptable values
are:

• 'linear' (default)

• 'cubic'

• 'pchip'

17-111

bndkrdur

ShiftValue (Optional) Scalar value that zero curve is
shifted up and down to compute duration.
Default is .01 (100 basis points).

KeyRates (Optional) Rates to perform the duration
calculation, specified as a time to maturity.
By default, KeyRates is set to each of the zero
dates.

CurveCompounding (Optional) Compounding frequency of the
curve. Default is semiannual.

CurveBasis (Optional) Basis of the curve, where the choices
are identical to Basis below. Default is 0
(actual/actual).

Basis (Optional) Day-count basis of the bond
instrument. A vector of integers:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252

17-112

bndkrdur

For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. This rule applies
only when Maturity is an end-of-month date
for a month having 30 or fewer days. The
values are:

• 0 = ignore rule, meaning that a bond’s
coupon payment date is always the same
numerical day of the month.

• 1 = set rule on (default), meaning that a
bond’s coupon payment date is always the
last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

17-113

bndkrdur

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
is considered). To make an instrument
forward-starting, specify this date as a future
date. If you do not specify StartDate, the
effective start date is the Settle date.

Face (Optional) Face or par value. Default = 100.
Face has no impact on key rate duration.

Note You must enter the optional arguments as parameter/value pairs.

Description KRDUR = bndkrdur(ZeroData, CouponRate, Settle, Maturity)

KRDUR = bndkrdur(ZeroData, CouponRate, Settle, Maturity,
'Parameter1', Value1, 'Parameter2', Value2, ...)

The output argument KRDUR is a numBonds-by-numRates matrix of key
rate durations.

bndkrdur computes the key rate durations for one or more bonds given
a zero curve and a set of key rates. By default, the key rates are each
of the zero curve rates. For each key rate, the duration is computed by
shifting the zero curve up and down by a specified amount (ShiftValue)
at that particular key rate, computing the present value of the bond in
each case with the new zero curves, and then evaluating the following:

krdur
PV PV

PV ShiftValuei
down up

=

× ×
(-)

()2

17-114

bndkrdur

Note The shift to the curve is computed by shifting the particular key
rate by the ShiftValue and then interpolating the values of the curve
in the interval between the previous and next key rates. For the first
key rate, any curve values before the date are equal to the ShiftValue;
likewise, for the last key rate, any curve values after the date are equal
to the ShiftValue.

Examples Find the key rate duration of a bond for key rate times of 2, 5, 10, and
30 years.

ZeroRates = [0.0476 .0466 .0465 .0468 .0473 .0478 ...

.0493 .0539 .0572 .0553 .0530]';

ZeroDates = daysadd('31-Dec-1998',[30 360 360*2 360*3 360*5 ...

360*7 360*10 360*15 360*20 360*25 360*30],1);

ZeroData = [ZeroDates ZeroRates];

krdur = bndkrdur(ZeroData,.0525,'12/31/1998',...

'11/15/2028','KeyRates',[2 5 10 30])

krdur =

0.2986 0.8791 4.1354 9.5811

References Golub, B.W. and L.M. Tilman, Risk Management: Approaches for Fixed
Income Markets Wiley, 2000.

Tuckman, B. Fixed Income Securities: Tools for Today’s MarketsWiley,
2002.

See Also bndconvp | bndconvy | bnddurp | bnddury

17-115

bndprice

Purpose Price fixed income security from yield to maturity

Syntax [Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,
Maturity)
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face)
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,
Maturity, 'ParameterName', 'ParameterValue ...)

Description [Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,
Maturity), given bonds with SIA date parameters and semiannual
yields to maturity, returns the clean prices and accrued interest due.

[Price, AccruedInt] = bndprice(Yield, CouponRate,
Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face) given bonds
with SIA date parameters and semiannual yields to maturity and
optional inputs, returns the clean prices and accrued interest due.

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,
Maturity, 'ParameterName', 'ParameterValue ...) accepts
optional inputs as one or more comma-separated parameter/value pairs.
'ParameterName' is the name of the parameter inside single quotes.
ParameterValue is the value corresponding to 'ParameterName'.
Specify parameter/value pairs in any order. Names are case-insensitive.

Input
Arguments

Yield

Bond yield to maturity is on a semiannual basis for basis values 0
through 7 and an annual basis for basis values 8 through 12.

CouponRate

Decimal number indicating the annual percentage rate used to
determine the coupons payable on a bond.

17-116

bndprice

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter
value pairs. You cannot mix ordered syntax with parameter value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2 ,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

17-117

bndprice

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs.

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

17-118

bndprice

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Default: If you do not specify StartDate, the effective start date
is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases
(0-7) and BUS/252 use a semiannual compounding convention and
ISMA bases (8-12) use an annual compounding convention.

Default: SIA bases (0-7) and BUS/252 use a semiannual
compounding convention and ISMA bases (8-12) use an annual
compounding convention.

17-119

bndprice

DiscountBasis

Basis used to compute the discount factors for computing the yield. The
default behavior is for SIA bases to use the actual/actual day count to
compute discount factors. If you use ISMA day counts and BUS/252, the
specified bases are used.

Default: SIA bases use the actual/actual day count to compute
discount factors.

LastCouponInterest

Compounding convention for computing the yield of a bond in the last
coupon period. This is based on only the last coupon and the face value
to be repaid. Acceptable values are simple or compound.

Default: compound

Output
Arguments

Price

NUMBONDS-by-1 vector for the clean price of the bond. The dirty price
of the bond is the clean price plus the accrued interest. It equals the
present value of the bond cash flows of the yield to maturity with
semiannual compounding.

AccruedInt

NUMBONDS-by-1 vector for the accrued interest payable at settlement.

Definitions Given NBONDS with date parameters and yields to maturity, bndprice
returns the clean prices and the accrued interest due.

All nonscalar or empty matrix input arguments must be either
NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors. Fill in unspecified
entries input vectors with NaNs. Dates can be serial date numbers or
date strings.

17-120

bndprice

Examples Price a treasury bond at three different yield values:

Yield = [0.04; 0.05; 0.06];
CouponRate = 0.05;
Settle = '20-Jan-1997';
Maturity = '15-Jun-2002';
Period = 2;
Basis = 0;

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,...
Maturity, Period, Basis)

This returns:

Price =

104.8106
99.9951
95.4384

AccruedInt =

0.4945
0.4945
0.4945

Price a Treasury bond at two different yield values that include
parameter/value pairs for CompoundingFrequency, DiscountBasis,
and LastCouponPeriodInterest:

bndprice(.04,0.08,'5/25/2004','4/21/2005','Period',1,'Basis',8, ...

'LastCouponInterest','simple')

This returns:

ans =

17-121

bndprice

103.4743

Algorithms For SIA conventions, the following formula defines bond price and yield:

PV
CF

z
f

TFi

n

()

,
11

where:

PV = Present value of a cash flow.

CF = Cash flow amount.

z = Risk-adjusted annualized rate or yield corresponding to
a given cash flow. The yield is quoted on a semiannual
basis.

f = Frequency of quotes for the yield. Default is 2 for
Basis values 0 to 7 and 13 and 1 for Basis values 8 to
12. The default can be overridden by specifying the
CompoundingFrequency name/value pair.

TF = Time factor for a given cash flow. The time factor is
computed using the compounding frequency and the
discount basis. If these values are not specified, then the
defaults are as follows: CompoundingFrequency default
is 2 for Basis values 0 to 7 and 13 and 1 for Basis
values 8 to 12. DiscountBasis is 0 for Basis values 0 to
7 and 13 and the input Basis for Basis values 8 to 12.

Note The Basis is always used to compute accrued interest.

17-122

bndprice

For ISMA conventions, the frequency of annual coupon payments
determines bond price and yield.

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

See Also bndyield | cfamounts

Tutorials • “Pricing Functions” on page 2-31

17-123

bndspread

Purpose Static spread over spot curve

Syntax Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity)
Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate
LastCouponDate, StartDate, Face)
Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity,
'ParameterName', 'ParameterValue ...)

Description Spread = bndspread(SpotInfo, Price, Coupon, Settle,
Maturity) computes the static spread (Z-spread) to benchmark in basis
points.

Spread = bndspread(SpotInfo, Price, Coupon, Settle,
MaturityPeriod, Basis, EndMonthRule, IssueDate,
FirstCouponDateLastCouponDate, StartDate, Face) computes the
static spread (Z-spread) to benchmark in basis points including optional
inputs.

Spread = bndspread(SpotInfo, Price, Coupon, Settle,
Maturity,'ParameterName', 'ParameterValue ...) accepts
optional inputs as one or more comma-separated parameter/value pairs.
'ParameterName' is the name of the parameter inside single quotes.
ParameterValue is the value corresponding to 'ParameterName'.
Specify parameter/value pairs in any order. Names are case-insensitive.

Input
Arguments

SpotInfo

Two-column matrix: [SpotDates ZeroRates]. Zero rates correspond to
maturities on the spot dates, continuously compounded. Choose evenly
spaced rates close together to obtain the best results. For example,
using the 3-month deposit rates:

SpotInfo = ...
[datenum('2-Jan-2004') , 0.03840;
datenum('2-Jan-2005') , 0.04512;
datenum('2-Jan-2006') , 0.05086];

17-124

bndspread

Price

Price for every $100 notional amount of bonds whose spreads are
computed. This is the clean price of the bond (current price without
accrued interest).

Coupon

Annual coupon rate of bonds whose spreads are computed.

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as
parameter/value pairs. You cannot mix ordered syntax with
parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

17-125

bndspread

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

17-126

bndspread

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases
(0-7) and BUS/252 use a semiannual compounding convention and
ISMA bases (8-12) use an annual compounding convention.

DiscountBasis

17-127

bndspread

Basis used to compute the discount factors for computing the yield. The
default behavior is for SIA bases to use the actual/actual day count to
compute discount factors. If you use ISMA day counts and BUS/252, the
specified bases are used.

Output
Arguments

Spread

Static spread to benchmark, in basis points.

Examples Compute a Federal National Mortgage Association (FNMA) 4 3/8 spread
over a Treasury spot curve:

RefMaturity = [datenum('02/27/2003');

datenum('05/29/2003');

datenum('10/31/2004');

datenum('11/15/2007');

datenum('11/15/2012');

datenum('02/15/2031')];

RefCpn = [0;

0;

2.125;

3;

4;

5.375] / 100;

RefPrices = [99.6964;

99.3572;

100.3662;

99.4511;

99.4299;

106.5756];

RefBonds = [RefPrices, RefMaturity, RefCpn];

Settle = datenum('26-Nov-2002');

[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ...

RefPrices, Settle)

17-128

bndspread

% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday

Price = 105.484;

Coupon = 0.04375;

Maturity = datenum('15-Oct-2006');

% All optional inputs are supposed to be accounted by default,

% except the accrued interest under 30/360 (SIA), so:

Period = 2;

Basis = 1;

SpotInfo = [CurveDates, ZeroRates];

% Compute static spread over treasury curve, taking into account

% the shape of curve as derived by bootstrapping method embedded

% within bndspread.

SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...

Maturity, Period, Basis)

This returns:

ZeroRates =

0.0121
0.0127
0.0194
0.0317
0.0423
0.0550

CurveDates =

731639
731730
732251
733361
735188

17-129

bndspread

741854

SpreadInBP =

18.7582

Plot the results:

plot(CurveDates, ZeroRates*100, 'b', CurveDates, ...
ZeroRates*100+SpreadInBP/100, 'r--')
legend({'Treasury'; 'FNMA 4 3/8'})
xlabel('Curve Dates')
ylabel('Spot Rate [%]')
grid;

17-130

bndspread

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

See Also bndyield | bndprice

17-131

bndyield

Purpose Yield to maturity for fixed income security

Syntax Yield = bndyield(Price, CouponRate, Settle, Maturity)
Yield = bndyield(Price, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face)
Yield = bndyield(Price, CouponRate, Settle, Maturity,
'ParameterName', 'ParameterValue ...)

Description Yield = bndyield(Price, CouponRate, Settle, Maturity), given
NUMBONDS bonds with SIA date parameters and clean prices (excludes
accrued interest), returns the bond equivalent yields to maturity.

Yield = bndyield(Price, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face) bonds with SIA date parameters
and clean prices (excludes accrued interest) and optional inputs, returns
the bond equivalent yields to maturity.

Yield = bndyield(Price, CouponRate, Settle, Maturity,
'ParameterName', 'ParameterValue ...) accepts optional inputs as
one or more comma-separated parameter/value pairs. 'ParameterName'
is the name of the parameter inside single quotes. ParameterValue is
the value corresponding to 'ParameterName'. Specify parameter/value
pairs in any order. Names are case-insensitive.

Input
Arguments

Price

Clean price of the bond (current price without accrued interest).

CouponRate

Decimal number indicating the annual percentage rate used to
determine the coupons payable on a bond.

Settle

17-132

bndyield

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as
parameter/value pairs. You cannot mix ordered syntax with
parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-133

bndyield

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs.

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified

17-134

bndyield

FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Default: If you do not specify StartDate, the effective start date
is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases
(0-7) and BUS/252 use a semiannual compounding convention and
ISMA bases (8-12) use an annual compounding convention.

Default: SIA bases (0-7) and BUS/252 use a semiannual
compounding convention and ISMA bases (8-12) use an annual
compounding convention.

DiscountBasis

17-135

bndyield

Basis used to compute the discount factors for computing the yield. The
default behavior is for SIA bases to use the actual/actual day count to
compute discount factors. If you use ISMA day counts and BUS/252, the
specified bases are used.

Default: SIA bases use the actual/actual day count to compute
discount factors.

LastCouponInterest

Compounding convention for computing the yield of a bond in the last
coupon period. This computation is based on only the last coupon and
the face value to be repaid. Acceptable values are simple or compound.

Default: compound

Output
Arguments

Yield

NUMBONDS-by-1 vector of the yield to maturity with semiannual
compounding.

Definitions All nonscalar or empty matrix input arguments must be either
NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors. Fill in unspecified
entries input vectors with NaNs. Dates can be serial date numbers or
date strings.

Examples Compute the yield of a Treasury bond at three different price values:

Price = [95; 100; 105];
CouponRate = 0.05;
Settle = '20-Jan-1997';
Maturity = '15-Jun-2002';
Period = 2;
Basis = 0;

Yield = bndyield(Price, CouponRate, Settle,...
Maturity, Period, Basis)

17-136

bndyield

This returns:

Yield =

0.0610
0.0500
0.0396

Algorithms For SIA conventions, the following formula defines bond price and yield:

PV
CF

z
f

TF
=

+()
,

1

where:

PV = Present value of a cash flow.

CF = The cash flow amount.

z = The risk-adjusted annualized rate or yield corresponding
to a given cash flow. The yield is quoted on a semiannual
basis.

f = The frequency of quotes for the yield.

TF = Time factor for a given cash flow. Time is measured
in semiannual periods from the settlement date to the
cash flow date. In computing time factors, use SIA
actual/actual day count conventions for all time factor
calculations.

For ISMA conventions, the frequency of annual coupon payments
determines bond price and yield.

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

17-137

bndyield

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

See Also bndprice | cfamounts

How To • “Yield Functions” on page 2-32

17-138

bolling

Purpose Bollinger band chart

Syntax bolling(Asset, Samples, Alpha)
[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha,
Width)

Arguments

Asset Vector of asset data.

Samples Number of samples to use in computing the moving
average.

Alpha (Optional) Exponent used to compute the element
weights of the moving average. Default = 0 (simple
moving average).

Width (Optional) Number of standard deviations to include
in the envelope. A multiplicative factor specifying
how tight the bands should be around the simple
moving average. Default = 2.

Description bolling(Asset, Samples, Alpha, Width) plots Bollinger bands for
given Asset data. This form of the function does not return any data.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples,
Alpha, Width) returns Movavgv with the moving average of the Asset
data, UpperBand with the upper band data, and LowerBand with the
lower band data. This form of the function does not plot any data.

Note The standard deviations are normalized by N-1, where N = the
sequence length.

17-139

bolling

Examples If Asset is a column vector of closing stock prices

bolling(Asset, 20, 1)

plots linear 20-day moving average Bollinger bands based on the stock
prices.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, 20, 1)

returns Movavgv, UpperBand, and LowerBand as vectors containing the
moving average, upper band, and lower band data, without plotting
the data.

See Also candle | dateaxis | highlow | movavg | pointfig

17-140

bollinger

Purpose Time series Bollinger band

Syntax [mid, uppr, lowr] = bollinger(data, wsize, wts, nstd)
[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts, nstd)

Arguments

data Data vector.

wsize (Optional) Window size. Default = 20.

wts (Optional) Weight factor. Determines the type of
moving average used. Default = 0 (box). 1 = linear.

nstd (Optional) Number of standard deviations for upper
and lower bands. Default = 2.

tsobj Financial time series object.

Description [mid, uppr, lowr] = bollinger(data, wsize, wts, nstd)
calculates the middle (mid), upper (uppr), and lower (lowr) bands that
make up the Bollinger bands from the vector data.

mid is the vector that represents the middle band, a simple moving
average with a window size of wsize. uppr and lowr are vectors that
represent the upper and lower bands. uppr is a vector representing the
upper band that is +nstd times. lowr is a vector representing the lower
band that is -nstd times.

[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts,
nstd) calculates the middle, upper, and lower bands that make up the
Bollinger bands from a financial time series object tsobj.

midfts is a financial time series object that represents the middle band
for all series in tsobj. Both upprfts and lowrfts are financial time
series objects that represent the upper and lower bands of all series,
which are +nstd times and -nstd times moving standard deviations
away from the middle band.

17-141

bollinger

Examples Compute the Bollinger bands for Disney stock closing prices and plot
the results:

load disney.mat
[dis_Mid,dis_Uppr,dis_Lowr]= bollinger(dis);
dis_CloseBolling = [dis_Mid.CLOSE, dis_Uppr.CLOSE,...
dis_Lowr.CLOSE];
plot(dis_CloseBolling)
title('Bollinger Bands for Disney Closing Prices')

References Achelis, Steven B., Technical Analysis from A to Z, Second Edition,
McGraw-Hill, 1995, pp. 72-74.

See Also tsmovavg

17-142

boxcox

Purpose Box-Cox transformation

Syntax [transdat, lambda] = boxcox(data)
[transfts, lambdas] = boxcox(tsobj)
transdat = boxcox(lambda, data)
transfts = boxcox(lambda, tsobj)

Arguments

data Data vector. Must be positive and specified as a
column data vector.

tsobj Financial time series object.

Description boxcox transforms nonnormally distributed data to a set of data that
has approximately normal distribution. The Box-Cox transformation is
a family of power transformations.

If λ is not = 0, then

data
data

()

= − 1

If λ is = 0, then

data data() log() =

The logarithm is the natural logarithm (log base e). The algorithm calls
for finding the λ value that maximizes the Log-Likelihood Function
(LLF). The search is conducted using fminsearch.

[transdat, lambda] = boxcox(data) transforms the data vector
data using the Box-Cox transformation method into transdat. It also
estimates the transformation parameter λ.

17-143

boxcox

[transfts, lambda] = boxcox(tsojb) transforms the financial time
series object tsobj using the Box-Cox transformation method into
transfts. It also estimates the transformation parameter λ.

If the input data is a vector, lambda is a scalar. If the input is a financial
time series object, lambda is a structure with fields similar to the
components of the object; for example, if the object contains series names
Open and Close, lambda has fields lambda.Open and lambda.Close.

transdat = boxcox(lambda, data) and transfts = boxcox(lambda,
tsobj) transform the data using a certain specified λ for the Box-Cox
transformation. This syntax does not find the optimum λ that
maximizes the LLF.

See Also fminsearch

17-144

busdate

Purpose Next or previous business day

Syntax Busday = busdate(Date, DirFlag, Holiday, Weekend)

Arguments

Date Reference date. Enter scalar, vector, or matrix of
reference business dates as serial date numbers or
date strings.

DirFlag (Optional) String or cell array of strings of
business day convention with possible values:
follow (default), modifiedfollow, previous,
modifiedprevious. Also, DirFlag may be a scalar,
vector, or matrix of search directions, where Next is
DIREC = 1 (default) or Previous is DIREC = -1.

Holiday (Optional) Vector of holidays and nontrading-day
dates. All dates in Holiday must be the same
format: either serial date numbers or date strings.
(Using serial date numbers improves performance.)
If Holiday is not specified, the non-trading day
default vector is determined by the routine holidays
function.

Weekend (Optional) Vector of length 7, containing 0 and 1, the
value 1 indicating weekend days. The first element
of this vector corresponds to Sunday. Thus, when
Saturday and Sunday form the weekend (default),
Weekend = [1 0 0 0 0 0 1].

Description Busday = busdate(Date, DirFlag, Holiday, Weekend) returns
the scalar, vector, or matrix of the next or previous business day(s),
depending on Holiday.

17-145

busdate

Use the function datestr to convert serial date numbers to formatted
date strings.

Examples Example 1.

Busday = busdate('3-Jul-2001', 1)
Busday =

731037

datestr(Busday)

ans =

05-Jul-2001

Example 2. You can indicate that Saturday is a business day by
appropriately setting the Weekend argument.

Weekend = [1 0 0 0 0 0 0];

July 4, 2003 falls on a Friday. Use busdate to verify that Saturday,
July 5, is actually a business day.

Date = datestr(busdate('3-Jul-2003', 1, [], Weekend))

See Also holidays | isbusday

17-146

busdays

Purpose Business days in serial date format

Syntax bdates = busdays(sdate, edate, bdmode)
bdates = busdays(sdate, edate, bdmode, holvec)

Arguments

sdate Start date in string or serial date format.

edate End date in string or serial date format.

bdmode (Optional) Frequency of business days:

• DAILY, Daily, daily, D, d, 1 (default)

• WEEKLY, Weekly, weekly, W, w, 2

• MONTHLY, Monthly, monthly, M, m, 3

• QUARTERLY, Quarterly, quarterly, Q, q, 4

• SEMIANNUAL, Semiannual, semiannual, S, s, 5

• ANNUAL, Annual, annual, A, a, 6

Strings must be enclosed in single quotation marks.

holvec (Optional) Holiday dates vector in string or serial
date format.

Description bdates = busdays(sdate, edate, bdmode) generates a vector of
business days, bdates, in serial date format between the last business
date of the period that contains the start date, and the last business
date of period that contains the end date. If holvec is not supplied, the
dates are generated based on United States holidays. If you do not
supply bdmode, busdays generates a daily vector.

For example:

vec = datestr(busdays('1/2/01','1/9/01','weekly'))

17-147

busdays

vec =
05-Jan-2001
12-Jan-2001

The end of the week is considered to be a Friday. Between 1/2/01
(Monday) and 1/9/01 (Tuesday) there is only one end-of-week day, 1/5/01
(Friday).

Because 1/9/01 is part of following week, the following Friday (1/12/01)
is also reported.

bdates = busdays(sdate, edate, bdmode, holvec) lets you supply
a vector of holidays, holvec, used to generate business days. holvec
can either be in serial date format or date string format. If you use this
syntax, you need to supply the frequency bdmode.

The output, bdates, is a column vector of business dates in serial date
format.

Setting holvec to '' (empty string) or [] (empty vector) results in
BUSDAYS using a default holiday schedule. The default holiday schedule
is the NYSE holiday schedule.

17-148

candle

Purpose Candlestick chart

Syntax candle(HighPrices, LowPrices, ClosePrices, OpenPrices)
candle(HighPrices, LowPrices, ClosePrices, OpenPrices,
Color, Dates, Dateform)

Arguments

HighPrices High prices for a security. A column vector.

LowPrices Low prices for a security. A column vector.

ClosePrices Closing prices for a security. A column vector.

OpenPrices Opening prices for a security. A column vector.

Color (Optional) Candlestick color. A string. MATLAB
software supplies a default color if none is specified.
The default color differs depending on the background
color of the figure window. See ColorSpec in the
MATLAB documentation for color names.

Dates (Optional) Column vector of dates for user specified
X-axis tick labels.

Dateform (Optional) Date string format used as the x-axis
tick labels. (See datetick in the MATLAB
documentation.) You can specify a dateform only
when tsobj does not contain time-of-day data.
If tsobj contains time-of-day data, dateform is
restricted to 'dd-mmm-yyyy HH:MM'.

Description candle(HighPrices, LowPrices, ClosePrices, OpenPrices) plots
a candlestick chart given column vectors with the high, low, closing,
and opening prices of a security.

If the closing price is greater than the opening price, the body (the
region between the opening and closing price) is unfilled.

17-149

candle

If the opening price is greater than the closing price, the body is filled.

candle(HighPrices, LowPrices, ClosePrices, OpenPrices,
Color, Dates, Dateform) plots a candlestick chart given column
vectors with the high, low, closing, and opening prices of a security. In
addition, the optional arguments Color, Dates, and Dateform specify
the color of the candle box and the date string format used as the x-axis
tick labels.

Examples Given HighPrices, LowPrices, ClosePrices, and OpenPrices as
equal-size vectors of stock price data

candle(HighPrices, LowPrices, ClosePrices, OpenPrices, 'blue')

plots a candlestick chart with blue candles.

The following example shows a candlestick chart for the most recent 21
days in disney.mat:

load disney;

candle(dis_HIGH(end-20:end), dis_LOW(end-20:end), dis_CLOSE(end-20:end),...

dis_OPEN(end-20:end), 'b');

17-150

candle

See Also bolling | candle | dateaxis | highlow | movavg | pointfig

17-151

candle (fts)

Purpose Time series candle plot

Syntax candle(tsobj)
candle(tsobj, color)
candle(tsobj, color, dateform)
candle(tsobj, color, dateform, ParameterName, ParameterValue, ...)
hcdl = candle(tsobj, color, dateform, ParameterName,
ParameterValue, ...)

Arguments

tsobj Financial time series object

color (Optional) A three-element row vector representing
RGB or a color identifier. (See plot in the MATLAB
documentation.)

dateform (Optional) Date string format used as the x-axis
tick labels. (See datetick in the MATLAB
documentation.) You can specify a dateform only
when tsobj does not contain time-of-day data.
If tsobj contains time-of-day data, dateform is
restricted to 'dd-mmm-yyyy HH:MM'.

Description candle(tsobj) generates a candle plot of the data in the financial
time series object tsobj. tsobj must contain at least four data series
representing the high, low, open, and closing prices. These series must
have the names High, Low, Open, and Close (case-insensitive).

candle(tsobj, color) additionally specifies the color of the candle
box.

candle(tsobj, color, dateform) additionally specifies the date
string format used as the x-axis tick labels. See datestr for a list of
date string formats.

17-152

candle (fts)

candle(tsobj, color, dateform, ParameterName,
ParameterValue, ...) indicates the actual name(s) of the
required data series if the data series do not have the default names.
ParameterName can be

• HighName: high prices series name

• LowName: low prices series name

• OpenName: open prices series name

• CloseName: closing prices series name

hcdl = candle(tsobj, color, dateform, ParameterName,
ParameterValue, ...) returns the handle to the patch objects and
the line object that make up the candle plot. hdcl is a three-element
column vector representing the handles to the two patches and one line
that forms the candle plot.

Examples Create a candle plot for Disney stock for the dates March 31, 1998
through April 30, 1998:

load disney.mat
candle(dis('3/31/98::4/30/98'))
title('Disney 3/31/98 to 4/30/98')

17-153

candle (fts)

See Also candle | chartfts | highlow | plot

17-154

cfamounts

Purpose Cash flow and time mapping for bond portfolio

Syntax [CFlowAmounts, CFlowDates, TFactors, CFlowFlags,
CFPrincipal] = cfamounts(CouponRate, Settle, Maturity)
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,
CFPrincipal] = cfamounts(CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face)
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,
CFPrincipal] = cfamounts(CouponRate, Settle, Maturity,
'ParameterName', 'ParameterValue ...)

Description [CFlowAmounts, CFlowDates, TFactors, CFlowFlags,
CFPrincipal] = cfamounts(CouponRate, Settle, Maturity)
returns matrices of cash flow amounts, cash flow dates, time factors,
and cash flow flags for a portfolio of NUMBONDS fixed-income securities.

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,
CFPrincipal] = cfamounts(CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face) returns matrices of cash flow
amounts, cash flow dates, time factors, and cash flow flags for a portfolio
of NUMBONDS fixed-income securities defined using required and optional
inputs.

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,
CFPrincipal] = cfamounts(CouponRate, Settle, Maturity,
'ParameterName', 'ParameterValue ...) accepts optional inputs as
one or more comma-separated parameter/value pairs. 'ParameterName'
is the name of the parameter inside single quotes. ParameterValue is
the value corresponding to 'ParameterName'. Specify parameter/value
pairs in any order. Names are case-insensitive.

Input
Arguments

CouponRate

Decimal number indicating the annual percentage rate used to
determine the coupons payable on a bond. CouponRate is 0 for zero
coupon bonds.

17-155

cfamounts

Note CouponRate and Face can change over the life of the bond.
Schedules for CouponRate and Face can be specified with an NINST-by-1
cell array, where each element is a NumDates-by-2 matrix or cell array,
where the first column is dates and the second column is associated
rates. The date indicates the last day that the coupon rate or face value
is valid.

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as
parameter/value pairs. You cannot mix ordered syntax with
parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

17-156

cfamounts

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days.

• 0 = ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs.

17-157

cfamounts

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash
flow is considered). To make an instrument forward-starting, specify
this date as a future date.

Default: If you do not specify StartDate, the effective start date
is the Settle date.

Face

Face or par value.

17-158

cfamounts

Note CouponRate and Face can change over the life of the bond.
Schedules for CouponRate and Face can be specified with an NINST-by-1
cell array where each element is a NumDates-by-2 matrix or cell array,
where the first column is dates and the second column is associated
rates. The date indicates the last day that the coupon rate or face value
is valid.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: False

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

CompoundingFrequency

17-159

cfamounts

Compounding frequency for yield calculation.

Default: SIA bases (0-7) and BUS/252 use a semiannual
compounding convention and ISMA bases (8-12) use an annual
compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. If
you use ISMA day counts and BUS/252, the specified basis are used.

Default: SIA bases use the actual/actual day count to compute
discount factors.

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

PrincipalType

Type of principal for case when a Face schedule is specified. The
principal type is either sinking or bullet. If sinking, principal cash
flows are returned throughout the life of the bond. If bullet, principal
cash flow is only returned at maturity.

Default: sinking

Output
Arguments

CFlowAmounts

Cash flow matrix of a portfolio of bonds. Each row represents the cash
flow vector of a single bond. Each element in a column represents a
specific cash flow for that bond.

CFlowDates

17-160

cfamounts

Cash flow date matrix of a portfolio of bonds. Each row represents a
single bond in the portfolio. Each element in a column represents a
cash flow date of that bond.

TFactors

Matrix of time factors for a portfolio of bonds. Each row corresponds
to the vector of time factors for each bond. Each element in a column
corresponds to the specific time factor associated with each cash flow
of a bond. Time factors help determine the present value of a stream
of cash flows. The term time factor refers to the exponent TF in the
discounting equation

PV
CF

z
f

TFi

n

()

,
11

where:

PV = Present value of a cash flow.

CF = Cash flow amount.

z = Risk-adjusted annualized rate or yield corresponding to
a given cash flow. The yield is quoted on a semiannual
basis.

17-161

cfamounts

f = Frequency of quotes for the yield. Default is 2 for
Basis values 0 to 7 and 13 and 1 for Basis values 8 to
12. The default can be overridden by specifying the
CompoundingFrequency name/value pair.

TF = Time factor for a given cash flow. The time factor is
computed using the compounding frequency and the
discount basis. If these values are not specified, then the
defaults are as follows: CompoundingFrequency default
is 2 for Basis values 0 to 7 and 13 and 1 for Basis
values 8 to 12. DiscountBasis is 0 for Basis values 0 to
7 and 13 and the input Basis for Basis values 8 to 12.

Note The Basis is always used to compute accrued interest.

CFlowFlags

Matrix of cash flow flags for a portfolio of bonds. Each row corresponds
to the vector of cash flow flags for each bond. Each element in a column
corresponds to the specific flag associated with each cash flow of a bond.
Flags identify the type of each cash flow (for example, nominal coupon
cash flow, front, or end partial, or “stub” coupon, maturity cash flow).

Flag Cash Flow Type

0 Accrued interest due on a bond at settlement.

1 Initial cash flow amount smaller than normal due to a
“stub” coupon period. A stub period is created when
the time from issue date to first coupon date is shorter
than normal.

2 Larger than normal initial cash flow amount because
the first coupon period is longer than normal.

17-162

cfamounts

Flag Cash Flow Type

3 Nominal coupon cash flow amount.

4 Normal maturity cash flow amount (face value plus the
nominal coupon amount).

5 End “stub” coupon amount (last coupon period is
abnormally short and actual maturity cash flow is
smaller than normal).

6 Larger than normal maturity cash flow because the last
coupon period longer than normal.

7 Maturity cash flow on a coupon bond when the bond
has less than one coupon period to maturity.

8 Smaller than normal maturity cash flow when the bond
has less than one coupon period to maturity.

9 Larger than normal maturity cash flow when the bond
has less than one coupon period to maturity.

10 Maturity cash flow on a zero coupon bond.

11 Sinking principal and initial cash flow amount smaller
than normal due to a "stub" coupon period. A stub
period is created when the time from issue date to first
coupon date is shorter than normal.

12 Sinking principal and larger than normal initial cash
flow amount because the first coupon period is longer
than normal.

13 Sinking principal and nominal coupon cash flow
amount.

CFPrincipal

CFPrincipal contains the principal cash flows. If PrincipalType is
bullet, CFPrincipal is all zeros and, at Maturity, the appropriate
Face value.

17-163

cfamounts

Definitions The elements contained in the cfamounts cash flow matrix, time factor
matrix, and cash flow flag matrix correspond to the cash flow dates for
each security. The first element of each row in the cash flow matrix is
the accrued interest payable on each bond. This accrued interest is
zero in the case of all zero coupon bonds. cfamounts determines all
cash flows and time mappings for a bond whether or not the coupon
structure contains odd first or last periods. All output matrices are
padded with NaNs as necessary to ensure that all rows have the same
number of elements.

Examples Compute the cash flow structure and time factors for a bond portfolio
containing a corporate bond paying interest quarterly and a Treasury
bond paying interest semiannually:

Settle = '01-Nov-1993';
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, Period, Basis)

This returns:

CFlowAmounts =

-0.7667 1.5000 1.5000 1.5000 1.5000 101.5000

-1.8989 2.5000 2.5000 2.5000 102.5000 NaN

CFlowDates =

728234 728278 728368 728460 728552 728643

728234 728278 728460 728643 728825 NaN

TFactors =

0 0.2404 0.7403 1.2404 1.7403 2.2404

17-164

cfamounts

0 0.2404 1.2404 2.2404 3.2404 NaN

CFlowFlags =

0 3 3 3 3 4

0 3 3 3 4 NaN

Compute the cash flow structure and time factors for a bond
portfolio containing a corporate bond paying interest quarterly and a
Treasury bond paying interest semiannually. Use parameter/value
pairs for the following optional input arguments: Period, Basis,
BusinessDayConvention, and AdjustCashFlowsBasis:

Settle = '01-Jun-2010';
Maturity = ['15-Dec-2011';'15-Jun-2012'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, 'Period',Period, ...
'Basis', Basis, 'AdjustCashFlowsBasis', true,...
'BusinessDayConvention','modifiedfollow')

This returns:

CFlowAmounts =

-1.2667 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 101.5000

-2.3077 2.4932 2.5068 2.4932 2.5068 102.5000 NaN NaN

CFlowDates =

Columns 1 through 7

17-165

cfamounts

734290 734304 734396 734487 734577 734669 734761

734290 734304 734487 734669 734852 735035 NaN

Column 8

734852

NaN

TFactors =

0 0.0769 0.5761 1.0769 1.5761 2.0769 2.5761 3.0769

0 0.0769 1.0769 2.0769 3.0769 4.0769 NaN NaN

CFlowFlags =

0 3 3 3 3 3 3 4

0 3 3 3 3 4 NaN NaN

For CouponRate and Face that change over the life of the bond,
schedules for Coupon Rate and Face can be specified with an NINST-by-1
cell array, where each element is a NumDates-by-2 matrix where the
first column is dates and the second column is associated rates.

An example of cfamounts using a CouponRate schedule is:

CouponSchedule = {[datenum('15-Mar-2012') .04;datenum('15- Mar -2013') .05;...

datenum('15- Mar -2015') .06]}

cfamounts(CouponSchedule,'01-Mar-2011','15-Mar-2015')

This returns:

CouponSchedule =

[3x2 double]

17-166

cfamounts

ans =

-1.8453 2.0000 2.0000 2.0000 2.5000 2.5000 3.0000 3.0000 3.0000 103.0000

An example of cfamounts using a Face schedule is:

FaceSchedule = {[datenum('15-Mar-2012') 100;datenum('15- Mar -2013') 90;...

datenum('15- Mar -2015') 80]}

cfamounts(.05,'01-Mar-2011','15-Mar-2015', 'Face', FaceSchedule)

This returns:

FaceSchedule =

[3x2 double]

ans =

-2.3066 2.5000 2.5000 2.5000 2.2500 2.2500 2.0000 2.0000 2.0000 82.0000

Use cfamounts to generate the cash flows for a sinking bond:

[CFlowAmounts,CFDates,TFactors,CFFlags,CFPrincipal] = cfamounts(.05,'04-Nov-2010',...

{'15-Jul-2014';'15-Jul-2015'},'Face',{[datenum('15-Jul-2013') 100;datenum('15-Jul-2014')...

90;datenum('15-Jul-2015') 80]})

This returns:

CFlowAmounts =

-1.5217 2.5000 2.5000 2.5000 2.5000 2.5000 12.5000 2.2500 92.2500 NaN NaN

-1.5217 2.5000 2.5000 2.5000 2.5000 2.5000 12.5000 2.2500 12.2500 2.0000 82.0000

CFDates =

17-167

cfamounts

Columns 1 through 9

734446 734518 734699 734883 735065 735249 735430 735614 735795

734446 734518 734699 734883 735065 735249 735430 735614 735795

Columns 10 through 11

NaN NaN

735979 736160

TFactors =

0 0.3913 1.3913 2.3913 3.3913 4.3913 5.3913 6.3913 7.3913 NaN NaN

0 0.3913 1.3913 2.3913 3.3913 4.3913 5.3913 6.3913 7.3913 8.3913 9.3913

CFFlags =

0 3 3 3 3 3 13 3 4 NaN NaN

0 3 3 3 3 3 13 3 13 3 4

CFPrincipal =

0 0 0 0 0 0 10 0 90 NaN NaN

0 0 0 0 0 0 10 0 10 0 80

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

17-168

cfamounts

See Also accrfrac | cfdates | cftimes | cpncount | cpndaten | cpndatenq |
cpndatep | cpndatepq | cpndaysn | cpndaysp

17-169

cfconv

Purpose Cash flow convexity

Syntax CFlowConvexity = cfconv(CashFlow, Yield)

Arguments

CashFlow A vector of real numbers.

Yield Periodic yield. A scalar. Enter as a decimal fraction.

Description CFlowConvexity = cfconv(CashFlow, Yield) returns the convexity
of a cash flow in periods.

Examples Given a cash flow of nine payments of $2.50 and a final payment
$102.50, with a periodic yield of 2.5%

CashFlow = [2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

Convex = cfconv(CashFlow, 0.025)

Convex =

90.4493 (periods)

See Also bndconvp | bndconvy | bnddurp | bnddury | cfdur

17-170

cfdates

Purpose Cash flow dates for fixed-income security

Syntax CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-171

cfdates

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

17-172

cfdates

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
is considered). To make an instrument
forward-starting, specify this date as a future
date. If you do not specify StartDate, the
effective start date is the Settle date.

Required arguments must be number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices.

Any input can contain multiple values, but if so, all other inputs must
contain the same number of values or a single value that applies to all.
For example, if Maturity contains N dates, then Settle must contain
N dates or a single date.

Description CFlowDates = cfdates(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) returns a matrix of cash flow dates for a bond or set of
bonds. cfdates determines all cash flow dates for a bond whether or
not the coupon payment structure is normal or the first and/or last
coupon period is long or short.

17-173

cfdates

CFlowDates is an N-row matrix of serial date numbers, padded with
NaNs as necessary to ensure that all rows have the same number of
elements. Use the function datestr to convert serial date numbers
to formatted date strings.

Note The cash flow flags for a portfolio of bonds were formerly available
as the cfdates second output argument, CFlowFlags. You can now use
cfamounts to get these flags. If you specify a CFlowFlags argument,
cfdates displays a message directing you to use cfamounts.

Examples CFlowDates = cfdates('14 Mar 1997', '30 Nov 1998', 2, 0, 1)

CFlowDates =

729541 729724 729906 730089

datestr(CFlowDates)

ans =

31-May-1997

30-Nov-1997

31-May-1998

30-Nov-1998

Given three securities with different maturity dates and the same
default arguments

Maturity = ['30-Sep-1997'; '31-Oct-1998'; '30-Nov-1998'];

CFlowDates = cfdates('14-Mar-1997', Maturity)

CFlowDates =

729480 729663 NaN NaN

729510 729694 729875 730059

729541 729724 729906 730089

Look at the cash-flow dates for the last security.

datestr(CFlowDates(3,:))
ans =
31-May-1997

17-174

cfdates

30-Nov-1997
31-May-1998
30-Nov-1998

See Also accrfrac | cfamounts | cftimes | cpncount | cpndaten | cpndatenq
| cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

17-175

cfdur

Purpose Cash-flow duration and modified duration

Syntax [Duration, ModDuration] = cfdur(CashFlow, Yield)

Arguments

CashFlow A vector or matrix of real numbers. When using
a matrix, each column of the matrix is a separate
CashFlow.Yield Periodic yield. A scalar or vector. Enter as a decimal
fraction.

Description [Duration, ModDuration] = cfdur(CashFlow, Yield) calculates
the duration and modified duration of a cash flow in periods.

Examples Given a cash flow of nine payments of $2.50 and a final payment
$102.50, with a periodic yield of 2.5%

CashFlow=[2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

[Duration, ModDuration] = cfdur(CashFlow, 0.025)

Duration =
8.9709 (periods)

ModDuration =
8.7521 (periods)

See Also bndconvp | bndconvy | bnddurp | bnddury | cfconv

17-176

cfport

Purpose Portfolio form of cash flow amounts

Syntax [CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts,
CFlowDates, TFactors)

Arguments

CFlowAmounts Number of bonds (NUMBONDS) by number of cash
flows (NUMCFS) matrix with entries listing cash
flow amounts corresponding to each date in
CFlowDates.

CFlowDates NUMBONDS-by-NUMCFS matrix with rows listing
cash flow dates for each bond and padded with
NaNs.

TFactors (Optional) NUMBONDS-by-NUMCFS matrix with
entries listing the time between settlement and
the cash flow date measured in semiannual
coupon periods.

Description [CFBondDate, AllDates, AllTF, IndByBond] =
cfport(CFlowAmounts, CFlowDates, TFactors) computes
a vector of all cash flow dates of a bond portfolio, and a matrix mapping
the cash flows of each bond to those dates. Use the matrix for pricing
the bonds against a curve of discount factors.

CFBondDate is a NUMBONDS by number of dates (NUMDATES) matrix of
cash flows indexed by bond and by date in AllDates. Each row contains
a bond’s cash flow values at the indices corresponding to entries in
AllDates. Other indices in the row contain zeros.

AllDates is a NUMDATES-by-1 list of all dates that have any cash flow
from the bond portfolio.

17-177

cfport

AllTF is a NUMDATES-by-1 list of time factors corresponding to the dates
in AllDates. If TFactors is not entered, AllTF contains the number of
days from the first date in AllDates.

IndByBond is a NUMBONDS-by-NUMCFS matrix of indices. The ith row
contains a list of indices into AllDates where the ith bond has cash
flows. Since some bonds have more cash flows than others, the matrix
is padded with NaNs.

Examples Use cfamounts to calculate the cash flow amounts, cash flow dates,
and time factors for each of two bonds. Then use cfplot (available at
/finance/findemos/cfplot.m) to plot the cash flow diagram.

Settle = '03-Aug-1999';

Maturity = ['15-Aug-2000';'15-Dec-2000'];

CouponRate= [0.06; 0.05];

Period = [3;2];

Basis = [1;0];

[CFlowAmounts, CFlowDates, TFactors] = cfamounts(CouponRate,...

Settle, Maturity, Period, Basis);

cfplot(CFlowDates,CFlowAmounts)

xlabel('Numeric Cash Flow Dates')

ylabel('Bonds')

title('Cash Flow Diagram')

17-178

cfport

Finally, call cfport to map the cash flow amounts to the cash flow dates.

Each row in the resultant CFBondDate matrix represents a bond. Each
column represents a date on which one or more of the bonds has a cash
flow. A 0 means the bond did not have a cash flow on that date. The
dates associated with the columns are listed in AllDates. For example,
the first bond had a cash flow of 2.000 on 730347. The second bond had
no cash flow on this date.

For each bond, IndByBond indicates the columns of CFBondDate, or
dates in AllDates, for which a bond has a cash flow.

[CFBondDate, AllDates, AllTF, IndByBond] = ...

cfport(CFlowAmounts, CFlowDates, TFactors)

CFBondDate =

-1.8000 2.0000 2.0000 2.0000 0 102.0000 0

17-179

cfport

-0.6694 0 2.5000 0 2.5000 0 102.5000

AllDates =

730335

730347

730469

730591

730652

730713

730835

AllTF =

0

0.0663

0.7322

1.3989

1.7322

2.0663

2.7322

IndByBond =

1 2 3 4 6

1 3 5 7 NaN

See Also cfamounts

17-180

cfprice

Purpose Compute price for cash flow given yield to maturity

Syntax Price = cfprice(CFAmounts, CFDates, Yield, Settle)
Price = cfprice(CFAmounts, CFDates, Yield, Settle,
Name,Value)

Description Price = cfprice(CFAmounts, CFDates, Yield, Settle) computes a
price given yield for a cash flow.

Price = cfprice(CFAmounts, CFDates, Yield, Settle,
Name,Value) computes a price for a cash flow given yield to maturity
with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

CFlowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of
cash flow values for one instrument. If an instrument has fewer than
MOSTCFS cash flows, the end of the row is padded with NaNs.

CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the
serial date of the corresponding cash flow in CFlowAmounts.

Yield

NINST-by-1 vector of yields.

Settle

Settlement date is a serial date number or date string. Settlement date
is the date on which the cash flows are priced.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

17-181

cfprice

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of
size 1-by-N, or as a single value applicable to all contracts. Single values
are internally expanded to an array of size N-by-1.

Basis

N-by-1 vector of day-count basis:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis on page Glossary-1.

Default: 0 (actual/actual)

17-182

cfprice

CompFreq

Compounding frequency. By default, SIA bases (0-7) and BUS/252 use
a semiannual compounding convention and ISMA bases (8-12) use an
annual compounding convention.

Default: actual

Output
Arguments

Price

Price of cash flows.

Examples Compute the Price for a Cash Flow Given Yield to Maturity

Use cfprice to compute: price for a cash flow given yield to maturity.

Define data for the yield curve.

Settle = datenum('01-Jul-2003');
Yield = .05;
CFAmounts = [30;40;30];
CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

Compute the Price.

Price = cfprice(CFAmounts, CFDates, Yield, Settle);

Price =

28.4999
36.1689
25.8195

See Also | cfbyzero | cfyield | cfspread

17-183

cfspread

Purpose Compute spread over yield curve for cash flow

Syntax Spread = cfspread(RateSpec, Price, CFAmounts,
CFDates, Settle)
Spread = cfspread(RateSpec, Price, CFAmounts,
CFDates, Settle, Name,Value)

Description Spread = cfspread(RateSpec, Price, CFAmounts, CFDates,
Settle) computes spread over a yield curve for a cash flow.

Spread = cfspread(RateSpec, Price, CFAmounts, CFDates,
Settle, Name,Value) computes spread over a yield curve for a cash
flow with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

RateSpec

Interest-rate specification for the initial risk free rate curve. See
intenvset for information on declaring an interest-rate variable.

Price

Price of cash flows.

CFlowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of
cash flow values for one instrument. If an instrument has fewer than
MOSTCFS cash flows, the end of the row is padded with NaNs.

CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the
serial date of the corresponding cash flow in CFlowAmounts.

Settle

Settlement date is a serial date number or date string. Settlement date
is the date on which the cash flows are priced.

17-184

cfspread

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of
size 1-by-N, or as a single value applicable to all contracts. Single values
are internally expanded to an array of size N-by-1.

Basis

N-by-1 vector of day-count basis:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

17-185

cfspread

For more information, see basis on page Glossary-1.

Default: 0 (actual/actual)

CompFreq

Compounding frequency. By default, SIA bases (0-7) and BUS/252 use
a semi-annual compounding convention and ISMA bases (8-12) use an
annual compounding convention.

Default: actual

Output
Arguments

Spread

Spread of cash flows over a zero curve.

Examples Compute Spread Over a Yield Curve for a Cash Flow

Use cfspread to compute the spread over a yield curve for a cash flow.

Define data for the yield curve.

Settle = datenum('01-Jul-2003');
CurveDates = daysadd(Settle,360*[.25 .5 1 2 3 5 7 10 20],1);
ZeroRates = [.0089 .0096 .0107 .0130 .0166 .0248 .0306 .0356 .0454]';

Compute the RateSpec.

RateSpec = intenvset('StartDates', Settle, 'EndDates', CurveDates,...
'Rates', ZeroRates);

RateSpec =

FinObj: 'RateSpec'
Compounding: 2

Disc: [9x1 double]
Rates: [9x1 double]

EndTimes: [9x1 double]
StartTimes: [9x1 double]

17-186

cfspread

EndDates: [9x1 double]
StartDates: 731763

ValuationDate: 731763
Basis: 0

EndMonthRule: 1

Compute the spread.

Price = 98;
CFAmounts = [30;40;30];
CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

Spread = cfspread(RateSpec, Price, CFAmounts, CFDates, Settle);

Spread =

1.0e+03 *

-8.7956
-4.0774
-3.7073

See Also | cfbyzero | cfyield | cfprice

17-187

cfyield

Purpose Compute yield to maturity for cash flow given price

Syntax Yield = cfyield(CFAmounts, CFDates, Price, Settle)
Yield = cfyield(CFAmounts, CFDates, Price, Settle,
Name,Value)

Description Yield = cfyield(CFAmounts, CFDates, Price, Settle) computes
yield to maturity for a cash flow given price.

Yield = cfyield(CFAmounts, CFDates, Price, Settle,
Name,Value) computes yield to maturity for a cash flow given price
with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

CFlowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of
cash flow values for one instrument. If an instrument has fewer than
MOSTCFS cash flows, the end of the row is padded with NaNs.

CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the
serial date of the corresponding cash flow in CFlowAmounts.

Price

Price.

Settle

Settlement date is a serial date number or date string. Settlement date
is the date on which the cash flows are priced.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

17-188

cfyield

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of
size 1-by-N, or as a single value applicable to all contracts. Single values
are internally expanded to an array of size N-by-1.

Basis

N-by-1 vector of day-count basis:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis on page Glossary-1.

Default: 0 (actual/actual)

17-189

cfyield

CompFreq

Compounding frequency. By default, SIA bases (0-7) and BUS/252 use
a semi-annual compounding convention and ISMA bases (8-12) use an
annual compounding convention.

Default: actual

Output
Arguments

Yield

Yield for cash flows.

Examples Compute the Yield to Maturity for a Cash Flow When Given
a Price

Use cfyield to compute yield to maturity for a cash flow when given
a price.

Define data for the yield curve and price.

Settle = datenum('01-Jul-2003');
Price = 98;
CFlowAmounts = [30 40 30];
CFlowDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'})';

Compute the Yield.

Yield = cfyield(CFlowAmounts, CFlowDates, Price, Settle);

Yield =

0.0099

See Also | cfbyzero | cfprice | cfspread

17-190

cftimes

Purpose Time factors corresponding to bond cash flow dates

Syntax [TFactors] = cftimes(Settle, Maturity)
[TFactors] = cftimes(Settle, Maturity
Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate)
[TFactors] = cftimes(Settle, Maturity,
'ParameterName', 'ParameterValue ...)

Description [TFactors] = cftimes(Settle, Maturity) determines the time
factors corresponding to the cash flows of a bond or set of bonds.

[TFactors] = cftimes(Settle, Maturity Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) determines the time factors corresponding to the cash flows
of a bond or set of bonds, including optional inputs.

[TFactors] = cftimes(Settle, Maturity, 'ParameterName',
'ParameterValue ...) accepts optional inputs as one or more
comma-separated parameter/value pairs. 'ParameterName' is the
name of the parameter inside single quotes. ParameterValue is the
value corresponding to 'ParameterName'. Specify parameter/value
pairs in any order. Names are case-insensitive.

Input
Arguments

Settle

Settlement date. A vector of serial date numbers or date strings. Settle
must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers or date strings.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as
parameter/value pairs. You cannot mix ordered syntax with
parameter/value pairs.

17-191

cftimes

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

EndMonthRule

17-192

cftimes

End-of-month rule. A vector. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond coupon payment date is always the same
numerical day of the month. 1 = set rule on, meaning that a bond
coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond.

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is followed only
by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this

17-193

cftimes

date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases
(0-7) and BUS/252 use a semiannual compounding convention and
ISMA bases (8-12) use an annual compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The
default behavior is for SIA bases to use the actual/actual day count to
compute discount factors. If you use ISMA day counts and BUS/252, the
specified bases are used.

Output
Arguments

TFactors

TFactors has NUMBONDS rows and the number of columns is determined
by the maximum number of cash flow payment dates required to hold
the bond portfolio. NaNs are padded for bonds which have less than the
maximum number of cash flow payment dates.

Definitions cftimes computes the time factor of a cash flow, which is the difference
between the settlement date and the cash flow date, in units of
semiannual coupon periods. In computing time factors, use SIA
actual/actual day count conventions for all time factor calculations.

Examples Find a cash flow time factor:

Settle = '15-Mar-1997';
Maturity = '01-Sep-1999';
Period = 2;
TFactors = cftimes(Settle, Maturity, Period)

17-194

cftimes

This returns:

TFactors =

0.9239 1.9239 2.9239 3.9239 4.9239

References Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

Mayle, Jan, “Standard Securities Calculations Methods: Fixed Income
Securities Formulas for Analytic Measures”, SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson, Money Market and Bond
Calculations, McGraw-Hill, 1996.

See Also accrfrac | cfdates | cfamounts | cpncount | cpndaten | cpndatenq
| cpndatep | cpndatepq | cpndaysn | cpndaysp | date2time

17-195

chaikosc

Purpose Chaikin oscillator

Syntax chosc = chaikosc(highp, lowp, closep, tvolume)
chosc = chaikosc([highp lowp closep tvolume])
choscts = chaikosc(tsobj)
choscts = chaikosc(tsobj, ParameterName, ParameterValue, ...)

Arguments

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

tvolume Volume traded (vector)

tsobj Financial time series object

Description The Chaikin oscillator is calculated by subtracting the 10-period
exponential moving average of the Accumulation/Distribution (A/D) line
from the three-period exponential moving average of the A/D line.

chosc = chaikosc(highp, lowp, closep, tvolume) calculates the
Chaikin oscillator (vector), chosc, for the set of stock price and volume
traded data (tvolume). The prices that must be included are the high
(highp), low (lowp), and closing (closep) prices.

chosc = chaikosc([highp lowp closep tvolume]) accepts a
four-column matrix as input.

choscts = chaikosc(tsobj) calculates the Chaikin Oscillator,
choscts, from the data contained in the financial time series object
tsobj. tsobj must at least contain data series with names High, Low,
Close, and Volume. These series must represent the high, low, and
closing prices, plus the volume traded. choscts is a financial time
series object with the same dates as tsobj but only one series named
ChaikOsc.

17-196

chaikosc

choscts = chaikosc(tsobj, ParameterName, ParameterValue,
...) accepts parameter name/parameter value pairs as input. These
pairs specify the name(s) for the required data series if it is different
from the expected default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

• VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the Chaikin oscillator for Disney stock and plot the results.

load disney.mat
dis_CHAIKosc = chaikosc(dis)
plot(dis_CHAIKosc)
title('Chaikin Oscillator for Disney')

17-197

chaikosc

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 91-94.

See Also adline

17-198

chaikvolat

Purpose Chaikin volatility

Syntax chvol = chaikvolat(highp, lowp)
chvol = chaikvolat([highp lowp])
chvol = chaikvolat(high, lowp, nperdiff, manper)
chvol = chaikvolat([high lowp], nperdiff, manper)
chvts = chaikvolat(tsobj)
chvts = chaikvolat(tsobj, nperdiff, manper, ParameterName,
ParameterValue, ...)

Arguments

highp High price (vector).

lowp Low price (vector).

nperdiff Period difference (vector). Default = 10.

manper Length of exponential moving average in periods
(vector). Default = 10.

tsobj Financial time series object.

Description chvol = chaikvolat(highp, lowp) calculates the Chaikin volatility
from the series of stock prices, highp and lowp. The vector chvol
contains the Chaikin volatility values, calculated on a 10-period
exponential moving average and 10-period difference.

chvol = chaikvolat([highp lowp]) accepts a two-column matrix
as the input.

chvol = chaikvolat(high, lowp, nperdiff, manper) manually
sets the period difference nperdiff and the length of the exponential
moving average manper in periods.

chvol = chaikvolat([high lowp], nperdiff, manper) accepts a
two-column matrix as the first input.

17-199

chaikvolat

chvts = chaikvolat(tsobj) calculates the Chaikin volatility from the
financial time series object tsobj. The object must contain at least two
series named High and Low, representing the high and low prices per
period. chvts is a financial time series object containing the Chaikin
volatility values, based on a 10-period exponential moving average and
10-period difference. chvts has the same dates as tsobj and a series
called ChaikVol.

chvts = chaikvolat (tsobj,nperdiff, manper, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value pairs
as input. These pairs specify the name(s) for the required data series
if it is different from the expected default name(s). Valid parameter
names are

• HighName: high prices series name

• LowName: low prices series name

Parameter values are the strings that represent the valid parameter
names.

nperdiff, the period difference, and manper, the length of the
exponential moving average in periods, can also be set with this form
of chaikvolat.

Examples Compute the Chaikin volatility for Disney stock and plot the results:

load disney.mat
dis_CHAIKvol = chaikvolat(dis)
plot(dis_CHAIKvol)
title('Chaikin Volatility for Disney')

17-200

chaikvolat

References Achelis, Steven B., Technical Analysis from A to Z, Second Edition,
McGraw-Hill, 1995, pp. 304-305.

See Also chaikosc

17-201

chartfts

Purpose Interactive display

Syntax chartfts(tsobj)

Description chartfts(tsobj) produces a figure window that contains one or more
plots. You can use the mouse to observe the data at a particular time
point of the plot.

Examples Create a financial time series object from the supplied data file
ibm9599.dat:

ibmfts = ascii2fts('ibm9599.dat', 1, 3, 2);

Chart the financial time series object ibmfts:

chartfts(ibmfts)

With the Zoom feature set off, a mouse click on the indicator line
displays object data in a pop-up box.

17-202

chartfts

With the Zoom feature set on, mouse clicks indicate the area of the
chart to zoom.

17-203

chartfts

You can find a tutorial on using chartfts in “Visualizing Financial
Time Series Objects” on page 9-18. See “Zoom Tool” on page 9-21 for
details on performing the zoom. Also see “Combine Axes Tool” on page
9-24 for information about combining axes for specified plots.

See Also candle | highlow | plot

17-204

Portfolio.checkFeasibility

Superclasses AbstractPortfolio

Purpose Check feasibility of input portfolios against a portfolio object

Syntax status = checkFeasibility(obj, pwgt)

Description status = checkFeasibility(obj, pwgt) to check the feasibility of
input portfolios against a portfolio object.

Tips • Use dot notation to check the feasibility of input portfolios against a
portfolio object:

status = obj.checkFeasibility(pwgt);

• The constraint tolerance to assess whether a constraint is satisfied is
obtained from the hidden property obj.defaultTolCon.

Input
Arguments

obj

A portfolio object [Portfolio].

pwgt

Portfolios to be checked [NumAssets-by-NumPortsmatrix].

Output
Arguments

status

Row vector of NumPorts indicators that are true if portfolio is
feasible and false otherwise.

Note By definition, any portfolio set must be nonempty and
bounded. If the set is empty, no portfolios can be feasible. Use
estimateBounds to test for nonempty and bounded sets.

17-205

Portfolio.checkFeasibility

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p, determine if p is feasible:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontier;

p.checkFeasibility(pwgt)

ans =

1 1 1 1 1 1 1 1 1 1

See Also estimateBounds

Tutorials • “Validating the Portfolio Problem” on page 4-78

17-206

chfield

Purpose Change data series name

Syntax newfts = chfield(oldfts, oldname, newname)

Arguments

oldfts Name of an existing financial time series object.

oldname Name of the existing component in oldfts. A
MATLAB string or column cell array.

newname New name for the component in oldfts. A MATLAB
string or column cell array.

Description newfts = chfield(oldfts, oldname, newname) changes the name of
the financial time series object component from oldname to newname.

Set newfts = oldfts to change the name of an existing component
without changing the name of the financial time series object.

To change the names of several components at once, specify the series of
old and new component names in corresponding column cell arrays.

You cannot change the names of the object components desc, freq,
and dates.

See Also fieldnames | isfield | rmfield

17-207

convert2sur

Purpose Convert multivariate normal regression model to seemingly unrelated
regression (SUR) model

Syntax DesignSUR = convert2sur(Design, Group)

Arguments

Design A matrix or a cell array that depends on the number
of data series NUMSERIES.

• If NUMSERIES = 1, convert2sur returns the
Design matrix.

• If NUMSERIES > 1, Design is a cell array with
NUMSAMPLES cells, where each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known values.

Group Contains information about how data series are to be
grouped, with separate parameters for each group.
Specify groups either by series or by groups:

• To identify groups by series, construct an index
vector that has NUMSERIES elements. Element i
= 1, ..., NUMSERIES in the vector, and has the
index j = 1, ..., NUMGROUPS of the group in
which series i is a member.

• To identify groups by groups, construct a cell array
with NUMGROUPS elements. Each cell contains a
vector with the indexes of the series that populate
a given group.

In either case, the number of series is NUMSERIES
and the number of groups is NUMGROUPS, with 1 ≤
NUMGROUPS ≤ NUMSERIES.

17-208

convert2sur

Description DesignSUR = convert2sur(Design, Group) converts a multivariate
normal regression model into a seemingly unrelated regression model
with a specified grouping of the data series. DesignSUR is either a
matrix or a cell array that depends on the value of NUMSERIES:

• If NUMSERIES = 1, DesignSUR = Design, which is a
NUMSAMPLES-by-NUMPARAMS matrix.

• If NUMSERIES > 1 and NUMGROUPS groups are to be formed, Design
is a cell array with NUMSAMPLES cells, where each cell contains a
NUMSERIES-by-(NUMGROUPS * NUMPARAMS) matrix of known values.

The original collection of parameters that are common to all series are
replicated to form collections of parameters for each group.

Examples This example has ten series in three groups, and two model parameters.
Suppose

Group 1 has series 1, 3, 4, 8.

Group 2 has series 2, 6, 10.

Group 3 has series 5, 7, 9.

Either:

Group = [1, 2, 1, 1, 3, 2, 3, 1, 3, 2];

or

Group = cell(3,1);
Group{1} = [1, 3, 4, 8];
Group{2} = [2, 6, 10];
Group{3} = [5, 7, 9];

A regression with DesignSUR would have 3 x 2 = 6 model parameters.

17-209

convertto

Purpose Convert to specified frequency

Syntax newfts = convertto(oldfts, newfreq)
newfts = convertto(oldfts, newfreq, 'param1','value1','param2',
'value2', ...)

Arguments

oldfts Name of an existing financial time series object.

newfreq 1, DAILY, Daily, daily, D, d

2, WEEKLY, Weekly, weekly, W, w

3, MONTHLY, Monthly, monthly, M, m

4, QUARTERLY, Quarterly, quarterly, Q, q

5, SEMIANNUAL, Semiannual, semiannual, S, s

6, ANNUAL, Annual, annual, A, a

Description convertto converts a financial time series of any frequency to one of a
specified frequency.

newfts = convertto(oldfts, newfreq) converts the object oldfts
to the new time series object newfts with the frequency newfreq.

Refer to the documentation for each frequency conversion function to
determine the valid parameter/value pairs.

See Also toannual | todaily | tomonthly | toquarterly | tosemi | toweekly

17-210

corrcoef

Purpose Correlation coefficients

Syntax r = corrcoef(X)
r = corrcoef(X,Y),

Arguments

X Matrix where each row is an observation and each
column is a variable.

Y Matrix where each row is an observation and each
column is a variable.

Description corrcoef for financial time series objects is based on the MATLAB
corrcoef function. See corrcoef in the MATLAB documentation.

r=corrcoef(X) calculates a matrix r of correlation coefficients for
an array X, in which each row is an observation and each column is
a variable.

r=corrcoef(X,Y), where X and Y are column vectors, is the same
as r=corrcoef([X Y]). corrcoef converts X and Y to column
vectors if they are not; that is, r = corrcoef(X,Y) is equivalent to
r=corrcoef([X(:) Y(:)]) in that case.

If c is the covariance matrix, c= cov(X), then corrcoef(X) is the
matrix whose (i,j) ’th element is ci,j/sqrt(ci,i*c(j,j)).

[r,p]=corrcoef(...) also returns p, a matrix of p-values for testing
the hypothesis of no correlation. Each p-value is the probability of
getting a correlation as large as the observed value by random chance,
when the true correlation is zero. If p(i,j) is less than 0.05, then the
correlation r(i,j) is significant.

[r,p,rlo,rup]=corrcoef(...) also returns matrices rlo and rup,
of the same size as r, containing lower and upper bounds for a 95%
confidence interval for each coefficient.

17-211

corrcoef

[...]=corrcoef(...,'PARAM1',VAL1,'PARAM2',VAL2,...) specifies
additional parameters and their values. Valid parameters are:

• 'alpha'— A number between 0 and 1 to specify a confidence level of
100*(1-ALPHA)%. Default is 0.05 for 95% confidence intervals.

• 'rows'— Either 'all' (default) to use all rows, 'complete' to use
rows with no NaN values, or 'pairwise' to compute r(i,j) using rows
with no NaN values in column i or j.

The p-value is computed by transforming the correlation to create a
t-statistic having N – 2 degrees of freedom, where N is the number of
rows of X. The confidence bounds are based on an asymptotic normal
distribution of 0.5*log((1 + r)/(1 – r)), with an approximate variance
equal to 1/(N – 3). These bounds are accurate for large samples when
X has a multivariate normal distribution. The 'pairwise' option can
produce an r matrix that is not positive definite.

Examples Generate random data having correlation between column 4 and the
other columns.

x = randn(30,4); % uncorrelated data

x(:,4) = sum(x,2); % introduce correlation

f = fints((today:today+29)', x); % create a fints object using x

[r,p] = corrcoef(x) % compute sample correlation and p-values

[i,j] = find(p<0.05); % find significant correlations

[i,j] % display their (row,col) indices

Note Class support for inputs X,Y: float: double and single.

See Also cov | std | var

17-212

corr2cov

Purpose Convert standard deviation and correlation to covariance

Syntax ExpCovariance = corr2cov(ExpSigma, ExpCorrC)

Arguments

ExpSigma Vector of length n with the standard deviations of
each process. n is the number of random processes.

ExpCorrC (Optional) n-by-n correlation coefficient matrix. If
ExpCorrC is not specified, the processes are assumed
to be uncorrelated, and the identity matrix is used.

Description corr2cov converts standard deviation and correlation to covariance.

ExpCovariance is an n-by-n covariance matrix, where n is the number
of processes.

ExpCov(i,j) = ExpCorrC(i,j)*ExpSigma(i)*ExpSigma(j)

Examples ExpSigma = [0.5 2.0];

ExpCorrC = [1.0 -0.5
-0.5 1.0];

ExpCovariance = corr2cov(ExpSigma, ExpCorrC)

Expected results:

ExpCovariance =

0.2500 -0.5000
-0.5000 4.0000

See Also corrcoef | cov | cov2corr | ewstats | std

17-213

cov

Purpose Covariance matrix

Syntax cov(X)
cov(X,Y)

Arguments

X Financial times series object.

Y Financial times series object.

Description cov for financial time series objects is based on the MATLAB cov
function. See cov in the MATLAB documentation.

If X is a financial time series object with one series, cov(X) returns the
variance. For a financial time series object containing multiple series,
where each row is an observation, and each series a variable, cov(X)
is the covariance matrix.

diag(cov(X)) is a vector of variances for each series and
sqrt(diag(cov(X))) is a vector of standard deviations.

cov(X, Y), where X and Y are financial time series objects with the
same number of elements, is equivalent to cov([X(:) Y(:)]).

cov(X) or cov(X, Y) normalizes by (N -1) if N > 1, where N is the number
of observations. This makes cov(X) the best unbiased estimate of the
covariance matrix if the observations are from a normal distribution.
For N = 1, cov normalizes by N.

cov(X, 1) or cov(X, Y, 1) normalizes by N and produces the second
moment matrix of the observations about their mean. cov(X, Y, 0)
is the same as cov(X, Y) and cov(X, 0) is the same as cov(X). The
mean is removed from each column before calculating the result.

17-214

cov

Examples To create a covariance matrix for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
A = [-1 1 2 ; -2 3 1 ; 4 0 3]
f = fints(dates, A);

c = cov(f)

c =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

See Also corrcoef | mean | std | var

17-215

cov2corr

Purpose Convert covariance to standard deviation and correlation coefficient

Syntax [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)

Arguments

ExpCovariance n-by-n covariance matrix; for example, from
cov or ewstats. n is the number of random
processes.

Description [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance) converts
covariance to standard deviations and correlation coefficients.

ExpSigma is a 1-by-n vector with the standard deviation of each process.

ExpCorrC is an n-by-n matrix of correlation coefficients.

ExpSigma(i) = sqrt(ExpCovariance(i,i))

ExpCorrC(i,j) = ExpCovariance(i,j)/(ExpSigma(i)*ExpSigma(j))

Examples ExpCovariance = [0.25 -0.5
-0.5 4.0];

[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)

Expected results:

ExpSigma =

0.5000 2.0000

ExpCorrC =

1.0000 -0.5000
-0.5000 1.0000

17-216

cov2corr

See Also corr2cov | corrcoef | cov | ewstats | std

17-217

cpncount

Purpose Coupon payments remaining until maturity

Syntax NumCouponsRemaining = cpncount(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-218

cpncount

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

17-219

cpncount

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

StartDate (Future implementation)

Required arguments must be number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices.

Description NumCouponsRemaining = cpncount(Settle, Maturity, Period,
Basis, EndMonthRule) returns the whole number of coupon payments
between the settlement and maturity dates for a coupon bond or set
of bonds.

Examples NumCouponsRemaining = cpncount('14 Mar 1997', '30 Nov 2000',...

2, 0, 0)

n =

8

Given three coupon bonds with different maturity dates and the same
default arguments

Maturity = ['30 Sep 2000'; '31 Oct 2001'; '30 Nov 2002'];

NumCouponsRemaining = cpncount('14 Sep 1997', Maturity)

17-220

cpncount

NumCouponsRemaining =

7
9

11

See Also accrfrac | cfamounts | cfdates | cftimes | cpndaten | cpndatenq |
cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

17-221

cpndaten

Purpose Next coupon date for fixed-income security

Syntax NextCouponDate = cpndaten(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-222

cpndaten

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a

17-223

cpndaten

LastCouponDate, the cash flow payment dates
are determined from other inputs.

Required arguments must be number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices.

Description NextCouponDate = cpndaten(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
returns the next coupon date after the settlement date. This function
finds the next coupon date whether or not the coupon structure is
synchronized with the maturity date.

NextCouponDate is returned as a serial date number. The function
datestr converts a serial date number to a formatted date string.

Examples NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 0);

datestr(NextCouponDate)

ans =

30-May-1997

NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 1);

datestr(NextCouponDate)

ans =

31-May-1997

Maturity = ['30 Sep 2000'; '31 Oct 2000'; '30 Nov 2000'];

NextCouponDate = cpndaten('14 Mar 1997', Maturity);

17-224

cpndaten

datestr(NextCouponDate)

ans =

31-Mar-1997

30-Apr-1997

31-May-1997

See Also accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndatenq |
cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

17-225

cpndatenq

Purpose Next quasi coupon date for fixed income security

Syntax NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-226

cpndatenq

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a

17-227

cpndatenq

LastCouponDate, the cash flow payment dates
are determined from other inputs.

Required arguments must be number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices. Fill unspecified entries in input vectors with the
value NaN. Dates can be serial date numbers or date strings.

Description NextQuasiCouponDate = cpndatenq(Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate) determines the next quasi coupon date for a portfolio
of NUMBONDS fixed income securities whether or not the first or last
coupon is normal, short, or long. For zero coupon bonds cpndatenq
returns quasi coupon dates as if the bond had a semiannual coupon
structure. Successive quasi coupon dates determine the length of the
standard coupon period for the fixed income security of interest and do
not necessarily coincide with actual coupon payment dates.

Outputs are NUMBONDS-by-1 vectors.

If Settle is a coupon date, this function never returns the settlement
date. It returns the quasi coupon date strictly after settlement.

NextQuasiCouponDate is returned as a serial date number. The
function datestr converts a serial date number to a formatted date
string.

Examples Given a pair of bonds with the characteristics

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

Compute NextCouponDate for this pair of bonds.

NextCouponDate = cpndaten(Settle, Maturity);

datestr(NextCouponDate)

17-228

cpndatenq

ans =

31-May-1997
10-Jun-1998

Compute the next quasi coupon dates for these two bonds.

NextQuasiCouponDate = cpndatenq(Settle, Maturity);

datestr(NextQuasiCouponDate)

ans =

31-May-1997
10-Jun-1998

Because no FirstCouponDate has been specified, the results are
identical.

Now supply an explicit FirstCouponDate for each bond.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');

Compute the next coupon dates.

NextCouponDate = cpndaten(Settle, Maturity, 2, 0, 1, [],...

FirstCouponDate);

datestr(NextCouponDate)

ans =

30-Nov-1997

10-Dec-1998

The next coupon dates are identical to the specified first coupon dates.

17-229

cpndatenq

Now recompute the next quasi coupon dates.

NextQuasiCouponDate = cpndatenq(Settle, Maturity, 2, 0, 1, [],...

FirstCouponDate);

datestr(NextQuasiCouponDate)

ans =

31-May-1997

10-Jun-1998

These results illustrate the distinction between actual coupon payment
dates and quasi coupon dates. FirstCouponDate (and LastCouponDate,
as well), when specified, is associated with an actual coupon payment
and also serves as the synchronization date for determining all quasi
coupon dates. Since each bond in this example pays semiannual
coupons, and the first coupon date occurs more than six months after
settlement, each will have an intermediate quasi coupon date before the
actual first coupon payment occurs.

See Also accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten |
cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz

17-230

cpndatep

Purpose Previous coupon date for fixed-income security

Syntax PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-231

cpndatep

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a

17-232

cpndatep

LastCouponDate, the cash flow payment dates
are determined from other inputs.

Required arguments must be number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices.

Description PreviousCouponDate = cpndatep(Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate) returns the previous coupon date on or before
settlement for a portfolio of bonds. This function finds the previous
coupon date whether or not the coupon structure is synchronized with
the maturity date.

For zero coupon bonds the previous coupon date is the issue date, if
available. However, if the issue date is not supplied, the previous
coupon date for zero coupon bonds is the previous quasi coupon date
calculated as if the frequency is semiannual.

PreviousCouponDate is returned as a serial date number. The function
datestr converts a serial date number to a formatted date string.

Examples PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',...

2, 0, 0);

datestr(PreviousCouponDate)

ans =

30-Dec-1996

PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',...

2, 0, 1);

datestr(PreviousCouponDate)

17-233

cpndatep

ans =

31-Dec-1996

Maturity = ['30 Apr 2000'; '31 May 2000'; '30 Jun 2000'];

PreviousCouponDate = cpndatep('14 Mar 1997', Maturity);

datestr(PreviousCouponDate)

ans =

31-Oct-1996

30-Nov-1996

31-Dec-1996

See Also accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten |
cpndatenq | cpndatepq | cpndaysn | cpndaysp | cpnpersz

17-234

cpndatepq

Purpose Previous quasi coupon date for fixed income security

Syntax PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-235

cpndatepq

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that
a bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a

17-236

cpndatepq

LastCouponDate, the cash flow payment dates
are determined from other inputs.

Required arguments must be number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices. Fill unspecified entries in input vectors with the
value NaN. Dates can be serial date numbers or date strings.

Description PreviousQuasiCouponDate = cpndatepq(Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate) determines the previous quasi coupon date on or
before settlement for a set of NUMBONDS fixed income securities. This
function finds the previous quasi coupon date for a bond with a coupon
structure in which the first or last period is either normal, short, or long
(whether or not the coupon structure is synchronized to maturity). For
zero coupon bonds this function returns quasi coupon dates as if the
bond had a semiannual coupon structure.

The term “previous quasi coupon date” refers to the previous coupon
date for a bond calculated as if no issue date were specified. Although
the issue date is not actually a coupon date, when issue date is specified,
the previous actual coupon date for a bond is normally calculated as
being either the previous coupon date or the issue date, whichever is
greater. This function always returns the previous quasi coupon date
regardless of issue date. If the settlement date is a coupon date, this
function returns the settlement date.

PreviousQuasiCouponDate is returned as a serial date number. The
function datestr converts a serial date number to a formatted date
string.

Examples Given a pair of bonds with the characteristics

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

17-237

cpndatepq

With no FirstCouponDate explicitly supplied, compute the
PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity);

datestr(PreviousCouponDate)

ans =

30-Nov-1996
10-Dec-1997

Note that since the settlement date for the second bond is also a coupon
date, cpndatep returns this date as the previous coupon date.

Now establish a FirstCouponDate and IssueDate for this pair of bonds.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');
IssueDate = char('30-May-1996', '10-Dec-1996');

Recompute the PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity, 2, 0, 1, ...

IssueDate, FirstCouponDate);

datestr(PreviousCouponDate)

ans =

30-May-1996

10-Dec-1996

Since both of these bonds settled before the first coupon had been paid,
cpndatep returns the IssueDate as the PreviousCouponDate.

Using the same data, compute PreviousQuasiCouponDate.

PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, 2, 0, 1,...

IssueDate, FirstCouponDate);

17-238

cpndatepq

datestr(PreviousQuasiCouponDate)

ans =

30-Nov-1996

10-Dec-1997

For the first bond the settlement date is not a normal coupon
date. The PreviousQuasiCouponDate is the coupon date
before or on the settlement date. Since the coupon structure is
synchronized to FirstCouponDate, the previous quasi coupon date is
30-Nov-1996. PreviousQuasiCouponDate disregards IssueDate and
FirstCouponDate in this case. For the second bond the settlement date
(10-Dec-1997) occurs on a date when a coupon would normally be paid
in the absence of an explicit FirstCouponDate. cpndatepq returns this
date as PreviousQuasiCouponDate.

See Also accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten |
cpndatenq | cpndatep | cpndaysn | cpndaysp | cpnpersz

17-239

cpndaysn

Purpose Number of days to next coupon date

Syntax NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-240

cpndaysn

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

17-241

cpndaysn

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

StartDate (Future implementation)

Required arguments must be number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices.

Description NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) returns the number of days from the settlement date to
the next coupon date for a bond or set of bonds. For zero coupon bonds
coupon dates are computed as if the bonds have a semiannual coupon
structure.

Examples NumDaysNext = cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 0)

NumDaysNext =

107

NumDaysNext = cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 1)

NumDaysNext =

17-242

cpndaysn

108

Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysNext = cpndaysn('14 Sep 2000', Maturity)

NumDaysNext =

47

77

108

See Also accrfrac | cfamounts | cftimes | cfdates | cpncount | cpndaten |
cpndatenq | cpndatep | cpndatepq | cpndaysp | cpnpersz

17-243

cpndaysp

Purpose Number of days since previous coupon date

Syntax NumDaysPrevious = cpndaysp(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-244

cpndaysp

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

17-245

cpndaysp

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

StartDate (Future implementation)

Required arguments must be a number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices.

Description NumDaysPrevious = cpndaysp(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) returns the number of days between the previous coupon
date and the settlement date for a bond or set of bonds. When the
coupon frequency is 0 (a zero coupon bond), the previous coupon date is
calculated as if the frequency were semiannual.

Examples NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 0)

NumDaysPrevious =

75

NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 1)

NumDaysPrevious =

17-246

cpndaysp

74

Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysPrevious = cpndaysp('14 Mar 2000', Maturity)

NumDaysPrevious =

135

105

74

See Also accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten |
cpndatenq | cpndatep | cpndatepq | cpndaysn | cpnpersz

17-247

cpnpersz

Purpose Number of days in coupon period

Syntax NumDaysPeriod = cpnpersz(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

17-248

cpnpersz

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment
dates are determined from other inputs.

17-249

cpnpersz

LastCouponDate (Optional) Last coupon date of a bond before
the maturity date; used when bond has an
irregular last coupon period. In the absence
of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon
structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed
only by the bond’s maturity cash flow date. If
you do not specify a LastCouponDate, the cash
flow payment dates are determined from other
inputs.

StartDate (Future implementation)

Required arguments must be a number of bonds (NUMBONDS)-by-1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices.

Description NumDaysPeriod = cpnpersz(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) returns the number of days in the coupon period containing
the settlement date. For zero coupon bonds coupon dates are computed
as if the bonds have a semiannual coupon structure.

Examples NumDaysPeriod = cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 0)

NumDaysPeriod =

183

NumDaysPeriod = cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 1)

NumDaysPeriod =

17-250

cpnpersz

184

Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysPeriod = cpnpersz('14 Sep 2000', Maturity)

NumDaysPeriod =

184

183

184

See Also accrfrac | cfamounts | cfdates | cpncount | cpndaten | cpndatenq
| cpndatep | cpndatepq | cpndaysn | cpndaysp

17-251

createholidays

Purpose Create trading calendars

Syntax createholidays(Filename, Codefile, InfoFile, TargetDir,
IncludeWkds, Wprompt, NoGUI)

Arguments

Filename The data file name.

Codefile The code file name.

InfoFile The info file name.

TargetDir The target folder where to write the new
holidays.m files.

IncludeWkds Option to include weekends in the holiday list.
Values are:

• 0 – Do not include weekends in the holiday
list.

• 1 – Include weekends in the holiday list.

Wprompt Option to prompt for the file location for each
holiday.m file that is created. Values are:

• 0 – Do not prompt for the file location.

• 1 – Prompt for the file location.

NoGUI Run createholidays without displaying the
Trading Calendars graphical user interface.
Values are:

• 0 – Display the GUI.

• 1 – Do not display the GUI.

17-252

createholidays

Description createholidays(Filename, Codefile, InfoFile, TargetDir,
IncludeWkds, Wprompt, NoGUI) programatically generates the
market-specific holidays.m files without displaying the interface.

Examples createholidays('FinancialCalendar\My_datafile.csv',...

'FinancialCalendar\My_codesfile.csv',...

'FinancialCalendar\My_infofile.csv','c:\work',1,1,1)

will create holidays*.m files from My_datafile.csv in the folder
c:\work. Weekends will be included in the holidays list based on the
input flag INCLUDEWDKS = 1.

Note To use createholidays, you must obtain data, codes, and info
files from http://www.FinancialCalendar.com trading calendars.

See Also holidays

17-253

http://www.FinancialCalendar.com

cumsum

Purpose Cumulative sum

Syntax newfts = cumsum(oldfts)

Description newfts = cumsum(oldfts) calculates the cumulative sum of each
individual time series data series in the financial time series object
oldfts and returns the result in another financial time series object
newfts. newfts contains the same data series names as oldfts.

Examples Compute the cumulative sum for Disney stock and plot the results:

load disney.mat
cs_dis = cumsum(fillts(dis));
plot(cs_dis)
title('Cumulative Sum for Disney')

17-254

cumsum

See Also cumsum

17-255

cur2frac

Purpose Decimal currency values to fractional values

Syntax Fraction = cur2frac(Decimal, Denominator)

Description Fraction = cur2frac(Decimal, Denominator) converts decimal
currency values to fractional values. Fraction is returned as a string.

Examples Fraction = cur2frac(12.125, 8)

returns Fraction = 12.1, a string.

See Also cur2str | frac2cur

17-256

cur2str

Purpose Bank-formatted text

Syntax String = cur2str(Value, Digits)

Description String = cur2str(Value, Digits) returns the given value in bank
format. By default, Digits = 2. A negative Digits rounds the value
to the left of the decimal point. String is returned as a string with a
leading dollar sign ($). Negative numbers are displayed in parentheses.

Examples String = cur2str(-8264, 2)

returns String = ($8264.00)

See Also cur2frac | frac2cur

17-257

date2time

Purpose Time and frequency from dates

Syntax [TFactors, F] = date2time(Settle, Maturity, Compounding, Basis,
EndMonthRule)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings.

Maturity A vector of serial maturity dates.

Compounding Scalar value representing the rate at which
the input zero rates were compounded when
annualized. This argument determines the
formula for the discount factors:

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate,
and T is the time in periodic units, for
example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the
number of days in the basis year and T is a
number of days elapsed computed by basis.

• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.

17-258

date2time

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that
a bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

17-259

date2time

Description [TFactors, F] = date2time(Settle, Maturity, Compounding,
Basis, EndMonthRule) computes time factors appropriate to
compounded rate quotes between the settlement and maturity dates.

TFactors is a vector of time factors.

F is a scalar of related compounding frequencies.

date2time is the inverse of time2date.

See Also cftimes | disc2rate | rate2disc | time2date

17-260

dateaxis

Purpose Convert serial-date axis labels to calendar-date axis labels

Syntax dateaxis(Tickaxis, DateForm, StartDate)

Arguments

Tickaxis (Optional) Determines which axis tick labels—x, y, or
z—to replace. Enter as a string. Default = 'x'.

DateForm (Optional) Specifies which date format to use.
Enter as an integer from 0 to 17. If no DateForm
argument is entered, this function determines the
date format based on the span of the axis limits.
For example, if the difference between the axis
minimum and maximum is less than 15, the tick
labels are converted to three-letter day-of-the-week
abbreviations (DateForm = 8). See DateForm format
descriptions below.

StartDate (Optional) Assigns the date to the first axis tick
value. Enter as a string. The tick values are treated
as serial date numbers. The default StartDate is the
lower axis limit converted to the appropriate date
number. For example, a tick value of 1 is converted
to the date 01-Jan-0000. Entering StartDate as
'06-apr-1999' assigns the date April 6, 1999 to
the first tick value and the axis tick labels are set
accordingly.

Description dateaxis(Tickaxis, DateForm, StartDate) replaces axis tick labels
with date labels on a graphic figure.

See the MATLAB set command for information on modifying the axis
tick values and other axis parameters.

17-261

dateaxis

DateForm Format Description

0 01-Mar-1999
15:45:17

day-month-year
hour:minute:second

1 01-mar-1999 day-month-year

2 03/01/99 month/day/year

3 Mar month, three letters

4 M month, single letter

5 3 month

6 03/01 month/day

7 1 day of month

8 Wed day of week, three letters

9 W day of week, single letter

10 1999 year, four digits

11 99 year, two digits

12 Mar99 month year

13 15:45:17 hour:minute:second

14 03:45:17 PM hour:minute:second AM or PM

15 15:45 hour:minute

16 03:45 PM hour:minute AM or PM

17 95/03/01 year month day

Examples dateaxis('x') or dateaxis

converts the x-axis labels to an automatically determined date format.

dateaxis('y', 6)

17-262

dateaxis

converts the y-axis labels to the month/day format.

dateaxis('x', 2, '03/03/1999')

converts the x-axis labels to the month/day/year format. The minimum
x-tick value is treated as March 3, 1999.

See Also bolling | candle | datenum | datestr | highlow | movavg | pointfig

17-263

datedisp

Purpose Display date entries

Syntax datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

Arguments

NumMat Numeric matrix to display.

DateForm (Optional) Date format. See datestr for available
and default format flags.

Description datedisp(NumMat, DateForm) displays a matrix with the serial
dates formatted as date strings, using a matrix with mixed
numeric entries and serial date number entries. Integers between
datenum('01-Jan-1900') and datenum('01-Jan-2200') are assumed
to be serial date numbers, while all other values are treated as numeric
entries.

CharMat is a character array representing NumMat. If no output variable
is assigned, the function prints the array to the display.

Examples NumMat = [730730, 0.03, 1200 730100;
730731, 0.05, 1000 NaN]

NumMat =

1.0e+05 *

7.3073 0.0000 0.0120 7.3010
7.3073 0.0000 0.0100 NaN

datedisp(NumMat)

01-Sep-2000 0.03 1200 11-Dec-1998

17-264

datedisp

02-Sep-2000 0.05 1000 NaN

See Also datenum | datestr

17-265

datefind

Purpose Indices of date numbers in matrix

Syntax Indices = datefind(Subset, Superset, Tolerance)

Arguments

Subset Subset matrix of date numbers used to find matching
date numbers in Superset. These date numbers
must be a nonrepeating subset of those in Superset.

Superset Superset matrix of nonrepeating date numbers
whose elements are sought.

Tolerance (Optional) Tolerance (+/-) for matching the date
numbers in Superset. A positive integer. Default
= 0.

Description Indices = datefind(Subset, Superset, Tolerance) returns a
vector of indices to the date numbers in Superset that are present
in Subset, plus or minus the Tolerance. If no date numbers match,
Indices = [].

Although this function was designed for use with sequential date
numbers, you can use it with any nonrepeating integers.

Examples Superset = datenum(1999, 7, 1:31);

Subset = [datenum(1999, 7, 10); datenum(1999, 7, 20)];

Indices = datefind(Subset, Superset, 1)

Indices =

9
10

17-266

datefind

11
19
20
21

See Also datenum

17-267

datemnth

Purpose Date of day in future or past month

Syntax TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis,
EndMonthRule)

Arguments

StartDate Enter as serial date numbers or date strings.

NumberMonths Vector containing number of months in future
(positive) or past (negative). Values must be
in integer form.

DayFlag (Optional) Vector containing values that specify
how the actual day number for the target
date in future or past month is determined. 0
(default) = day number should be the day in
the future or past month corresponding to the
actual day number of the start date. 1 = day
number should be the first day of the future or
past month. 2 = day number should be the last
day of the future or past month.
This flag has no effect if EndMonthRule is set
to 1.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

17-268

datemnth

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector. 1 =
rule in effect, meaning that if you are beginning
on the last day of a month, and the month has
30 or fewer days, you will end on the last actual
day of the future or past month regardless of
whether that month has 28, 29, 30 or 31 days)
0 = rule off (default), meaning that the rule is
not in effect.

Any input can contain multiple values, but if so, all other inputs must
contain the same number of values or a single value that applies to all.
For example, if StartDate is an n-row character array of date strings,
then NumberMonths must be an n-by-1 vector of integers or a single
integer. TargetDate is then an n-by-1 vector of date numbers.

Description TargetDate = datemnth(StartDate, NumberMonths, DayFlag,
Basis, EndMonthRule) returns the serial date number of the target
date in the future or past.

Use datestr to convert serial date numbers to formatted date strings.

Examples Day = datemnth('3 jun 2001', 6, 0, 0, 0)
Day =

17-269

datemnth

731188
datestr(Day)
ans =
03-Dec-2001

Day = datemnth('3 jun 2001', 6, 1, 0, 1); datestr(Day)
ans =
01-Dec-2001

Day = datemnth('31 jan 2001', 5, 0, 0, 0); datestr(Day)
ans =
30-Jun-2001

Day = datemnth('31 jan 2001', 5, 1, 0, 0); datestr(Day)
ans =
01-Jun-2001

Day = datemnth('31 jan 2001', 5, 1, 0, 1); datestr(Day)
ans =
30-Jun-2001

Day = datemnth('31 jan 2001', 5, 2, 0, 1); datestr(Day)
ans =
30-Jun-2001

Months = [1; 3; 5; 7; 9];
Day = datemnth('31 jan 2001', Months); datestr(Day)
ans =
28-Feb-2001
30-Apr-2001
30-Jun-2001
31-Aug-2001
31-Oct-2001

See Also datestr | datevec | days360 | days365 | daysact | daysdif |
wrkdydif

17-270

datenum

Purpose Create date number

Syntax N = datenum(V)
N = datenum(S, F)
N = datenum(S, F, P)
N = datenum([S, P, F])
N = datenum(Y, M, D)
N = datenum(Y, M, D, H, MN, S)
N = datenum(S)
N = datenum(S, P)

Description datenum is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB software: a string
(or date string), a vector of date and time components (or date vector), or
as a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from a specific date and time, where datenum('Jan-1-0000
00:00:00') returns the number 1. (The year 0000 is merely a reference
point and is not intended to be interpreted as a real year in time.)

N = datenum(V) converts one or more date vectors V to serial date
numbers N. Input V can be an m-by-6 or m-by-3 matrix containing m full
or partial date vectors respectively. A full date vector has six elements,
specifying year, month, day, hour, minute, and second, in that order. A
partial date vector has three elements, specifying year, month, and day,
in that order. Each element of V must be a positive double-precision
number. datenum returns a column vector of m date numbers, where m is
the total number of date vectors in V.

N = datenum(S, F) converts one or more date strings S to serial date
numbers N using format string F to interpret each date string. Input S

17-271

datenum

can be a one-dimensional character array or cell array of date strings.
All date strings in S must have the same format, and that format must
match one of the date string formats shown in the help for the datestr
function. datenum returns a column vector of m date numbers, where m
is the total number of date strings in S. MATLAB software considers
date string years that are specified with only two characters (e.g., '79')
to fall within 100 years of the current year.

See the datestr reference page to find valid string values for F. These
values are listed in Table 1 in the column labeled “Dateform String.”
You can use any string from that column except for those that include
the letter Q in the string (for example, ’QQ-YYYY’). Certain formats may
not contain enough information to compute a date number. In these
cases, hours, minutes, seconds, and milliseconds default to 0, the month
defaults to January, the day to 1, and the year to the current year.

N = datenum(S, F, P) converts one or more date strings S to date
numbers N using format F and pivot year P. The pivot year is used in
interpreting date strings that have the year specified as two characters.
It is the starting year of the 100-year range in which a two-character
date string year resides. The default pivot year is the current year
minus 50 years.

N = datenum([S, P, F]) is the same as the syntax shown above, except
the order of the last two arguments are switched.

N = datenum(Y, M, D) returns the serial date numbers for
corresponding elements of the Y, M, and D (year, month, day) arrays.
Y, M, and D must be arrays of the same size (or any can be a scalar)
of type double. You can also specify the input arguments as a date
vector, [Y M D].

For this and the following syntax, values outside the normal range of
each array are automatically carried to the next unit. Values outside
the normal range of each array are automatically carried to the next
unit. For example, month values greater than 12 are carried to years.
Month values less than 1 are set to be 1. All other units can wrap and
have valid negative values.

17-272

datenum

N = datenum(Y, M, D, H, MN, S) returns the serial date numbers
for corresponding elements of the Y, M, D, H, MN, and S (year, month,
day, hour, minute, and second) array values. datenum does not accept
milliseconds in a separate input, but as a fractional part of the seconds
(S) input. Inputs Y, M, D, H, MN, and S must be arrays of the same size
(or any can be a scalar) of type double. You can also specify the input
arguments as a date vector, [Y M D H MN S].

N = datenum(S) converts date string S into a serial date number.
String S must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or
23, as defined in the reference page for the datestr function. MATLAB
software considers date string years that are specified with only two
characters (e.g., '79') to fall within 100 years of the current year. If the
format of date string S is known, use the syntax N = datenum(S, F).

N = datenum(S, P) converts date string S, using pivot year P. If the
format of date string S is known, use the syntax N = datenum(S, F,
P).

Note The last two calling syntaxes are provided for backward
compatibility and are significantly slower than the syntaxes that
include a format argument F.

Examples Convert a date string to a serial date number:

n = datenum('19-May-2001', 'dd-mmm-yyyy')

n =
730990

Specifying year, month, and day, convert a date to a serial date number:

n = datenum(2001, 12, 19)

n =
731204

17-273

datenum

Convert a date vector to a serial date number:

format bank
datenum('March 28, 2005 3:37:07.033 PM')
ans =

732399.65

Convert a date string to a serial date number using the default pivot
year:

n = datenum('12-jun-17', 'dd-mmm-yy')

n =
736858

Convert the same date string to a serial date number using 1400 as
the pivot year:

n = datenum('12-jun-17', 'dd-mmm-yy', 1400)

n =
517712

Specify format 'dd.mm.yyyy' to be used in interpreting a nonstandard
date string:

n = datenum('19.05.2000', 'dd.mm.yyyy')

n =
730625

See Also datedisp | datestr | datevec | daysact | now | today

17-274

datestr

Purpose Create date string

Syntax S = datestr(V)
S = datestr(N)
S = datestr(D, F)
S = datestr(S1, F, P)
S = datestr(..., 'local')

Description datestr is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB software: a string
(or date string), a vector of date and time components (or date vector), or
as a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from 1-Jan-0000 to a specific date. The year 0000 is merely
a reference point and is not intended to be interpreted as a real year
in time.

S = datestr(V) converts one or more date vectors V to date strings S.
Input V must be an m-by-6 matrix containing m full (six-element) date
vectors. Each element of V must be a positive double-precision number.
datestr returns a column vector of m date strings, where m is the total
number of date vectors in V.

S = datestr(N) converts one or more serial date numbers N to date
strings S. Input argument N can be a scalar, vector, or multidimensional
array of positive double-precision numbers. datestr returns a column
vector of m date strings, where m is the total number of date numbers
in N.

S = datestr(D, F) converts one or more date vectors, serial date
numbers, or date strings D into the same number of date strings S. Input

17-275

datestr

argument F is a format number or string that determines the format
of the date string output. Valid values for F are given in the table
Standard MATLAB® Date Format Definitions on page 17-276, below.
Input F may also contain a free-form date format string consisting of
format tokens shown in the table Free-Form Date Format Specifiers on
page 17-279, below.

Date strings with 2-character years are interpreted to be within the 100
years centered around the current year.

S = datestr(S1, F, P) converts date string S1 to date string S,
applying format F to the output string, and using pivot year P as the
starting year of the 100-year range in which a two-character year
resides. The default pivot year is the current year minus 50 years. All
date strings in S1 must have the same format.

S = datestr(..., 'local') returns the string in a localized format.
The default is US English (’en_US’). This argument must come last
in the argument sequence.

Note The vectorized calling syntax can offer significant performance
improvement for large arrays.

Standard MATLAB Date Format Definitions

dateform
(number) dateform (string) Example

0 'dd-mmm-yyyy
HH:MM:SS'

01-Mar-2000 15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

17-276

datestr

Standard MATLAB Date Format Definitions (Continued)

dateform
(number) dateform (string) Example

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd,yyyy
HH:MM:SS'

Mar.01,2000 15:45:17

22 'mmm.dd,yyyy' Mar.01,2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

17-277

datestr

Standard MATLAB Date Format Definitions (Continued)

dateform
(number) dateform (string) Example

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

29 (ISO
8601)

'yyyy-mm-dd' 2000-03-01

30 (ISO
8601)

'yyyymmddTHHMMSS' 20000301T154517

31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

Note dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a
string suitable for input to datenum or datevec. Other date string
formats do not work with these functions unless you specify a date form
in the function call.

Note For date formats that specify only a time (for example., dateform
numbers 13, 14, 15, and 16), MATLAB software sets the date to January
1 of the current year.

Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... can also be part
of the input array S. If you do not specify a format string F, or if you
specify F as -1, the date string format defaults to the following:

17-278

datestr

1 If S contains date information only, for example,
01-Mar-1995

16 If S contains time information only, for example, 03:45
PM

0 If S is a date vector, or a string that contains both date
and time information, for example, 01-Mar-1995 03:45

The following table shows the string symbols to use in specifying a
free-form format for the output date string. MATLAB interprets these
symbols according to your computer’s language setting and the current
MATLAB language setting.

Note You cannot use more than one format specifier for any date or
time field. For example, datestr(n, 'dddd dd mmmm') specifies two
formats for the day of the week, and thus returns an error.

Free-Form Date Format Specifiers

Symbol Interpretation Example

yyyy Show year in full. 1990, 2002

yy Show year in two digits. 90, 02

mmmm Show month using full
name.

March, December

mmm Show month using first
three letters.

Mar, Dec

mm Show month in two digits. 03, 12

m Show month using
capitalized first letter.

M, D

dddd Show day using full name. Monday, Tuesday

17-279

datestr

Free-Form Date Format Specifiers (Continued)

Symbol Interpretation Example

ddd Show day using first
three letters.

Mon, Tue

dd Show day in two digits. 05, 20

d Show day using
capitalized first letter.

M, T

HH Show hour in two digits
(no leading zeros when
free-form specifier AM or
PM is used (see last entry
in this table)).

05, 5 AM

MM Show minute in two
digits.

12, 02

SS Show second in two digits. 07, 59

FFF Show millisecond in three
digits.

.057

AM or PM Append AM or PM to date
string (see note below).

3:45:02 PM

Note Free-form specifiers AM and PM from the table above are identical.
They do not influence which characters are displayed following the time
(AM versus PM), but only whether or not they are displayed. MATLAB
software selects AM or PM based on the time entered.

Tips A vector of three or six numbers could represent either a single date
vector, or a vector of individual serial date numbers. For example, the
vector [2000 12 15 11 45 03] could represent either 11:45:03 on
December 15, 2000 or a vector of date numbers 2000, 12, 15, and so

17-280

datestr

on. MATLAB uses the following general rule in interpreting vectors
associated with dates:

• A 3- or 6-element vector having a first element within an approximate
range of 500 greater than or less than the current year is considered
by MATLAB to be a date vector. Otherwise, it is considered to be
a vector of serial date numbers.

To specify dates outside of this range as a date vector, first convert the
vector to a serial date number using the datenum function as shown
here:

datestr(datenum([1400 12 15 11 45 03]), ...
'mmm.dd,yyyy HH:MM:SS')

ans =
Dec.15,1400 11:45:03

Examples Return the current date and time in a string using the default format, 0:

datestr(now)

ans =
28-Mar-2005 15:36:23

Reformat the date and time, and also show milliseconds:

dt = datestr(now, 'mmmm dd, yyyy HH:MM:SS.FFF AM')
dt =

March 28, 2005 3:37:07.952 PM

Format the same showing only the date and in the mm/dd/yy format.
Note that you can specify this format either by number or by string.

datestr(now, 2) -or- datestr(now, 'mm/dd/yy')

ans =
03/28/05

17-281

datestr

Display the returned date string using your own format made up of
symbols shown in the Free-Form Date Format Specifiers on page 17-279
table above.

datestr(now, 'dd.mm.yyyy')

ans =
28.03.2005

Convert a nonstandard date form into a standard MATLAB date form
by first converting to a date number and then to a string:

datestr(datenum('28.03.2005', 'dd.mm.yyyy'), 2)

ans =
03/28/05

See Also dateaxis | datedisp | datenum | datevec | daysact | now | today

17-282

datevec

Purpose Date components

Syntax V = datevec(N)
V = datevec(S, F)
V = datevec(S, F, P)
V = datevec(S, P, F)
[Y, M, D, H, MN, S] = datevec(...)
V = datevec(S)
V = datevec(S, P)

Description datevec is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB software: a string
(or date string), a vector of date and time components (or date vector), or
as a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from 1-Jan-0000 to a specific date. The year 0000 is merely
a reference point and is not intended to be interpreted as a real year
in time.

V = datevec(N) converts one or more date numbers N to date vectors V.
Input argument N can be a scalar, vector, or multidimensional array of
positive date numbers. datevec returns an m-by-6 matrix containing m
date vectors, where m is the total number of date numbers in N.

V = datevec(S, F) converts one or more date strings S to date vectors
V using format string F to interpret the date strings in S. Input argument
S can be a cell array of strings or a character array where each row
corresponds to one date string. All of the date strings in Smust have the
same format which must be composed of date format symbols according
to the table “Free-Form Date Format Specifiers” in the datestr help.

17-283

datevec

Formats with 'Q' are not accepted by datevec. datevec returns an
m-by-6matrix of date vectors, where m is the number of date strings in S.

Certain formats may not contain enough information to compute a date
vector. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two character years are interpreted to be within
the 100 years centered around the current year.

V = datevec(S, F, P) converts the date string S to a date vector V
using date format F and pivot year P. The pivot year is the starting year
of the 100-year range in which a two-character year resides. The default
pivot year is the current year minus 50 years.

V = datevec(S, P, F) is the same as the syntax shown above, except
the order of the last two arguments are switched.

[Y, M, D, H, MN, S] = datevec(...) takes any of the two syntaxes
shown above and returns the components of the date vector as
individual variables. datevec does not return milliseconds in a separate
output, but as a fractional part of the seconds (S) output.

V = datevec(S) converts date string S to date vector V. Input argument
S must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or 23 as
defined in the reference page for the datestr function. This calling
syntax is provided for backward compatibility, and is significantly
slower than the syntax which specifies the format string. If the format
is known, the V = datevec(S, F) syntax is recommended.

V = datevec(S, P) converts the date string S using pivot year P. If the
format is known, the V = datevec(S, F, P) or V = datevec(S, P,
F) syntax should be used.

Note If more than one input argument is used, the first argument must
be a date string or array of date strings.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges

17-284

datevec

affect the next higher component (so that, for instance, the anomalous
June 31 becomes July 1). A zeroth month, with zero days, is allowed.

Note The vectorized calling syntax can offer significant performance
improvement for large arrays.

Examples Obtain a date vector using a string as input:

format short g

datevec('March 28, 2005 3:37:07.952 PM')
ans =

2005 3 28 15 37 7.952

Obtain a date vector using a serial date number as input:

t = datenum('March 28, 2005 3:37:07.952 PM')
t =

7.324e+005

datevec(t)
ans =

2005 3 28 15 37 7.952

Assign elements of the returned date vector:

[y, m, d, h, mn, s] = datevec('March 28, 2005 3:37:07.952 PM');

sprintf('Date: %d/%d/%d Time: %d:%d:%2.3f\n', m, d, y, h, mn, s)

ans =

Date: 3/28/2005 Time: 15:37:7.952

17-285

datevec

Use free-form date format 'dd.mm.yyyy' to indicate how you want a
nonstandard date string interpreted:

datevec('28.03.2005', 'dd.mm.yyyy')

ans = 2005 3 28 0 0 0

See Also datenum | datestr | now | today

17-286

datewrkdy

Purpose Date of future or past workday

Syntax EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays)

Arguments

StartDate Start date vector. Enter as serial date numbers
or date strings.

NumberWorkDays Vector containing number of work or business
days in future (positive) or past (negative),
including the starting date.

NumberHolidays Vector containing values for the number
of holidays within NumberWorkDays.
NumberHolidays and NumberWorkDays must
have the same sign.

Any input can contain multiple values, but if so, all other inputs must
contain the same number of values or a single value that applies to all.
For example, if StartDate is an n-row character array of date strings,
then NumberWorkDays must be an n-by-1 vector of integers or a single
integer. EndDate is then an n-by-1 vector of date numbers.

Description EndDate = datewrkdy(StartDate, NumberWorkDays,
NumberHolidays) returns the serial number of the date a given
number of workdays before or after the start date.

Use datestr to convert serial date numbers to formatted date strings.

Examples Workday = datewrkdy('12-dec-2000', 16, 2);
datestr(Workday)
ans =
04-Jan-2001
NumDays = [16; 20; 44];

17-287

datewrkdy

Workdays = datewrkdy('12-dec-2000', NumDays, 2);
datestr(Workdays)
ans =
4-Jan-2001
10-Jan-2001
13-Feb-2001

See Also busdate | holidays | isbusday | wrkdydif

17-288

day

Purpose Day of month

Syntax DayMonth = day(Date)
DayMonth = day(Date, F)

Description DayMonth = day(Date) returns the day of the month given a serial
date number or date string.

DayMonth = day(Date, F) returns the day of the of the month, given a
serial date number or date string, in a specified date format.

Examples DayMonth = day(730544)

or

DayMonth = day('2/28/00')

returns DayMonth = 28

You can also use the F argument to designate a country-specific date
format:

DayMonth = day('28/02/00','dd/mm/yyyy')

returns DayMonth = 28

See Also datevec | eomday | month | year

17-289

days252bus

Purpose Number of business days between dates

Syntax NumberDays = days252bus(StartDate, EndDate)
NumberDays = days252bus(StartDate, EndDate, HolidayVector)

Arguments

StartDate N-by-1 or 1-by-N vector or scalar value, in either
serial date number or date string form, representing
the start date.

EndDate N-by-1 or 1-by-N vector or scalar value, in either
serial date number or date string form, representing
the end date.

HolidayVector (Optional) N-by-1 or 1-by-N vector, in either serial
date number or date string form, representing
holidays.

Description NumberDays = days252bus(StartDate, EndDate, HolidayVector)
computes the number of business days (i.e. non-holiday or non-weekend)
between the two input dates. Note that a holiday vector may be
optionally specified; if it is not, then the holidays.m file is used to
determine the holidays.

days252bus returns NumberDays, a N-by-1 or 1-by-N vector or scalar
value for the number of days between two dates

Examples Use the days252bus convention to find the number of business days
between two dates.

NumberDays = days252bus('1/1/2009', '8/1/2009')

NumberDays =

145

17-290

days252bus

See Also days360psa | daysact | daysdif | days365

17-291

days360

Purpose Days between dates based on 360-day year

Syntax NumDays = days360(StartDate, EndDate)

Arguments

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

Either input can contain multiple values, but if so, the other must
contain the same number of values or a single value that applies to all.
For example, if StartDate is an n-row character array of date strings,
then EndDate must be an n-by-1 vector of integers or a single integer.
NumDays is then an n-by-1 vector of date numbers.

Description NumDays = days360(StartDate, EndDate) returns the number of
days between StartDate and EndDate based on a 360-day year (that
is, all months contain 30 days). If EndDate is earlier than StartDate,
NumDays is negative.

Examples NumDays = days360('15-jan-2000', '15-mar-2000')

NumDays =

60

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days360('15-jan-2000', MoreDays)

NumDays =

60
90

17-292

days360

150

References Addendum to Securities Industry Association, Standard Securities
Calculation Methods: Fixed Income Securities Formulas for Analytic
Measures, Vol. 2, Spring 1995.

See Also days365 | daysact | daysdif | wrkdydif | yearfrac

17-293

days360e

Purpose Days between dates based on 360-day year (European)

Syntax NumDays = days360e(StartDate, EndDate)

Arguments

StartDate Row vector, column vector, or scalar value in serial
date number or date string format.

EndDate Row vector, column vector, or scalar value in serial
date number or date string format.

Either input can contain multiple values, but if so, the other must
contain the same number of values or a single value that applies to all.

Description NumDays = days360e(StartDate, EndDate) returns a vector or
scalar value representing the number of days between StartDate and
EndDate based on a 360-day year (that is, all months contain 30 days).
If EndDate is earlier than StartDate, NumDays is negative.

This day count convention is used primarily in Europe. Under this
convention all months contain 30 days.

Examples Example 1. Use this convention to find the number of days in the
month of January.

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360e(StartDate, EndDate)

NumDays =

30

Example 2. Use this convention to find the number of days in February
during a leap year.

17-294

days360e

StartDate = '1-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360e(StartDate, EndDate)

NumDays =

30

Example 3. Use this convention to find the number of days in February
of a non-leap year.

StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';

NumDays = days360e(StartDate, EndDate)

NumDays =

30

See Also days360 | days360isda | days360psa

17-295

days360isda

Purpose Days between dates based on 360-day year (International Swap Dealer
Association (ISDA) compliant)

Syntax NumDays = days360isda(StartDate, EndDate)

Arguments

StartDate Row vector, column vector, or scalar value in serial
date number or date string format.

EndDate Row vector, column vector, or scalar value in serial
date number or date string format.

Either input can contain multiple values, but if so, the other must
contain the same number of values or a single value that applies to all.

Description NumDays = days360isda(StartDate, EndDate) returns a vector or
scalar value representing the number of days between StartDate and
EndDate based on a 360-day year (that is, all months contain 30 days).
If EndDate is earlier than StartDate, NumDays is negative.

Under this convention all months contain 30 days.

Examples Example 1. Use this convention to find the number of days in the
month of January.

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360isda(StartDate, EndDate)

NumDays =

30

Example 2. Use this convention to find the number of days in February
during a leap year.

17-296

days360isda

StartDate = '1-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360isda(StartDate, EndDate)

NumDays =

30

Example 3. Use this convention to find the number of days in February
of a non leap year.

StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360isda(StartDate, EndDate)

NumDays =

30

See Also days360 | days360e | days360psa

17-297

days360psa

Purpose Days between dates based on 360-day year (Public Securities
Association (PSA) compliant)

Syntax NumDays = days360psa(StartDate, EndDate)

Arguments

StartDate Row vector, column vector, or scalar value in serial
date number or date string format.

EndDate Row vector, column vector, or scalar value in serial
date number or date string format.

Either input can contain multiple values, but if so, the other must
contain the same number of values or a single value that applies to all.

Description NumDays = days360psa(StartDate, EndDate) returns a vector or
scalar value representing the number of days between StartDate and
EndDate based on a 360-day year (that is, all months contain 30 days).
If EndDate is earlier than StartDate, NumDays is negative.

Under this payment convention all months contain 30 days. In both
leap and non-leap years, if the StartDate is the last day of February,
this day is considered to be day 30 of the month.

Examples Example 1. Use this convention to find the number of days in between
the last day of February and the first day of March during a leap year.

StartDate = '29-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360psa(StartDate, EndDate)

NumDays =

1

17-298

days360psa

Example 2. Use this convention to find the number of days in between
the last day of February and the first day of March during a non-leap
year.

StartDate = '28-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360psa(StartDate, EndDate)

NumDays =

1

As expected, the number of days in both cases is the same. The
convention always assumes that the last day of February is the 30th
day.

See Also days360 | days360e | days360isda

17-299

days365

Purpose Days between dates based on 365-day year

Syntax NumDays = days365(StartDate, EndDate)

Arguments

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

Either input can contain multiple values, but if so, the other must
contain the same number of values or a single value that applies to all.
For example, if StartDate is an n-row character array of date strings,
then EndDate must be an n-by-1 vector of integers or a single integer.
NumDays is then an n-by-1 vector of date numbers.

Description NumDays = days365(StartDate, EndDate) returns the number of
days between dates StartDate and EndDate based on a 365-day year.
(All months contain their actual number of days. February always
contains 28 days.) If EndDate is earlier than StartDate, NumDays is
negative. Enter dates as serial date numbers or date strings.

Examples NumDays = days365('15-jan-2000', '15-mar-2000')

NumDays =

59

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days365('15-jan-2000', MoreDays)

NumDays =

59

17-300

days365

90
151

See Also days360 | daysact | daysdif | wrkdydif | yearfrac

17-301

daysact

Purpose Actual number of days between dates

Syntax NumDays = daysact(StartDate, EndDate)

Arguments

StartDate Enter as serial date numbers or date strings.

EndDate (Optional) Enter as serial date numbers or date
strings.

Either input can contain multiple values, but if so, the other must
contain the same number of values or a single value that applies to all.
For example, if StartDate is an n-row character array of date strings,
then EndDate must be an n-row character array of date strings or a
single date. NumDays is then an n-by-1 vector of numbers.

Description NumDays = daysact(StartDate, EndDate) returns the actual number
of days between two dates. Enter dates as serial date numbers or date
strings. NumDays is negative if EndDate is earlier than StartDate.

NumDays = daysact(StartDate) returns the actual number of days
between the MATLAB base date and StartDate. In MATLAB software,
the base date 1 is 1-Jan-0000 A.D. See datenum for a similar function.

Examples NumDays = daysact('7-sep-2002', '25-dec-2002')
NumDays =

109

NumDays = daysact('9/7/2002')
NumDays =

731466

MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];
NumDays = daysact(MoreDays, '12/25/2002')

17-302

daysact

NumDays =
109
64
50

See Also datenum | datevec | days360 | days365 | daysdif

17-303

daysadd

Purpose Date away from starting date for any day-count basis

Syntax NumDays = daysadd(StartDate, NumDays, Basis)

Arguments

StartDate Start date. Enter as serial date numbers or date
strings.

NumDays Integer number of days from start date. Enter a
negative integer for dates before start date.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

17-304

daysadd

Note When using the 30/360 day-count basis, it is not always possible
to find the exact date NumDays number of days away because of a known
discontinuity in the method of counting days. A warning is displayed if
this occurs.

Description NumDays = daysadd(StartDate, NumDays, Basis) returns a date
NumDays number of days away from StartDate, using the given
day-count basis.

Examples NewDate = daysadd('01-Feb-2004', 31)

NewDate =

732009

datestr(NewDate)

ans =

03-Mar-2004

NewDate = daysadd('01-Feb-2004', 31, 1)

NewDate =

732008

datestr(NewDate)

ans =

02-Mar-2004

17-305

daysadd

References Stigum, Marcia L. and Franklin Robinson, Money Market and Bond
Calculations, Richard D. Irwin, 1996, ISBN 1-55623-476-7

See Also daysdif

17-306

daysdif

Purpose Days between dates for any day-count basis

Syntax NumDays = daysdif(StartDate, EndDate, Basis)

Arguments

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

17-307

daysdif

Any input argument can contain multiple values, but if so, the other
inputs must contain the same number of values or a single value that
applies to all. For example, if StartDate is an n-row character array of
date strings, then EndDate must be an n-row character array of date
strings or a single date. NumDays is then an n-by-1 vector of numbers.

Description NumDays = daysdif(StartDate, EndDate, Basis) returns the number
of days between dates StartDate and EndDate using the given
day-count basis. Enter dates as serial date numbers or date strings.
Enter dates as serial date numbers or date strings. The first date
(StartDate) is not included when determining the number of days
between first and last date.

This function is a helper function for the bond pricing and yield
functions. It is designed to make the code more readable and to
eliminate redundant calls within if statements.

Examples NumDays = daysdif('3/1/99', '3/1/00', 1)
NumDays =

360

MoreDays = ['3/1/2001'; '3/1/2002'; '3/1/2003'];
NumDays = daysdif('3/1/98', MoreDays)
NumDays =

1096
1461
1826

References Stigum, Marcia L. and Franklin Robinson, Money Market and Bond
Calculations, Richard D. Irwin, 1996, ISBN 1-55623-476-7.

See Also datenum | days360 | days365 | daysact | daysadd | wrkdydif |
yearfrac

17-308

dec2thirtytwo

Purpose Decimal to thirty-second quotation

Syntax [OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy)

Arguments

InNumber Input number as a decimal fraction.

Accuracy (Optional) Rounding. Default = 1, round down to
nearest thirty second. Other values are 2 (nearest
half), 4 (nearest quarter) and 10 (nearest decile).

Description [OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy)
changes a decimal price quotation for a bond or bond future to a fraction
with a denominator of 32.

OutNumber is InNumber rounded downward to the closest integer.

Fractions is the fractional part in units of thirty-second with accuracy
as prescribed by the input Accuracy.

Examples Two bonds are quoted with decimal prices of 101.78 and 102.96. Convert
these prices to fractions with a denominator of 32.

InNumber = [101.78; 102.96];

[OutNumber, Fractions] = dec2thirtytwo(InNumber)

OutNumber =

101
102

Fractions =

25

17-309

dec2thirtytwo

31

See Also thirtytwo2dec

17-310

depfixdb

Purpose Fixed declining-balance depreciation schedule

Syntax Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)

Arguments

Cost Scalar for the initial value of the asset.

Salvage Scalar for the salvage value of the asset.

Life Scalar value for the life of the asset in years.

Period Scalar integer for the number of years to calculate.

Month (Optional) Scalar value for the number of months in
the first year of asset life. Default = 12.

Description Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)
calculates the fixed declining-balance depreciation for each period.

Examples A car is purchased for $11,000 with a salvage value of $1500 and a
lifetime of eight years. To calculate the depreciation for the first five
years

Depreciation = depfixdb(11000, 1500, 8, 5)

returns

Depreciation =

2425.08 1890.44 1473.67 1148.78 895.52

See Also depgendb | deprdv | depsoyd | depstln

17-311

depgendb

Purpose General declining-balance depreciation schedule

Syntax Depreciation = depgendb(Cost, Salvage, Life, Factor)

Arguments

Cost Cost of the asset.

Salvage Estimated salvage value of the asset.

Life Number of periods over which the asset is
depreciated.

Factor Depreciation factor. Factor = 2 uses the
double-declining-balance method.

Description Depreciation = depgendb(Cost, Salvage, Life, Factor)
calculates the declining-balance depreciation for each period.

Examples Calculate the Declining-Balance Depreciation

A car is purchased for $10,000 and is to be depreciated over
five years. The estimated salvage value is $1000. Using the
double-declining-balance method, the function calculates the
depreciation for each year and returns the remaining depreciable value
at the end of the life of the car.

Define the depreciation.

Life = 5;
Salvage = 0;
Cost = 10000;
Factor=2;

17-312

depgendb

Use depgendb to calculate the depreciation.

Depreciation = depgendb(10000, 1000, 5, 2)

Depreciation =

1.0e+03 *

4.0000 2.4000 1.4400 0.8640 0.2960

The large value returned at the final year is the sum of the depreciation
over the life time and is equal to the difference between the Cost and
Salvage. The value of the asset in the final year is computed as (Cost –
Salvage) – Sum_Depreciation_Upto_Finanl_Year.

See Also depfixdb | deprdv | depsoyd | depstln

17-313

deprdv

Purpose Remaining depreciable value

Syntax Value = deprdv(Cost, Salvage, Accum)

Arguments

Cost Cost of the asset.

Salvage Salvage value of the asset.

Accum Accumulated depreciation of the asset for prior
periods.

Description Value = deprdv(Cost, Salvage, Accum) returns the remaining
depreciable value for an asset.

Examples The cost of an asset is $13,000 with a life of 10 years. The salvage value
is $1000. First find the accumulated depreciation with the straight-line
depreciation function, depstln. Then find the remaining depreciable
value after six years.

Accum = depstln(13000, 1000, 10) * 6

Accum =
7200.00

Value = deprdv(13000, 1000, 7200)

Value =
4800.00

See Also depfixdb | depgendb | depsoyd | depstln

17-314

depsoyd

Purpose Sum of years’ digits depreciation

Syntax Sum = depsoyd(Cost, Salvage, Life)

Arguments

Cost Cost of the asset.

Salvage Salvage value of the asset.

Life Depreciable life of the asset in years.

Description Sum = depsoyd(Cost, Salvage, Life) calculates the depreciation
for an asset using the sum of years’ digits method. Sum is a 1-by-Life
vector of depreciation values with each element corresponding to a year
of the asset’s life.

Examples The cost of an asset is $13,000 with a life of 10 years. The salvage value
of the asset is $1000.

Sum = depsoyd(13000, 1000, 10)'

returns

Sum =
2181.82
1963.64
1745.45
1527.27
1309.09
1090.91
872.73
654.55
436.36
218.18

17-315

depsoyd

See Also depfixdb | depgendb | deprdv | depstln

17-316

depstln

Purpose Straight-line depreciation schedule

Syntax Depreciation = depstln(Cost, Salvage, Life)

Arguments

Cost Cost of the asset.

Salvage Salvage value of the asset.

Life Depreciable life of the asset in years.

Description Depreciation = depstln(Cost, Salvage, Life) calculates
straight-line depreciation for an asset.

Examples The cost of an asset is $13,000 with a life of 10 years. The salvage value
of the asset is $1000.

Depreciation = depstln(13000, 1000, 10)

returns

Depreciation =
1200

See Also depfixdb | depgendb | deprdv | depsoyd

17-317

diff

Purpose Differencing

Syntax newfts = diff(oldfts)

Description diff computes the differences of the data series in a financial time
series object. It returns another time series object containing the
difference.

newfts = diff(oldfts) computes the difference of all the data in the
data series of the object oldfts and returns the result in the object
newfts. newfts is a financial time series object containing the same
data series (names) as the input oldfts.

See Also diff

17-318

disc2zero

Purpose Zero curve given discount curve

Syntax [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle,
Compounding, Basis)

Arguments

DiscRates Column vector of discount factors, as decimal
fractions. In aggregate, the factors in DiscRates
constitute a discount curve for the investment
horizon represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date
numbers) that correspond to the discount factors in
DiscRates.

Settle Serial date number that is the common settlement
date for the discount rates in DiscRates.

Compounding (Optional) Output compounding. A scalar that sets
the compounding frequency per year for annualizing
the output zero rates. Allowed values are:

1 Annual compounding

2 Semiannual compounding (default)

3 Compounding three times per year

4 Quarterly compounding

6 Bimonthly compounding

12 Monthly compounding

365 Daily compounding

17-319

disc2zero

-1 Continuous compounding

Basis (Optional) Day-count basis for annualizing the
output zero rates.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,
Settle, Compounding, Basis) returns a zero curve given a discount
curve and its maturity dates.

17-320

disc2zero

ZeroRates Column vector of decimal fractions. In aggregate, the
rates in ZeroRates constitute a zero curve for the
investment horizon represented by CurveDates. The
zero rates are the yields to maturity on theoretical
zero-coupon bonds.

CurveDates Column vector of maturity dates (as serial date
numbers) that correspond to the zero rates. This
vector is the same as the input vector CurveDates.

Examples Given discount factors DiscRates over a set of maturity dates
CurveDates, and a settlement date Settle

DiscRates = [0.9996
0.9947
0.9896
0.9866
0.9826
0.9786
0.9745
0.9665
0.9552
0.9466];

CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

17-321

disc2zero

Set daily compounding for the output zero curve, on an actual/365 basis.

Compounding = 365;
Basis = 3;

Execute the function

[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,...

Settle, Compounding, Basis)

which returns the zero curve ZeroRates at the maturity dates
CurveDates.

ZeroRates =
0.0487
0.0510
0.0523
0.0524
0.0530
0.0526
0.0530
0.0532
0.0549
0.0536

CurveDates =
730796
730831
730866
730887
730914
730943
730971
731027
731098
731167

17-322

disc2zero

For readability, DiscRates and ZeroRates are shown here only to
the basis point. However, MATLAB software computed them at full
precision. If you enter DiscRates as shown, ZeroRates may differ due
to rounding.

See Also zero2disc

How To • “Term Structure of Interest Rates” on page 2-36

17-323

discrate

Purpose Bank discount rate of money market security

Syntax DiscRate = discrate(Settle, Maturity, Face, Price, Basis)

Arguments

Settle Enter as serial date numbers or date strings.
Settle must be earlier than Maturity.

Maturity Enter as serial date numbers or date strings.

Face Redemption (par, face) value.

Price Price of the security.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252

17-324

discrate

For more information, see basis on page Glossary-1.

Description DiscRate = discrate(Settle, Maturity, Face, Price, Basis)
finds the bank discount rate of a security. The bank discount rate
normalizes by the face value of the security (for example, U. S. Treasury
Bills) and understates the true yield earned by investors.

Examples DiscRate = discrate('12-jan-2000', '25-jun-2000', 100, 97.74, 0)

returns

DiscRate =

0.0501

a discount rate of 5.01%.

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd
edition. Formula 1.

See Also acrudisc | fvdisc | prdisc | ylddisc

17-325

ecmlsrmle

Purpose Least-squares regression with missing data

Syntax [Parameters, Covariance, Resid, Info] = ecmlsrmle(Data, Design,
MaxIterations, TolParam, TolObj, Param0, Covar0, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix
with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector.
Missing values are represented as NaNs. Only
samples that are entirely NaNs are ignored.
(To ignore samples with at least one NaN, use
mvnrmle.)

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard
form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array.
The cell array contains either one or
NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed
to have the same Design matrix for each
sample. If Design has more than one cell,
each cell contains a Design matrix for each
sample.

17-326

ecmlsrmle

MaxIterations (Optional) Maximum number of iterations for
the estimation algorithm. Default value is 100.

TolParam (Optional) Convergence tolerance for
estimation algorithm based on changes in
model parameter estimates. Default value is
sqrt(eps) which is about 1.0e-8 for double
precision. The convergence test for changes in
model parameters is

Param Param TolParam Paramk k k− < × +()−1 1

where Param represents the output Parameters,
and iteration k = 2, 3, Convergence is
assumed when both the TolParam and TolObj
conditions are satisfied. If both TolParam ≤
0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the
results of the convergence tests.

TolObj (Optional) Convergence tolerance for estimation
algorithm based on changes in the objective
function. Default value is eps ∧ 3/4 which
is about 1.0e-12 for double precision. The
convergence test for changes in the objective
function is

Obj Obj TolObj Objk k k− < × +()−1 1

for iteration k = 2, 3, Convergence is
assumed when both the TolParam and TolObj
conditions are satisfied. If both TolParam ≤
0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the
results of the convergence tests.

17-327

ecmlsrmle

Param0 (Optional) NUMPARAMS-by-1 column vector that
contains a user-supplied initial estimate for the
parameters of the regression model. Default is
a zero vector.

Covar0 (Optional) NUMSERIES-by-NUMSERIES matrix
that contains a user-supplied initial or known
estimate for the covariance matrix of the
regression residuals. Default is an identity
matrix.

For covariance-weighted least-squares
calculations, this matrix corresponds with
weights for each series in the regression.
The matrix also serves as an initial guess for
the residual covariance in the expectation
conditional maximization (ECM) algorithm.

CovarFormat (Optional) String that specifies the format for
the covariance matrix. The choices are:

• 'full' - Default method. Compute the full
covariance matrix.

• 'diagonal' - Force the covariance matrix to
be a diagonal matrix.

Description [Parameters, Covariance, Resid, Info] = ecmlsrmle(Data,
Design, MaxIterations, TolParam, TolObj, Param0, Covar0,
CovarFormat) estimates a least-squares regression model with missing
data. The model has the form

Data N Design Parameters Covariancek k ×(),

for samples k = 1, ... , NUMSAMPLES.

17-328

ecmlsrmle

ecmlsrmle estimates a NUMPARAMS-by-1 column vector of model
parameters called Parameters, and a NUMSERIES-by-NUMSERIES matrix
of covariance parameters called Covariance.

ecmlsrmle(Data, Design) with no output arguments plots the
log-likelihood function for each iteration of the algorithm.

To summarize the outputs of ecmlsrmle:

• Parameters is a NUMPARAMS-by-1 column vector of estimates for the
parameters of the regression model.

• Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the regression model’s residuals. For least-squares
models, this estimate may not be a maximum likelihood estimate
except under special circumstances.

• Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the
regression.

Another output, Info, is a structure that contains additional
information from the regression. The structure has these fields:

• Info.Obj – A variable-extent column vector, with no more than
MaxIterations elements, that contains each value of the objective
function at each iteration of the estimation algorithm. The last value
in this vector, Obj(end), is the terminal estimate of the objective
function. If you do least-squares, the objective function is the
least-squares objective function.

• Info.PrevParameters – NUMPARAMS-by-1 column vector of estimates
for the model parameters from the iteration just prior to the terminal
iteration.

• Info.PrevCovariance – NUMSERIES-by-NUMSERIES matrix of
estimates for the covariance parameters from the iteration just prior
to the terminal iteration.

Notes If doing covariance-weighted least-squares, Covar0 should usually be
a diagonal matrix. Series with greater influence should have smaller
diagonal elements in Covar0 and series with lesser influence should

17-329

ecmlsrmle

have larger diagonal elements. Note that if doing CWLS, Covar0 need
not be a diagonal matrix even if CovarFormat = 'diagonal'.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell
array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a
NUMPARAMS row vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a
NUMSERIES-by-NUMPARAMS matrix.

These points concern how Design handles missing data:

• Although Design should not have NaN values, ignored samples due
to NaN values in Data are also ignored in the corresponding Design
array.

• If Design is a 1-by-1 cell array, which has a single Design matrix
for each sample, no NaN values are permitted in the array. A
model with this structure must have NUMSERIES ≥ NUMPARAMS with
rank(Design{1}) = NUMPARAMS.

• ecmlsrmle is more strict than mvnrmle about the presence of NaN
values in the Design array.

Use the estimates in the optional output structure Info for diagnostic
purposes.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

References Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.

Xiao-Li Meng and Donald B. Rubin, “Maximum Likelihood Estimation
via the ECM Algorithm,” Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.

Joe Sexton and Anders Rygh Swensen, “ECM Algorithms that Converge
at the Rate of EM,” Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.

17-330

ecmlsrmle

A. P. Dempster, N.M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

See Also ecmlsrobj | ecmmvnrmle | mvnrmle

17-331

ecmlsrobj

Purpose Log-likelihood function for least-squares regression with missing data

Syntax Objective = ecmlsrobj(Data, Design, Parameters, Covariance)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
Missing values are represented as NaNs. Only
samples that are entirely NaNs are ignored. (To
ignore samples with at least one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell
array contains either one or NUMSAMPLES cells.
Each cell contains a NUMSERIES-by-NUMPARAMS
matrix of known values.

If Design has a single cell, it is assumed to have
the same Design matrix for each sample. If
Design has more than one cell, each cell contains
a Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the
parameters of the regression model.

Covariance (Optional) NUMSERIES-by-NUMSERIES matrix that
contains a user-supplied estimate for the covariance
matrix of the residuals of the regression. Default is
an identity matrix.

17-332

ecmlsrobj

Description Objective = ecmlsrobj(Data, Design, Parameters, Covariance)
computes a least-squares objective function based on current parameter
estimates with missing data. Objective is a scalar that contains the
least-squares objective function.

Notes ecmlsrobj requires that Covariance be positive-definite.

Note that

ecmlsrobj(Data, Design, Parameters) = ecmmvnrobj(Data, ...
Design, Parameters, IdentityMatrix)

where IdentityMatrix is a NUMSERIES-by-NUMSERIES identity matrix.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell
array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a
NUMPARAMS row vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a
NUMSERIES-by-NUMPARAMS matrix.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

See Also ecmlsrmle | mvnrmle | mvnrobj

17-333

ecmmvnrfish

Purpose Fisher information matrix for multivariate normal regression model

Syntax Fisher = ecmmvnrfish(Data, Design, Covariance, Method,
MatrixFormat, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix
with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector.
Missing values are represented as NaNs. Only
samples that are entirely NaNs are ignored.
(To ignore samples with at least one NaN, use
mvnrfish.)

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard
form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array.
The cell array contains either one or
NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed
to have the same Design matrix for each
sample. If Design has more than one cell,
each cell contains a Design matrix for each
sample.

17-334

ecmmvnrfish

Covariance NUMSERIES-by-NUMSERIES matrix of estimates
for the covariance of the residuals of the
regression.

Method (Optional) String that identifies method of
calculation for the information matrix:

• hessian - Default method. Use the expected
Hessian matrix of the observed log-likelihood
function. This method is recommended since
the resultant standard errors incorporate the
increased uncertainties due to missing data.

• fisher - Use the Fisher information matrix.

MatrixFormat (Optional) String that identifies parameters to
be included in the Fisher information matrix:

• full - Default format. Compute the full
Fisher information matrix for both model
and covariance parameter estimates.

• paramonly - Compute only components of
the Fisher information matrix associated
with the model parameter estimates.

CovarFormat (Optional) String that specifies the format for
the covariance matrix. The choices are:

• 'full' - Default method. The covariance
matrix is a full matrix.

• 'diagonal' - The covariance matrix is a
diagonal matrix.

Description Fisher = ecmmvnrfish(Data, Design, Covariance, Method,
MatrixFormat, CovarFormat) computes a Fisher information matrix

17-335

ecmmvnrfish

based on current maximum likelihood or least-squares parameter
estimates that account for missing data.

Fisher is a NUMPARAMS-by-NUMPARAMS Fisher information matrix or
Hessian matrix. The size of NUMPARAMS depends on MatrixFormat and
on current parameter estimates. If MatrixFormat = 'full',

NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2

If MatrixFormat = 'paramonly',

NUMPARAMS = NUMSERIES

Note ecmmvnrfish operates slowly if you calculate the full Fisher
information matrix.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

See Also ecmnmle | ecmnstd

17-336

ecmmvnrmle

Purpose Multivariate normal regression with missing data

Syntax [Parameters, Covariance, Resid, Info] = ecmmvnrmle(Data, Design,
MaxIterations, TolParam, TolObj, Param0, Covar0, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix
with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector.
Missing values are represented as NaNs. Only
samples that are entirely NaNs are ignored.
(To ignore samples with at least one NaN, use
mvnrmle.)

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard
form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array.
The cell array contains either one or
NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed
to have the same Design matrix for each
sample. If Design has more than one cell,
each cell contains a Design matrix for each
sample.

MaxIterations (Optional) Maximum number of iterations for
the estimation algorithm. Default value is 100.

17-337

ecmmvnrmle

TolParam (Optional) Convergence tolerance for estimation
algorithm based on changes in model parameter
estimates. Default value is sqrt(eps)
which is about 1.0e-8 for double precision.
The convergence test for changes in model
parameters is

Param Param TolParam Paramk k k− < × +()−1 1

where Param represents the output Parameters,
and iteration k = 2, 3, Convergence is
assumed when both the TolParam and TolObj
conditions are satisfied. If both TolParam ≤
0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the
results of the convergence tests.

TolObj (Optional) Convergence tolerance for estimation
algorithm based on changes in the objective
function. Default value is eps ∧ 3/4 which
is about 1.0e-12 for double precision. The
convergence test for changes in the objective
function is

Obj Obj TolObj Objk k k− < × +()−1 1

for iteration k = 2, 3, Convergence is
assumed when both the TolParam and TolObj
conditions are satisfied. If both TolParam ≤
0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the
results of the convergence tests.

Param0 (Optional) NUMPARAMS-by-1 column vector that
contains a user-supplied initial estimate for the
parameters of the regression model.

17-338

ecmmvnrmle

Covar0 (Optional) NUMSERIES-by-NUMSERIES matrix
that contains a user-supplied initial or known
estimate for the covariance matrix of the
regression residuals.

CovarFormat (Optional) String that specifies the format for
the covariance matrix. The choices are:

• 'full' - Default method. Compute the full
covariance matrix.

• 'diagonal' - Force the covariance matrix to
be a diagonal matrix.

Description [Parameters, Covariance, Resid, Info] = ecmmvnrmle(Data,
Design, MaxIterations, TolParam, TolObj, Param0, Covar0,
CovarFormat) estimates a multivariate normal regression model with
missing data. The model has the form

Data N Design Parameters Covariancek k ×(),

for samples k = 1, ... , NUMSAMPLES.

ecmmvnrmle estimates a NUMPARAMS-by-1 column vector of model
parameters called Parameters, and a NUMSERIES-by-NUMSERIES matrix
of covariance parameters called Covariance.

ecmmvnrmle(Data, Design) with no output arguments plots the
log-likelihood function for each iteration of the algorithm.

To summarize the outputs of ecmmvnrmle:

• Parameters is a NUMPARAMS-by-1 column vector of estimates for the
parameters of the regression model.

• Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the regression model’s residuals.

• Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the
regression. For any missing values in Data, the corresponding

17-339

ecmmvnrmle

residual is the difference between the conditionally imputed value for
Data and the model, that is, the imputed residual.

Note The covariance estimate Covariance cannot be derived from
the residuals.

Another output, Info, is a structure that contains additional
information from the regression. The structure has these fields:

• Info.Obj – A variable-extent column vector, with no more than
MaxIterations elements, that contains each value of the objective
function at each iteration of the estimation algorithm. The last value
in this vector, Obj(end), is the terminal estimate of the objective
function. If you do maximum likelihood estimation, the objective
function is the log-likelihood function.

• Info.PrevParameters – NUMPARAMS-by-1 column vector of estimates
for the model parameters from the iteration just prior to the terminal
iteration.nfo.PrevCovariance – NUMSERIES-by-NUMSERIES matrix of
estimates for the covariance parameters from the iteration just prior
to the terminal iteration.

Notes ecmmvnrmle does not accept an initial parameter vector, since the
parameters are estimated directly from the first iteration onward.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell
array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a
NUMPARAMS row vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a
NUMSERIES-by-NUMPARAMS matrix.

These points concern how Design handles missing data:

17-340

ecmmvnrmle

• Although Design should not have NaN values, ignored samples due
to NaN values in Data are also ignored in the corresponding Design
array.

• If Design is a 1-by-1 cell array, which has a single Design matrix
for each sample, no NaN values are permitted in the array. A
model with this structure must have NUMSERIES ≥ NUMPARAMS with
rank(Design{1}) = NUMPARAMS.

• ecmmvnrmle is more strict than mvnrmle about the presence of NaN
values in the Design array.

Use the estimates in the optional output structure Info for diagnostic
purposes.

References Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.

Xiao-Li Meng and Donald B. Rubin, “Maximum Likelihood Estimation
via the ECM Algorithm,” Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.

Joe Sexton and Anders Rygh Swensen, “ECM Algorithms that Converge
at the Rate of EM,” Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.

A. P. Dempster, N.M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

See Also ecmmvnrobj | mvnrmle

17-341

ecmmvnrobj

Purpose Log-likelihood function for multivariate normal regression with missing
data

Syntax Objective = ecmmvnrobj(Data, Design, Parameters, Covariance,
CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
Missing values are represented as NaNs. Only
samples that are entirely NaNs are ignored. (To
ignore samples with at least one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell
array contains either one or NUMSAMPLES cells.
Each cell contains a NUMSERIES-by-NUMPARAMS
matrix of known values.

If Design has a single cell, it is assumed to have
the same Design matrix for each sample. If
Design has more than one cell, each cell contains
a Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the
parameters of the regression model.

17-342

ecmmvnrobj

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the residuals of the regression.

CovarFormat (Optional) String that specifies the format for the
covariance matrix. The choices are:

• 'full' - Default method. The covariance matrix
is a full matrix.

• 'diagonal' - The covariance matrix is a diagonal
matrix.

Description Objective = ecmmvnrobj(Data, Design, Parameters,
Covariance, CovarFormat) computes a log-likelihood function based
on current maximum likelihood parameter estimates with missing data.
Objective is a scalar that contains the least-squares objective function.

Notes You can configure Design as a matrix if NUMSERIES = 1 or as a cell
array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a
NUMPARAMS row vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a
NUMSERIES-by-NUMPARAMS matrix.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

See Also ecmmvnrmle | mvnrmle | mvnrobj

17-343

ecmmvnrstd

Purpose Evaluate standard errors for multivariate normal regression model

Syntax [StdParameters, StdCovariance] = ecmmvnrstd(Data, Design,
Covariance, Method, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
Missing values are represented as NaNs. Only
samples that are entirely NaNs are ignored. (To
ignore samples with at least one NaN, use mvnrstd.)

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell
array contains either one or NUMSAMPLES cells.
Each cell contains a NUMSERIES-by-NUMPARAMS
matrix of known values.

If Design has a single cell, it is assumed to have
the same Design matrix for each sample. If
Design has more than one cell, each cell contains
a Design matrix for each sample.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the regression residuals.

17-344

ecmmvnrstd

Method (Optional) String that identifies method of calculation
for the information matrix:

• hessian - Default method. Use the expected
Hessian matrix of the observed log-likelihood
function. This method is recommended since
the resultant standard errors incorporate the
increased uncertainties due to missing data.

• fisher - Use the Fisher information matrix.

CovarFormat (Optional) String that specifies the format for the
covariance matrix. The choices are:

• 'full' - Default method. The covariance matrix
is a full matrix.

• 'diagonal' - The covariance matrix is a diagonal
matrix.

Description [StdParameters, StdCovariance] = ecmmvnrstd(Data, Design,
Covariance, Method, CovarFormat) evaluates standard errors for a
multivariate normal regression model with missing data. The model
has the form

Data N Design Parameters Covariancek k ×(),

for samples k = 1, ... , NUMSAMPLES.

ecmmvnrstd computes two outputs:

• StdParameters is a NUMPARAMS-by-1 column vector of standard errors
for each element of Parameters, the vector of estimated model
parameters.

• StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard
errors for each element of Covariance, the matrix of estimated
covariance parameters.

17-345

ecmmvnrstd

Note ecmmvnrstd operates slowly when you calculate the standard
errors associated with the covariance matrix Covariance.

Notes You can configure Design as a matrix if NUMSERIES = 1 or as a cell
array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a
NUMPARAMS row vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a
NUMSERIES-by-NUMPARAMS matrix.

References Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

See Also ecmmvnrmle | ecmmvnrstd | mvnrmle

17-346

ecmnfish

Purpose Fisher information matrix

Syntax Fisher = ecmnfish(Data, Covariance, InvCovariance, MatrixFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix of observed
multivariate normal data

Covariance NUMSERIES-by-NUMSERIES matrix with
covariance estimate of Data

InvCovariance (Optional) Inverse of covariance matrix:
inv(Covariance)

MatrixFormat (Optional) String that identifies parameters
included in the Fisher information matrix. If
MatrixFormat = [] or ’ ’, the default method
full is used. The parameter choices are

• full — (Default) Compute full Fisher
information matrix.

• meanonly — Compute only components of
the Fisher information matrix associated
with the mean.

Description Fisher = ecmnfish(Data, Covariance, InvCovariance,
MatrixFormat) computes a NUMPARAMS-by-NUMPARAMS Fisher
information matrix based on current parameter estimates, where

NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2

if MatrixFormat = 'full' and

NUMPARAMS = NUMSERIES

17-347

ecmnfish

if MatrixFormat = 'meanonly'.

The data matrix has NaNs for missing observations. The multivariate
normal model has

NUMPARAMS = NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2

distinct parameters. Therefore, the full Fisher information matrix
is of size NUMPARAMS-by-NUMPARAMS. The first NUMSERIES parameters
are estimates for the mean of the data in Mean, and the remaining
NUMSERIES*(NUMSERIES + 1)/2 parameters are estimates for the
lower-triangular portion of the covariance of the data in Covariance,
in row-major order.

If MatrixFormat = 'meanonly', the number of parameters is reduced
to NUMPARAMS = NUMSERIES, where the Fisher information matrix is
computed for the mean parameters only. In this format, the routine
executes fastest.

This routine expects the inverse of the covariance matrix as an input. If
you do not pass in the inverse, the routine computes it. You can obtain
an approximation for the lower-bound standard errors of estimation of
the parameters from

Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Fisher)));

Because of missing information, these standard errors may be smaller
than the estimated standard errors derived from the expected Hessian
matrix. To see the difference, compare to standard errors calculated
with ecmnhess.

See Also ecmnhess | ecmnmle

17-348

ecmnhess

Purpose Hessian of negative log-likelihood function

Syntax Hessian = ecmnhess(Data, Covariance, InvCovariance, MatrixFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix of observed
multivariate normal data

Covariance NUMSERIES-by-NUMSERIES matrix with
covariance estimate of Data

InvCovariance (Optional) Inverse of covariance matrix:
inv(Covariance)

MatrixFormat (Optional) String that identifies parameters
included in the Hessian matrix. If
MatrixFormat = [] or ’ ’, the default method
full is used. The parameter choices are

• full — (Default) Compute full Hessian
matrix.

• meanonly — Compute only components of
the Hessian matrix associated with the
mean.

Description Hessian = ecmnhess(Data, Covariance, InvCovariance,
MatrixFormat) computes a NUMPARAMS -by-NUMPARAMS Hessian matrix
of the observed negative log-likelihood function based upon current
parameter estimates, where

NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2

if MatrixFormat = 'full' and

17-349

ecmnhess

NUMPARAMS = NUMSERIES

if MatrixFormat = 'meanonly'.

This routine is very slow for NUMSERIES > 10 or NUMSAMPLES > 1000.

The data matrix has NaNs for missing observations. The multivariate
normal model has

NUMPARAMS = NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2

distinct parameters. Therefore, the full Hessian is a
NUMPARAMS-by-NUMPARAMS matrix.

The first NUMSERIES parameters are estimates for the mean of the data
in Mean and the remaining NUMSERIES*(NUMSERIES + 1)/2 parameters
are estimates for the lower-triangular portion of the covariance of the
data in Covariance, in row-major order.

If MatrixFormat = 'meanonly', the number of parameters is reduced
to NUMPARAMS = NUMSERIES, where the Hessian is computed for the
mean parameters only. In this format, the routine executes fastest.

This routine expects the inverse of the covariance matrix as an input. If
you do not pass in the inverse, the routine computes it.

The equation

Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Hessian)));

provides an approximation for the observed standard errors of
estimation of the parameters.

Because of the additional uncertainties introduced by missing
information, these standard errors may be larger than the estimated
standard errors derived from the Fisher information matrix. To see the
difference, compare to standard errors calculated from ecmnfish.

See Also ecmnfish | ecmnmle

17-350

ecmninit

Purpose Initial mean and covariance

Syntax [Mean, Covariance] = ecmninit(Data, InitMethod)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
Missing values are indicated by NaNs.

InitMethod (Optional) String that identifies one of three
defined initialization methods to compute initial
estimates for the mean and covariance of the data. If
InitMethod = [] or '', the default method nanskip
is used. The initialization methods are

• nanskip— (Default) Skip all records with NaNs.

• twostage — Estimate mean. Fill NaNs with the
mean. Then estimate the covariance.

• diagonal— Form a diagonal covariance.

Description [Mean, Covariance] = ecmninit(Data, InitMethod) creates
initial mean and covariance estimates for the function ecmnmle. Mean
is a NUMSERIES-by-1 column vector estimate for the mean of Data.
Covariance is a NUMSERIES-by-NUMSERIES matrix estimate for the
covariance of Data.

Algorithms Model

The general model is

Z N Mean Covariance, ,()

17-351

ecmninit

where each row of Data is an observation of Z.

Each observation of Z is assumed to be iid (independent, identically
distributed) multivariate normal, and missing values are assumed to be
missing at random (MAR).

Initialization Methods

This routine has three initialization methods that cover most cases,
each with its advantages and disadvantages.

nanskip

The nanskip method works well with small problems (fewer than 10
series or with monotone missing data patterns). It skips over any
records with NaNs and estimates initial values from complete-data
records only. This initialization method tends to yield fastest
convergence of the ECM algorithm. This routine switches to the
twostage method if it determines that significant numbers of records
contain NaN.

twostage

The twostage method is the best choice for large problems (more than
10 series). It estimates the mean for each series using all available
data for each series. It then estimates the covariance matrix with
missing values treated as equal to the mean rather than as NaNs.
This initialization method is quite robust but tends to result in slower
convergence of the ECM algorithm.

diagonal

The diagonal method is a worst-case approach that deals with
problematic data, such as disjoint series and excessive missing data
(more than 33% missing data). Of the three initialization methods, this
method causes the slowest convergence of the ECM algorithm.

See Also ecmnmle

17-352

ecmnmle

Purpose Mean and covariance of incomplete multivariate normal data

Syntax [Mean, Covariance] = ecmnmle(Data, InitMethod, MaxIterations,
Tolerance, Mean0, Covar0)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix
with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector.
Missing values are indicated by NaNs. A sample
is also called an observation or a record.

InitMethod (Optional) String that identifies one of three
defined initialization methods to compute
initial estimates for the mean and covariance of
the data. If InitMethod = [] or '', the default
method nanskip is used. The initialization
methods are:

• nanskip — (Default) Skip all records with
NaNs.

• twostage— Estimate mean. Fill NaNs with
mean. Then estimate covariance.

• diagonal— Form a diagonal covariance.

Note If you supply Mean0 and Covar0,
InitMethod is not executed.

MaxIterations (Optional) Maximum number of iterations
for the expectation conditional maximization
(ECM) algorithm. Default = 50.

17-353

ecmnmle

Tolerance (Optional) Convergence tolerance for the
ECM algorithm (Default = 1.0e-8.) If
Tolerance ≤ 0, perform maximum iterations
specified by MaxIterations and do not evaluate
the objective function at each step unless in
display mode, as described below.

Mean0 (Optional) Initial NUMSERIES-by-1 column
vector estimate for the mean. If you leave
Mean0 unspecified ([]), the method specified by
InitMethod is used. If you specify Mean0, you
must also specify Covar0.

Covar0 (Optional) Initial NUMSERIES-by-NUMSERIES
matrix estimate for the covariance, where the
input matrix must be positive-definite. If you
leave Covar0 unspecified ([]), the method
specified by InitMethod is used. If you specify
Covar0, you must also specify Mean0.

Description [Mean, Covariance] = ecmnmle(Data, InitMethod,
MaxIterations, Tolerance, Mean0, Covar0) estimates the mean
and covariance of a data set. If the data set has missing values, this
routine implements the ECM algorithm of Meng and Rubin [2] with
enhancements by Sexton and Swensen [3]. ECM stands for expectation
conditional maximization, a conditional maximization form of the EM
algorithm of Dempster, Laird, and Rubin [4].

This routine has two operational modes.

Display Mode

With no output arguments, this mode displays the convergence of the
ECM algorithm. It estimates and plots objective function values for
each iteration of the ECM algorithm until termination, as shown in the
following plot.

17-354

ecmnmle

Display mode can determine MaxIter and Tolerance values or serve as
a diagnostic tool. The objective function is the negative log-likelihood
function of the observed data and convergence to a maximum likelihood
estimate corresponds with minimization of the objective.

Estimation Mode

With output arguments, this mode estimates the mean and covariance
via the ECM algorithm.

Examples To see an example of how to use ecmnmle, run the demo program
ecmguidemo.

Algorithms Model

The general model is

17-355

ecmnmle

Z N Mean Covariance, ,()

where each row of Data is an observation of Z.

Each observation of Z is assumed to be iid (independent, identically
distributed) multivariate normal, and missing values are assumed to
be missing at random (MAR). See Little and Rubin [1] for a precise
definition of MAR.

This routine estimates the mean and covariance from given data. If
data values are missing, the routine implements the ECM algorithm of
Meng and Rubin [2] with enhancements by Sexton and Swensen [3].

If a record is empty (every value in a sample is NaN), this routine ignores
the record because it contributes no information. If such records exist
in the data, the number of nonempty samples used in the estimation is
≤ NumSamples.

The estimate for the covariance is a biased maximum likelihood
estimate (MLE). To convert to an unbiased estimate, multiply the
covariance by Count/(Count – 1), where Count is the number of
nonempty samples used in the estimation.

Requirements

This routine requires consistent values for NUMSAMPLES and NUMSERIES
with NUMSAMPLES > NUMSERIES. It must have enough nonmissing
values to converge. Finally, it must have a positive-definite covariance
matrix. Although the references provide some necessary and sufficient
conditions, general conditions for existence and uniqueness of solutions
in the missing-data case do not exist. The main failure mode is an
ill-conditioned covariance matrix estimate. Nonetheless, this routine
works for most cases that have less than 15% missing data (a typical
upper bound for financial data).

Initialization Methods

This routine has three initialization methods that cover most cases,
each with its advantages and disadvantages. The ECM algorithm
always converges to a minimum of the observed negative log-likelihood

17-356

ecmnmle

function. If you override the initialization methods, you must ensure
that the initial estimate for the covariance matrix is positive-definite.

The following is a guide to the supported initialization methods.

nanskip

The nanskip method works well with small problems (fewer than 10
series or with monotone missing data patterns). It skips over any
records with NaNs and estimates initial values from complete-data
records only. This initialization method tends to yield fastest
convergence of the ECM algorithm. This routine switches to the
twostage method if it determines that significant numbers of records
contain NaN.

twostage

The twostage method is the best choice for large problems (more than
10 series). It estimates the mean for each series using all available
data for each series. It then estimates the covariance matrix with
missing values treated as equal to the mean rather than as NaNs.
This initialization method is quite robust but tends to result in slower
convergence of the ECM algorithm.

diagonal

The diagonal method is a worst-case approach that deals with
problematic data, such as disjoint series and excessive missing data
(more than 33% of data missing). Of the three initialization methods,
this method causes the slowest convergence of the ECM algorithm.
If problems occur with this method, use display mode to examine
convergence and modify either MaxIterations or Tolerance, or try
alternative initial estimates with Mean0 and Covar0. If all else fails, try

Mean0 = zeros(NumSeries);
Covar0 = eye(NumSeries,NumSeries);

Given estimates for mean and covariance from this routine, you can
estimate standard errors with the companion routine ecmnstd.

17-357

ecmnmle

Convergence

The ECM algorithm does not work for all patterns of missing values.
Although it works in most cases, it can fail to converge if the covariance
becomes singular. If this occurs, plots of the log-likelihood function
tend to have a constant upward slope over many iterations as the log
of the negative determinant of the covariance goes to zero. In some
cases, the objective fails to converge due to machine precision errors.
No general theory of missing data patterns exists to determine these
cases. An example of a known failure occurs when two time series are
proportional wherever both series contain nonmissing values.

References [1] Little, Roderick J. A. and Donald B. Rubin, Statistical Analysis with
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li and Donald B. Rubin, “Maximum Likelihood
Estimation via the ECM Algorithm,” Biometrika, Vol. 80, No. 2, 1993,
pp. 267-278.

[3] Sexton, Joe and Anders Rygh Swensen, “ECM Algorithms that
Converge at the Rate of EM,” Biometrika, Vol. 87, No. 3, 2000, pp.
651-662.

[4] Dempster, A. P., N. M. Laird, and Donald B. Rubin, “Maximum
Likelihood from Incomplete Data via the EM Algorithm,” Journal of the
Royal Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

See Also ecmnfish | ecmnhess | ecmninit | ecmnobj | ecmnstd

17-358

ecmnobj

Purpose Multivariate normal negative log-likelihood function

Syntax Objective = ecmnobj(Data, Mean, Covariance, CholCovariance)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix of observed
multivariate normal data

Mean NUMSERIES-by-1 column vector with mean
estimate of Data

Covariance NUMSERIES-by-NUMSERIES matrix with
covariance estimate of Data

CholCovariance (Optional) Cholesky decomposition of
covariance matrix: chol(Covariance)

Description Objective = ecmnobj(Data, Mean, Covariance, CholCovariance)
computes the value of the observed negative log-likelihood function
over the data given current estimates for the mean and covariance of
the data.

The data matrix has NaNs for missing observations. The inputs Mean
and Covariance are current estimates for model parameters.

This routine expects the Cholesky decomposition of the covariance
matrix as an input. The routine computes the Cholesky decomposition
if you do not explicitly specify it.

See Also chol | ecmnmle

17-359

ecmnstd

Purpose Standard errors for mean and covariance of incomplete data

Syntax [StdMean, StdCovariance] = ecmnstd(Data, Mean, Covariance, Method)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
Missing values are indicated by NaNs.

Mean NUMSERIES-by-1 column vector of
maximum-likelihood parameter estimates for
the mean of Data using the expectation conditional
maximization (ECM) algorithm

Covariance NUMSERIES-by-NUMSERIES matrix of
maximum-likelihood covariance estimates for
the covariance of Data using the ECM algorithm

Method (Optional) String indicating method of estimation for
standard error calculations. The methods are:

• hessian — (Default) Hessian of the observed
negative log-likelihood function.

• fisher— Fisher information matrix.

Description [StdMean, StdCovariance] = ecmnstd(Data, Mean, Covariance,
Method) computes standard errors for mean and covariance of
incomplete data.

StdMean is a NUMSERIES-by-1 column vector of standard errors of
estimates for each element of the mean vector Mean.

StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors
of estimates for each element of the covariance matrix Covariance.

17-360

ecmnstd

Use this routine after estimating the mean and covariance of Data with
ecmnmle. If the mean and distinct covariance elements are treated as
the parameter θ in a complete-data maximum-likelihood estimation,
then as the number of samples increases, θ attains asymptotic
normality such that

 − [] ()()−E N I0 1, ,

where E[θ] is the mean and I(θ) is the Fisher information matrix.

With missing data, the Hessian H(θ) is a good approximation for the
Fisher information (which can only be approximated when data is
missing).

It is usually advisable to use the default Method since the resultant
standard errors incorporate the increased uncertainty due to missing
data. In particular, standard errors calculated with the Hessian are
generally larger than standard errors calculated with the Fisher
information matrix.

Note This routine is very slow for NUMSERIES > 10 or NUMSAMPLES
> 1000.

See Also ecmnmle

17-361

effrr

Purpose Effective rate of return

Syntax Return = effrr(Rate, NumPeriods)

Arguments

Rate Annual percentage rate. Enter as a decimal fraction.

NumPeriods Number of compounding periods per year, an integer.

Description Return = effrr(Rate, NumPeriods) calculates the annual effective
rate of return. Compounding continuously returns Return equivalent
to (e^Rate-1).

Examples Find the effective annual rate of return based on an annual percentage
rate of 9% compounded monthly.

Return = effrr(0.09, 12)

returns

Return =

0.0938 or 9.38%

See Also nomrr

17-362

elpm

Purpose Compute expected lower partial moments for normal asset returns

Syntax elpm(Mean, Sigma)
elpm(Mean, Sigma, MAR)
elpm(Mean, Sigma, MAR, Order)
Moment = elpm(Mean, Sigma, MAR, Order)

Arguments

Mean NUMSERIES vector with mean returns for a collection
of NUMSERIES assets.

Sigma NUMSERIES vector with standard deviation of returns
for a collection of NUMSERIES assets.

MAR (Optional) Scalar minimum acceptable return
(default MAR = 0). This is a cutoff level of return such
that all returns above MAR contribute nothing to the
lower partial moment.

Order (Optional) Either a scalar or a NUMORDERS vector
of nonnegative integer moment orders. If no order
specified, default Order = 0, which is the shortfall
probability. This function will not work for negative
or noninteger orders.

Description Given NUMSERIES asset returns with a vector of mean returns in a
NUMSERIES vector Mean, a vector of standard deviations of returns in a
NUMSERIES vector Sigma, a scalar minimum acceptable return MAR, and
one or more nonnegative integer moment orders in a NUMORDERS vector
Order, compute expected lower partial moments (elpm) relative to MAR
for each asset in a NUMORDERS-by-NUMSERIESmatrix Moment.

The output, Moment, is a NUMORDERS-by-NUMSERIES matrix of expected
lower partial moments with NUMORDERS Orders and NUMSERIES series,

17-363

elpm

that is, each row contains expected lower partial moments for a given
order.

Note To compute upper partial moments, just reverse the signs of both
the input Mean and MAR (do not reverse the signs of either Sigma or the
output). This function computes expected lower partial moments with
the mean and standard deviation of normally distributed asset returns.
To compute sample lower partial moments from asset returns which
have no distributional assumptions, use lpm.

Examples See “Expected Lower Partial Moments Example” on page 5-15.

See Also lpm

17-364

emaxdrawdown

Purpose Compute expected maximum drawdown for Brownian motion

Syntax EDD = emaxdrawdown(Mu, Sigma, T)

Arguments

Mu Scalar. Drift term of a Brownian motion with drift.

Sigma Scalar. Diffusion term of a Brownian motion with
drift.

T A time period of interest or a vector of times.

Description EDD = emaxdrawdown(Mu, Sigma, T) computes the expected
maximum drawdown for a Brownian motion for each time period in T
using the following equation:

dX t dt dW t() = + () .

If the Brownian motion is geometric with the stochastic differential
equation

dS t S t dt S t dW t() = () + () () 0 0

then use Ito’s lemma with X(t) = log(S(t)) such that

= −
=

0 0
2

0

0 5. ,

converts it to the form used here.

The output argument ExpDrawdown is computed using an interpolation
method. Values are accurate to a fraction of a basis point. Maximum
drawdown is nonnegative since it is the change from a peak to a trough.

17-365

emaxdrawdown

Note To compare the actual results from maxdrawdown with the
expected results of emaxdrawdown, set the Format input argument of
maxdrawdown to either of the nondefault values ('arithmetic' or
'geometric'). These are the only two formats emaxdrawdown supports.

Examples See “Expected Maximum Drawdown Example” on page 5-21.

References Malik Magdon-Ismail, Amir F. Atiya, Amrit Pratap, and Yaser S.
Abu-Mostafa, “On the Maximum Drawdown of a Brownian Motion,”
Journal of Applied Probability, Volume 41, Number 1, March 2004,
pp. 147-161.

See Also maxdrawdown

17-366

end

Purpose Last date entry

Syntax end

Description end returns the index to the last date entry in a financial time series
object.

Examples Consider a financial time series object called fts:

fts =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (20)' 'Open: (20)'
'04-Mar-1994' [3830.9]
'07-Mar-1994' [3851.7]
'08-Mar-1994' [3858.5]
'09-Mar-1994' [3854]
'10-Mar-1994' [3852.6]
'11-Mar-1994' [3832.6]
'14-Mar-1994' [3870.3]
'16-Mar-1994' [3851]
'17-Mar-1994' [3853.6]
'18-Mar-1994' [3865.4]
'21-Mar-1994' [3878.4]
'22-Mar-1994' [3865.7]
'23-Mar-1994' [3868.9]
'24-Mar-1994' [3849.9]
'25-Mar-1994' [3827.1]
'28-Mar-1994' [3776.5]
'29-Mar-1994' [3757.2]
'30-Mar-1994' [3688.4]
'31-Mar-1994' [3639.7]

The command fts(15:end)returns

17-367

end

ans =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (6)' 'Open: (6)'
'24-Mar-1994' [3849.9]
'25-Mar-1994' [3827.1]
'28-Mar-1994' [3776.5]
'29-Mar-1994' [3757.2]
'30-Mar-1994' [3688.4]
'31-Mar-1994' [3639.7]

See Also subsasgn | subsref | end

17-368

eomdate

Purpose Last date of month

Syntax DayMonth = eomdate(Date)
DayMonth = eomdate(Year, Month)

Description DayMonth = eomdate(Date) returns the serial date number of the last
date of the month for the given Date. Enter Date as a four-digit integer
or a date string.

DayMonth = eomdate(Year, Month) returns the serial date number of
the last date of the month for the given year and month. Enter Year as
a four-digit integer; enter Month as an integer from 1 through 12.

Either input argument can contain multiple values, but if so, the other
input must contain the same number of values or a single value that
applies to all. For example, if Year is a 1-by-n vector of integers, then
Month must be a 1-by-n vector of integers or a single integer. DayMonth
is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted
date strings or datenum to convert date and time to serial date number.

Examples DayMonth = eomdate(2001, 2)
DayMonth =

730910
datestr(DayMonth)

ans =
28-Feb-2001

Year = [2002 2003 2004 2005];
DayMonth = eomdate(Year, 2)
DayMonth =

731275 731640 732006 732371

datestr(DayMonth)

17-369

eomdate

ans =
28-Feb-2002
28-Feb-2003
29-Feb-2004
28-Feb-2005

See Also day | eomday | lbusdate | month | year

17-370

eomday

Purpose Last day of month

Syntax E = eomday(Y, M)

Description E = eomday(Y, M) returns the last day of the year and month given
by corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday(1996,2) returns 29.

To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y, 2);
y(find(E == 29))

ans =
Columns 1 through 6

1904 1908 1912 1916 1920 1924

Columns 7 through 12
1928 1932 1936 1940 1944 1948

Columns 13 through 18
1952 1956 1960 1964 1968 1972

Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also day | eomdate | month

17-371

eq (fts)

Purpose Multiple financial times series object equality

Syntax tsobj_1 == tsobj_2
iseq = eq(tsobj_1, tsobj_2)

Arguments

tsobj_1 Financial time series object.

tsobj_2 Financial time series object.

Description tsobj_1 == tsobj_2 returns True (1) if both financial time series
objects have the same dates, frequencies, data series names, and data
values. Otherwise, eq returns False (0).

Note The data series names are case-sensitive, but do not have to be in
the same order within each object.

Examples Compare :

load disney
dis == dis
ans =

1

See Also isequal

17-372

Portfolio.estimateAssetMoments

Purpose Estimate mean and covariance of asset returns from data

Syntax obj = estimateAssetMoments(obj, AssetReturns)
obj = estimateAssetMoments(obj, AssetReturns, varargin)

Description obj = estimateAssetMoments(obj, AssetReturns) to estimate the
mean and covariance of asset returns from data.

obj = estimateAssetMoments(obj, AssetReturns, varargin) to
estimate mean and covariance of asset returns from data with additional
options specified by one or more Name,Value pair arguments.

Tips Use dot notation to estimate the mean and covariance of asset returns
from data:

obj = obj.estimateAssetMoments(AssetReturns, varargin);

Input
Arguments

obj

A portfolio object [Portfolio].

AssetReturns

Either a matrix or fints object that contains asset data that can
be converted to asset returns [NumSamples-by-NumAssetsmatrix].

Note This method estimates the mean and covariance of asset
returns from either price or return data. Data can reside in a
NumSamples-by-NumAssets matrix of NumSamples prices or returns. This
matrix represents a given periodicity for a collection of NumAssets
assets or a fints object with NumSamples observations and NumAssets
time series.

Name-Value Pair Arguments for varargin

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

17-373

Portfolio.estimateAssetMoments

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

DataFormat

If the input data are prices, these values can be converted into
returns with the DataFormat flag, where the default format is
assumed to be returns. Be careful using price data because
portfolio optimization requires total returns and not simply price
returns.

Acceptable values for DataFormat are:

• 'Returns' — Data in AssetReturns contains asset total
returns.

• 'Prices'— Data in AssetReturns contains asset total return
prices.

Default: 'Returns'

MissingData

To handle time series with missing data (indicated with NaN
values), the MissingData flag either uses the ECM algorithm
to obtain maximum likelihood estimates in the presences of NaN
values or excludes samples with NaN values. Since the default is
false, it is necessary to specify MissingData as true to use the
ECM algorithm.

Acceptable values for MissingData are:

• false— Do not use ECM algorithm to handle NaN values (just
exclude NaN values).

• true— Use ECM algorithm to handle NaN values.

17-374

Portfolio.estimateAssetMoments

For more information on the ECM algorithm, see ecmnmle and
Chapter 7, “Regression with Missing Data”.

Default: false

GetAssetList

If a fints object is passed into this method and the GetAssetList
flag is true, the series names from the fints object are used as
asset names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default
asset names are created based on the AbstractPortfolio
property defaultforAssetList, which is currently 'Asset'.

If the GetAssetList flag is false, no action occurs, which is the
default behavior.

Acceptable values for GetAssetList are:

• false— Do not extract or create asset names.

• true— Extract or create asset names from fints object.

Default: false

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

17-375

Portfolio.estimateAssetMoments

Examples To illustrate using estimateAssetMoments, generate random samples
of 120 observations of asset returns for four assets from the mean and
covariance of asset returns in the variables m and C with portsim. The
default behavior of portsim creates simulated data with estimated
mean and covariance identical to the input moments m and C. In
addition to a return series created by portsim in the variable X, a price
series is created in the variable Y:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);

Given asset returns and prices in the variables X and Y from above,
the following examples demonstrate equivalent ways to estimate asset
moments for the portfolio object. A portfolio object is created in p with
the moments of asset returns set directly in the constructor and a second
portfolio object is created in q to obtain the mean and covariance of
asset returns from asset return data in X usingestimateAssetMoments:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;

X = portsim(m', C, 120);
p = Portfolio('mean',m,'covar',C);
q = Portfolio;
q = q.estimateAssetMoments(X);

17-376

Portfolio.estimateAssetMoments

[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments

passetmean =

0.0042
0.0083
0.0100
0.0150

passetcovar =

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

qassetmean =

0.0042
0.0083
0.0100
0.0150

qassetcovar =

0.0005 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0.0000 0.0010 0.0028 0.0102

Notice how either approach yields the same moments. The default
behavior of estimateAssetMoments is to work with asset returns.
If, instead, you have asset prices, such as in the variable Y,
estimateAssetMoments accepts a parameter name 'DataFormat' with
a corresponding value set to 'prices' to indicate that the input to

17-377

Portfolio.estimateAssetMoments

the method is in the form of asset prices and not returns (the default
parameter value for 'DataFormat' is 'returns'). The following
example compares direct assignment of moments in the portfolio object
p with estimated moments from asset price data in Y in the portfolio
object q:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;

X = portsim(m', C, 120);
Y = ret2tick(X);

p = Portfolio('mean',m,'covar',C);

q = Portfolio;
q = q.estimateAssetMoments(Y, 'dataformat', 'prices');

[passetmean, passetcovar] = p.getAssetMoments
[qassetmean, qassetcovar] = q.getAssetMoments

passetmean =

0.0042
0.0083
0.0100
0.0150

passetcovar =

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

17-378

Portfolio.estimateAssetMoments

0 0.0010 0.0028 0.0102

qassetmean =

0.0042
0.0083
0.0100
0.0150

qassetcovar =

0.0005 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0.0000 0.0010 0.0028 0.0102

See Also setAssetMoments

Tutorials • “Working with Asset Returns and Moments of Asset Returns” on
page 4-37

• “Estimating Asset Moments from Financial Time Series Data” on
page 4-47

17-379

Portfolio.estimateBounds

Superclasses AbstractPortfolio

Purpose Estimate global lower and upper bounds for set of portfolios

Syntax [glb, gub, isbounded] = estimateBounds(obj)
[glb, gub, isbounded] = estimateBounds(obj,
obtainExactBounds)

Description [glb, gub, isbounded] = estimateBounds(obj) to estimate the
global lower and upper bounds for a given set of portfolios.

[glb, gub, isbounded] = estimateBounds(obj,
obtainExactBounds) to estimate the global lower and upper
bounds for a given set of portfolios with an additional option specified
for obtainExactBounds.

Tips • Use dot notation to estimate the global lower and upper bounds for
a given set of portfolios:

[glb, gub, isbounded] = obj.estimateBounds;

• Estimated bounds are accurate in most cases to within 1.0e-8. If
you intend to use these bounds directly in a portfolio object, ensure
that if you impose such bound constraints, a lower bound of 0 is
probably preferable to a lower bound of, for example, 1.0e-10 for
portfolio weights.

Input
Arguments

obj

A portfolio object [Portfolio].

obtainExactBounds

(Optional) Boolean flag to specify whether to solve for all bounds
or to accept specified bounds whenever available [logical]. If
bounds are known, set obtainExactBounds to false to accept
known bounds.

17-380

Portfolio.estimateBounds

Default: True

Output
Arguments

glb

Global lower bounds for portfolio set [vector].

gub

Global upper bounds for portfolio set [vector].

isbounded

Indicates if set is empty ([]), bounded (true), or unbounded
(false).

Note By definition, any portfolio set must be nonempty and
bounded:

• If the set is empty, isbounded = [].

• If the set is nonempty and unbounded, isbounded = false.

• If the set is nonempty and bounded,isbounded = true.

• If the set is empty, glb and gub are set to NaN vectors.

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

17-381

Portfolio.estimateBounds

Examples Create an unbounded portfolio set as follows:

p = Portfolio('AInequality', [1 -1; 1 1], 'bInequality', 0);
[lb, ub, isbounded] = p.estimateBounds

lb =

-Inf
-Inf

ub =

1.0e-008 *

-0.3712
Inf

isbounded =

0

estimateBounds returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded
so that you can apply bound constraints as necessary.

See Also checkFeasibility

Tutorials • “Validating a Portfolio Set” on page 4-78

17-382

Portfolio.estimateFrontier

Superclasses AbstractPortfolio

Purpose Estimate specified number of optimal portfolios over entire efficient
frontier

Syntax [pwgt, pbuy, psell] = estimateFrontier(obj)
[pwgt, pbuy, psell] = estimateFrontier(obj, NumPorts)

Description [pwgt, pbuy, psell] = estimateFrontier(obj) to estimate a
default number of optimal portfolios over entire efficient frontier.

[pwgt, pbuy, psell] = estimateFrontier(obj, NumPorts) to
estimate the specified number of optimal portfolios over entire efficient
frontier with an additional option for NumPorts.

Tips Use dot notation to estimate the specified number of optimal portfolios
over entire efficient frontier:

[pwgt, pbuy, psell] = obj.estimateFrontier(NumPorts);

Input
Arguments

obj

A portfolio object [Portfolio].

NumPorts

(Optional) Number of points to obtain on the efficient frontier
[scalar integer].

Note If no value is specified for NumPorts, the default value is
obtained from the hidden property defaultNumPorts (current
default value is 10). If NumPorts = 1, this method returns the
portfolio specified by the hidden property defaultFrontierLimit
(current default value is 'min').

Default: 10

17-383

Portfolio.estimateFrontier

Output
Arguments

pwgt

Optimal portfolios on the efficient frontier with specified number
of portfolios spaced equally from minimum to maximum portfolio
return [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios on
the efficient frontier [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the
efficient frontier [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj.InitPort, that value is
assumed to be 0 such that pbuy = max(0, pwgt) and psell = max(0,
-pwgt).

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Obtain the default number of efficient portfolios over the entire range of
the efficient frontier:

m = [0.05; 0.1; 0.12; 0.18];

C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

17-384

Portfolio.estimateFrontier

0 0.0119 0.0336 0.1225];

p = Portfolio;

p = p.setAssetMoments(m, C);

p = p.setDefaultConstraints;

pwgt = p.estimateFrontier;

disp(pwgt);

0.8891 0.7215 0.5540 0.3865 0.2190 0.0515 0 0 0 0

0.0369 0.1289 0.2209 0.3129 0.4049 0.4969 0.4049 0.2314 0.0579 0

0.0404 0.0567 0.0730 0.0893 0.1056 0.1219 0.1320 0.1394 0.1468 0

0.0336 0.0929 0.1521 0.2113 0.2705 0.3297 0.4630 0.6292 0.7953 1.0000

Starting from the initial portfolio, estimateFrontier returns purchases
and sales to get from your initial portfolio to each efficient portfolio on
the efficient frontier. Given an initial portfolio in pwgt0, you can obtain
purchases and sales:

pwgt0 = [0.3; 0.3; 0.2; 0.1];

p = p.setInitPort(pwgt0);

[pwgt, pbuy, psell] = p.estimateFrontier;

display(pwgt);

display(pbuy);

display(psell);

pwgt =

0.8891 0.7215 0.5540 0.3865 0.2190 0.0515 0 0 0 0

0.0369 0.1289 0.2209 0.3129 0.4049 0.4969 0.4049 0.2314 0.0579 0

0.0404 0.0567 0.0730 0.0893 0.1056 0.1219 0.1320 0.1394 0.1468 0

0.0336 0.0929 0.1521 0.2113 0.2705 0.3297 0.4630 0.6292 0.7953 1.0000

pbuy =

17-385

Portfolio.estimateFrontier

0.5891 0.4215 0.2540 0.0865 0 0 0 0 0 0

0 0 0 0.0129 0.1049 0.1969 0.1049 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0.0521 0.1113 0.1705 0.2297 0.3630 0.5292 0.6953 0.9000

psell =

0 0 0 0 0.0810 0.2485 0.3000 0.3000 0.3000 0.3000

0.2631 0.1711 0.0791 0 0 0 0 0.0686 0.2421 0.3000

0.1596 0.1433 0.1270 0.1107 0.0944 0.0781 0.0680 0.0606 0.0532 0.2000

0.0664 0.0071 0 0 0 0 0 0 0 0

If you do not have an initial portfolio, the purchase and sale weights
assume that your initial portfolio is 0.

See Also estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierLimits

Tutorials • “Estimate Efficient Frontiers” on page 4-96

17-386

Portfolio.estimateFrontierByReturn

Superclasses AbstractPortfolio

Purpose Estimate optimal portfolios with targeted portfolio returns

Syntax [pwgt, pbuy, psell] = estimateFrontierByReturn(obj,
TargetReturn)

Description [pwgt, pbuy, psell] = estimateFrontierByReturn(obj,
TargetReturn) to estimate optimal portfolios with targeted portfolio
returns.

Tips Use dot notation to estimate optimal portfolios with targeted portfolio
returns:

[pwgt, pbuy, psell] = obj.estimateFrontierByReturn(TargetReturn);

Input
Arguments

obj

A portfolio object [Portfolio].

TargetReturn

Target values for portfolio return [NumPorts vector].

Note TargetReturn specifies target returns for portfolios on
the efficient frontier. If any TargetReturn values are outside
the range of returns for efficient portfolios, the TargetReturn
is replaced with the minimum or maximum efficient portfolio
return, depending upon whether the target return is below or
above the range of efficient portfolio returns.

Output
Arguments

pwgt

Optimal portfolios on the efficient frontier with specified target
returns from TargetReturn that are [NumAssets-by-NumPorts
matrix].

17-387

Portfolio.estimateFrontierByReturn

pbuy

Purchases relative to an initial portfolio for optimal portfolios on
the efficient frontier that are [NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios on the
efficient frontier that are [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj.InitPort, it is assumed
to be 0, such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples To obtain efficient portfolios that have targeted portfolio returns,
estimateFrontierByReturn accepts one or more target portfolio
returns and obtains efficient portfolios with the specified returns.
Assume you have a universe of four assets where you want to obtain
efficient portfolios with target portfolio returns of 6%, 9%, and 12%:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);

17-388

Portfolio.estimateFrontierByReturn

p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByReturn([0.06, 0.09, 0.12]);

display(pwgt);
pwgt =

0.8772 0.5032 0.1293
0.0434 0.2488 0.4541
0.0416 0.0780 0.1143
0.0378 0.1700 0.3022

See Also estimateFrontier | estimateFrontierByRisk |
estimateFrontierLimits

Tutorials • “Estimate Efficient Frontiers” on page 4-96

17-389

Portfolio.estimateFrontierByRisk

Superclasses AbstractPortfolio

Purpose Estimate optimal portfolios with targeted portfolio risks

Syntax [pwgt, pbuy, psell] = estimateFrontierByRisk(obj, TargetRisk)

Description [pwgt, pbuy, psell] = estimateFrontierByRisk(obj,
TargetRisk) to estimate optimal portfolios with targeted portfolio risks.

Tips Use dot notation to estimate optimal portfolios with targeted portfolio
risks:

[pwgt, pbuy, psell] = obj.estimateFrontierByRisk(TargetRisk);

Input
Arguments

obj

A portfolio object [Portfolio].

TargetRisk

Target values for portfolio risk [NumPorts vector].

Note If any TargetRisk values are outside the range of risks for
efficient portfolios, the target risk is replaced with the minimum
or maximum efficient portfolio risk, depending upon whether the
target risk is below or above the range of efficient portfolio risks.

Output
Arguments

pwgt

Optimal portfolios on the efficient frontier with specified target
risks from TargetRisk that are [NumAssets-by-NumPortsmatrix].

pbuy

Purchases relative to an initial portfolio for optimal portfolios on
the efficient frontier that are [NumAssets-by-NumPorts matrix].

17-390

Portfolio.estimateFrontierByRisk

psell

Sales relative to an initial portfolio for optimal portfolios on the
efficient frontier that are [NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj.InitPort, it is assumed
to be 0 such that so pbuy = max(0, pwgt) and psell = max(0,
-pwgt).

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples To obtain efficient portfolios that have targeted portfolio risks,
estimateFrontierByRisk accepts one or more target portfolio risks and
obtains efficient portfolios with the specified risks. Assume you have
a universe of four assets where you want to obtain efficient portfolios
with target portfolio risks of 12%, 14%, and 16%:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierByRisk([0.12, 0.14, 0.16]);

17-391

Portfolio.estimateFrontierByRisk

display(pwgt);

pwgt =

0.3984 0.2659 0.1416
0.3064 0.3791 0.4474
0.0882 0.1010 0.1131
0.2071 0.2540 0.2979

See Also estimateFrontier | estimateFrontierByReturn |
estimateFrontierLimits

Tutorials • “Estimate Efficient Frontiers” on page 4-96

17-392

Portfolio.estimateFrontierLimits

Superclasses AbstractPortfolio

Purpose Estimate optimal portfolios at endpoints of efficient frontier

Syntax [pwgt, pbuy, psell] = estimateFrontierLimits(obj)
[pwgt, pbuy, psell] = estimateFrontierLimits(obj, Choice)

Description [pwgt, pbuy, psell] = estimateFrontierLimits(obj) to estimate
the optimal portfolios at the endpoints of the efficient frontier.

[pwgt, pbuy, psell] = estimateFrontierLimits(obj, Choice) to
estimate the optimal portfolios at the endpoints of the efficient frontier
with an additional option specified for the Choice argument.

Tips Use dot notation to estimate the optimal portfolios at the endpoints of
the efficient frontier:

[pwgt, pbuy, psell] = obj.estimateFrontierLimits(Choice);

Input
Arguments

obj

A portfolio object [Portfolio].

Choice

Indicates which portfolios to obtain at the extreme ends of the
efficient frontier [string].

Choice specifies various actions with default value []. The
options for Choice action are:

• [] — Compute both minimum-risk and maximum-return
portfolios.

• 'Both'— Compute both minimum-risk and maximum-return
portfolios.

• 'Min'— Compute minimum-risk portfolio only.

• 'Max'— Compute maximum-return portfolio only.

17-393

Portfolio.estimateFrontierLimits

Default: []

Output
Arguments

pwgt

Optimal portfolios at the endpoints of the efficient frontier
TargetReturn that are [NumAssets-by-NumPorts matrix].

pbuy

Purchases relative to an initial portfolio for optimal
portfolios at the endpoints of the efficient frontier that are
[NumAssets-by-NumPorts matrix].

psell

Sales relative to an initial portfolio for optimal portfolios
at the endpoints of the efficient frontier that are
[NumAssets-by-NumPorts matrix].

Note If no initial portfolio is specified in obj.InitPort, it is assumed
to be 0 such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p, estimateFrontierLimits obtains the endpoint
portfolios:

17-394

Portfolio.estimateFrontierLimits

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;

disp(pwgt);

disp(pwgt);
0.8891 0
0.0369 0
0.0404 0
0.0336 1.0000

See Also estimateFrontier | estimateFrontierByReturn |
estimateFrontierByRisk

Tutorials • “Estimate Efficient Frontiers” on page 4-96

17-395

Portfolio.estimateMaxSharpeRatio

Superclasses AbstractPortfolio

Purpose Estimate efficient portfolio to maximize Sharpe ratio

Syntax [pwgt,pbuy,psell] = estimateMaxSharpeRatio(obj)

Description [pwgt,pbuy,psell] = estimateMaxSharpeRatio(obj) estimates an
efficient portfolio that maximizes the Sharpe ratio.

Tips Use dot notation to estimate an efficient portfolio that maximizes the
Sharpe ratio:

[pwgt,pbuy,psell] = obj.estimateMaxSharpeRatio;

Input
Arguments

obj

Portfolio object [Portfolio].

Note The risk-free rate is obtained from the property
RiskFreeRate in the Portfolio object. If you leave the
RiskFreeRate unset, it is assumed to be 0.

Output
Arguments

pwgt

A portfolio on the efficient frontier with a maximum Sharpe ratio
[NumAssets vector].

pbuy

Purchases relative to an initial portfolio for a portfolio on the
efficient frontier with a maximum Sharpe ratio [NumAssets
vector].

psell

Sales relative to an initial portfolio for a portfolio on the efficient
frontier with maximum Sharpe ratio [NumAssets vector].

17-396

Portfolio.estimateMaxSharpeRatio

Definitions Sharpe Ratio

The Sharpe ratio is the ratio of the difference between the mean
of portfolio returns and the risk-free rate divided by the standard
deviation of portfolio returns. This method maximizes the Sharpe ratio
among portfolios on the efficient frontier.

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Estimate the efficient portfolio that maximizes the Sharpe ratio:

p = Portfolio('AssetMean',[0.3, 0.1, 0.5], 'AssetCovar',...

[0.01, -0.010, 0.004; -0.010, 0.040, -0.002; 0.004, -0.002, 0.023]);

p = p.setDefaultConstraints;

p.plotFrontier(20);

weights = p.estimateMaxSharpeRatio;

[risk, ret] = p.estimatePortMoments(weights);

hold on

plot(risk,ret,'*r');

17-397

Portfolio.estimateMaxSharpeRatio

Algorithms The maximization of the Sharpe ratio is accomplished by a
one-dimensional optimization using fminbnd to find the portfolio that
minimizes the negative of the Sharpe ratio. The method takes only a
fully qualified portfolio object as its input and uses all information in
the object to solve the problem.

See Also estimateFrontier | estimateFrontierByReturn |
estimateFrontierByRisk

How To • “Obtaining an Efficient Portfolio that Maximizes the Sharpe Ratio”
on page 4-91

17-398

Portfolio.estimatePortMoments

Purpose Estimate moments of portfolio returns

Syntax [prsk, pret] = estimatePortMoments(obj, pwgt)

Description [prsk, pret] = estimatePortMoments(obj, pwgt) to estimate the
moments of portfolio returns.

The estimate of port moments is specific to mean-variance portfolio
optimization and computes the mean and standard deviation (which is
the square-root of variance) of portfolio returns.

Tips Use dot notation to estimate the moments of portfolio returns:

[prsk, pret] = obj.estimatePortMoments(pwgt);

Input
Arguments

obj

A portfolio object [Portfolio].

pwgt

A collection of portfolios [NumAssets-by-NumPorts matrix] where
NumAssets is the number of asset in the universe and NumPorts is
the number of portfolios in the collection of portfolios.

Output
Arguments

prsk

Estimates for standard deviations of portfolio returns for each
portfolio in pwgt [NumPorts vector].

pret

Estimates for means of portfolio returns for each portfolio in pwgt
[NumPorts vector].

Attributes
Access public

Static false

Hidden false

17-399

Portfolio.estimatePortMoments

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p, use estimatePortMoments to show the range of risks
and returns for efficient portfolios:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;

[prsk, pret] = p.estimatePortMoments(pwgt);
disp([prsk, pret]);

0.0769 0.0590
0.3500 0.1800

See Also estimatePortReturn | estimatePortRisk

Tutorials • “Estimate Efficient Portfolios” on page 4-82

17-400

Portfolio.estimatePortReturn

Superclasses AbstractPortfolio

Purpose Estimate mean of portfolio returns (portfolio return)

Syntax pret = estimatePortReturn(obj, pwgt)

Description pret = estimatePortReturn(obj, pwgt) to estimate the mean of
portfolio returns (portfolio return).

estimatePortReturn computes the mean of portfolio returns as the
proxy for portfolio returns.

Note Depending upon whether costs have been set, the portfolio return
is either gross or net portfolio returns.

Tips Use dot notation to estimate the mean of portfolio returns (portfolio
return):

pret = obj.estimatePortReturn(pwgt);

Input
Arguments

obj

A portfolio object [Portfolio].

pwgt

A collection of portfolios [NumAssets-by-NumPorts matrix] where
NumAssets is the number of asset in the universe and NumPorts is
the number of portfolios in the collection of portfolios.

Output
Arguments

pret

Estimates for means of portfolio returns for each portfolio in pwgt
[NumPorts vector].

17-401

Portfolio.estimatePortReturn

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p, use estimatePortReturn to estimate the mean of
portfolio returns:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
pret = p.estimatePortReturn(pwgt);
disp(pret)

0.0590
0.1800

See Also estimatePortRisk | estimateFrontierByReturn |
estimateFrontierByRisk

How To • “Obtaining Efficient Portfolios for Target Returns” on page 4-86

17-402

Portfolio.estimatePortRisk

Superclasses AbstractPortfolio

Purpose Estimate standard deviation of portfolio returns (portfolio risk)

Syntax prsk = estimatePortRisk(obj, pwgt)

Description prsk = estimatePortRisk(obj, pwgt) to estimate the standard
deviation of portfolio returns (portfolio risk).

estimatePortRisk computes the standard deviation of portfolio returns
as the proxy for portfolio risk.

Tips Use dot notation to estimate the standard deviation of portfolio returns
(portfolio risk):

prsk = obj.estimatePortRisk(pwgt);

Input
Arguments

obj

A portfolio object [Portfolio].

pwgt

A collection of portfolios[NumAssets-by-NumPorts matrix] where
NumAssets is the number of asset in the universe and NumPorts is
the number of portfolios in the collection of portfolios.

Output
Arguments

prsk

Estimates for standard deviations of portfolio returns for each
portfolio in pwgt [NumPorts vector].

Attributes
Access public

Static false

Hidden false

17-403

Portfolio.estimatePortRisk

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p, use estimatePortRisk to show the standard
deviation of portfolio returns:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

p = Portfolio;
p = p.setAssetMoments(m, C);
p = p.setDefaultConstraints;
pwgt = p.estimateFrontierLimits;
prsk = p.estimatePortRisk(pwgt);
disp(prsk)
0.0769
0.3500

See Also estimatePortReturn | estimateFrontierByReturn |
estimateFrontierByRisk

How To • “Obtaining Efficient Portfolios for Target Risks” on page 4-89

17-404

ewstats

Purpose Expected return and covariance from return time series

Syntax [ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries,
DecayFactor, WindowLength)

Arguments

RetSeries Return Series: number of observations (NUMOBS) by
number of assets (NASSETS) matrix of equally spaced
incremental return observations. The first row is
the oldest observation, and the last row is the most
recent.

DecayFactor (Optional) Controls howmuch less each observation is
weighted than its successor. The kth observation back
in time has weight DecayFactor^k. DecayFactor
must lie in the range: 0 < DecayFactor <= 1.

Default = 1, the equally weighted linear moving
average model (BIS).

WindowLength (Optional) Number of recent observations in the
computation. Default = NUMOBS.

Description [ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries,
DecayFactor, WindowLength) computes estimated expected returns,
estimated covariance matrix, and the number of effective observations.
These are maximum likelihood estimates which are generally biased.

ExpReturn is a 1-by-NASSETS vector of estimated expected returns.

ExpCovariance is an NASSETS-by-NASSETS estimated covariance matrix.
The standard deviations of the asset return processes are given by

STDVec = sqrt(diag(ExpCovariance))

The correlation matrix is

17-405

ewstats

CorrMat = ExpCovariance./(STDVec*STDVec')

NumEffObs is the number of effective observations =
(1-DecayFactor^WindowLength)/(1-DecayFactor).

A smaller DecayFactor or WindowLength emphasizes recent data more
strongly but uses less of the available data set.

Examples RetSeries = [0.24 0.08

0.15 0.13

0.27 0.06

0.14 0.13];

DecayFactor = 0.98;

[ExpReturn, ExpCovariance] = ewstats(RetSeries, DecayFactor)

ExpReturn =

0.1995 0.1002

ExpCovariance =

0.0032 -0.0017

-0.0017 0.0010

See Also cov | mean

17-406

exp

Purpose Exponential values

Syntax newfts = exp(tsobj)

Description newfts = exp(tsobj) calculates the natural exponential (base e) of all
the data in the data series of the financial time series object tsobj and
returns the result in the object newfts.

See Also log | log2 | log10

17-407

extfield

Purpose Data series extraction

Syntax ftse = extfield(tsobj, fieldnames)

Arguments

tsobj Financial time series object

fieldnames Data series to be extracted. A cell array if a list of
data series names (fieldnames) is supplied. A string
if only one is wanted.

Description ftse = extfield(tsobj, fieldnames) extracts from tsobj the dates
and data series specified by fieldnames into a new financial time series
object ftse. ftse has all the dates in tsobj but contains a smaller
number of data series.

Examples extfield is identical to referencing a field in the object. For example,

ftse = extfield(fts, 'Close')

is the same as

ftse = fts.Close

This function is the complement of the function rmfield.

See Also rmfield

17-408

fbusdate

Purpose First business date of month

Syntax Date = fbusdate(Year, Month, Holiday, Weekend)

Arguments

Year Enter as four-digit integer.

Month Enter as integer from 1 to 12.

Holiday (Optional) Vector of holidays and nontrading-day
dates. All dates in Holiday must be the same format:
either serial date numbers or date strings. (Using
date numbers improves performance.) The holidays
function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the
value 1 indicating weekend days. The first element
of this vector corresponds to Sunday. Thus, when
Saturday and Sunday form the weekend (default),
then Weekend = [1 0 0 0 0 0 1].

Description Date = fbusdate(Year, Month, Holiday, Weekend) returns the
serial date number for the first business date of the given year and
month. Holiday specifies nontrading days.

Year and Month can contain multiple values. If one contains multiple
values, the other must contain the same number of values or a single
value that applies to all. For example, if Year is a 1-by-n vector of
integers, then Month must be a 1-by-n vector of integers or a single
integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted
date strings.

17-409

fbusdate

Examples Example 1:

Date = fbusdate(2001, 11); datestr(Date)
ans =
01-Nov-2001

Year = [2002 2003 2004];
Date = fbusdate(Year, 11); datestr(Date)

ans =
01-Nov-2002
03-Nov-2003
01-Nov-2004

Example 2: You can indicate that Saturday is a business day by
appropriately setting the Weekend argument.

Weekend = [1 0 0 0 0 0 0];

March 1, 2003, is a Saturday. Use fbusdate to check that this Saturday
is actually the first business day of the month.

Date = datestr(fbusdate(2003, 3, [], Weekend))

Date =

01-Mar-2003

See Also busdate | eomdate | holidays | isbusday | lbusdate

17-410

fetch

Purpose Data from financial time series object

Syntax newfts = fetch(oldfts, StartDate, StartTime, EndDate, EndTime,
delta, dmy_specifier, time_ref)

Arguments

oldfts Existing financial time series object.

StartDate First date in the range from which data is to
be extracted.

StartTime Beginning time on each day. If you do not
require specific times or oldfts does not
contain time information, use []. If you specify
StartTime, you must also specify EndTime.

EndDate Last date in the range from which data is to
be extracted.

EndTime Ending time on each day. If you do not require
specific times or oldfts does not contain time
information, use []. If you specify EndTime,
you must also specify StartTime.

delta Skip interval. Can be any positive integer.
Units for the skip interval specified by
dmy_specifier.

dmy_specifier Specifies the units for delta. Can be

• D, d (Days)

• M, m (Months)

• Y, y (Years)

time_ref Time reference intervals or specific times.
Valid time reference intervals are 1, 5, 15, or 60
minutes. Enter specific times as 'hh:mm'.

17-411

fetch

Description newfts = fetch(oldfts, StartDate, StartTime, EndDate,
EndTime, delta, dmy_specifier, time_ref) requests data from a
financial time series object beginning from the start date and/or start
time to the end date and/or end time, skipping a specified number of
days, months, or years.

Note If time information is present in oldfts, using [] for start or end
times results in fetch returning all instances of a specific date.

Examples Example 1. Create a financial time series object containing both dates
and times:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);

myFts = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

myFts =

desc: My first FINTS

freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'

'01-Jan-2001' '11:00' [1]

' " ' '12:00' [2]

'02-Jan-2001' '11:00' [3]

' " ' '12:00' [4]

'03-Jan-2001' '11:00' [5]

' " ' '12:00' [6]

To fetch all dates and times from this financial time series, enter

fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],1,'d')

17-412

fetch

or

fetch(myFts,'01-Jan-2001','11:00','03-Jan-2001','12:00',1,'d')

These commands reproduce the entire time series shown above.

To fetch every other day’s data, enter

fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],2,'d')

This produces

ans =

desc: My first FINTS
freq: Daily (1)

'dates: (4)' 'times: (4)' 'Data1: (4)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]
'03-Jan-2001' '11:00' [5]
' " ' '12:00' [6]

Example 2. Create a financial time series object with time intervals
of less than 1 hour:

dates2 = ['01-Jan-2001';'01-Jan-2001'; '01-Jan-2001';...

'02-Jan-2001'; '02-Jan-2001';'02-Jan-2001'];

times2 = ['11:00';'11:05';'11:06';'12:00';'12:05';'12:06'];

dates_times2 = cellstr([dates2, repmat(' ',size(dates2,1),1),...

times2]);

myFts2 = fints(dates_times2,(1:6)',{'Data1'},1,'My second

FINTS')

myFts2 =

desc: My second FINTS

17-413

fetch

freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'

'01-Jan-2001' '11:00' [1]

' " ' '11:05' [2]

' " ' '11:06' [3]

'02-Jan-2001' '12:00' [4]

' " ' '12:05' [5]

' " ' '12:06' [6]

Use fetch to extract data from this time series object at 5-minute
intervals for each day starting at 11:00 o’clock on January 1, 2001.

fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',5)

desc: My second FINTS
freq: Daily (1)

'dates: (4)' 'times: (4)' 'Data1: (4)'
'01-Jan-2001' '11:00' [1]
' " ' '11:05' [2]
'02-Jan-2001' '12:00' [4]
' " ' '12:05' [5]

You can use this version of fetch to extract data at specific times. For
example, to fetch data only at 11:06 and 12:06 from myFts2, enter

fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',...
{'11:06';'12:06'})

ans =

desc: My second FINTS
freq: Daily (1)

'dates: (2)' 'times: (2)' 'Data1: (2)'
'01-Jan-2001' '11:06' [3]

17-414

fetch

'02-Jan-2001' '12:06' [6]

See Also extfield | ftsbound | getfield | subsref

17-415

fieldnames

Purpose Get names of fields

Syntax fnames = fieldnames(tsobj)
fnames = fieldnames(tsobj, srsnameonly)

Arguments

tsobj Financial time series object

srsnameonly Field names returned:

0 = All field names (default).

1 = Data series names only.

Description fieldnames gets field names in a financial time series object.

fnames = fieldnames(tsobj) returns the field names associated with
the financial time series object tsobj as a cell array of strings, including
the common fields: desc, freq, dates (and times if present).

fnames = fieldnames(tsobj, srsnameonly) returns field names
depending upon the setting of srsnameonly. If srsnameonly is 0, the
function returns all field names, including the common fields: desc,
freq, dates, and times. If srsnameonly is set to 1, fieldnames returns
only the data series in fnames.

See Also chfield | getfield | isfield | rmfield | setfield

17-416

fillts

Purpose Fill missing values in time series

Syntax newfts = fillts(oldfts, fill_method)
newfts = fillts(oldfts, fill_method, newdates)
newfts = fillts(oldfts, fill_method, newdates, {'T1','T2',...})
newfts = fillts(oldfts, fill_method, newdates, 'SPAN', {'TS','TE'},
delta)
newfts = fillts(... sortmode)

Arguments

oldfts Financial time series object.

fill_method (Optional) Replaces missing values (NaN)
in oldfts using an interpolation process, a
constant, or a zero-order hold.

Valid fill methods (interpolation methods) are:

• linear - 'linear ' - 'l' (default)

• linear with extrapolation - 'linearExtrap'
- 'le'

• cubic - 'cubic' - 'c'

• cubic with extrapolation - 'cubicExtrap' -
'ce'

• spline - 'spline' - 's'

• spline with extrapolation - 'splineExtrap'
-'se'

• nearest - 'nearest' - 'n'

• nearest with extrapolation -
'nearestExtrap' -'ne'

• pchip - 'pchip' - 'p'

17-417

fillts

• pchip with extrapolation - 'pchipExtrap'
-'pe'

(See interp1 for a discussion of extrapolation.)

To fill with a constant, enter that constant.

A zero-order hold ('zero') fills a missing value
with the value immediately preceding it. If
the first value in the time series is missing, it
remains a NaN.

newdates (Optional) Column vector of serial dates, a date
string, or a column cell array of date strings.
If oldfts contains time of day information,
newdates must be accompanied by a time
vector (newtimes). Otherwise, newdates is
assumed to have times of '00:00'.

T1, T2, TS, TE First time, second time, start time, end time

delta Time interval in minutes to span between the
start time and end time

sortmode (Optional) Default = 0 (unsorted). 1 = sorted.

Description newfts = fillts(oldfts, fill_method) replaces missing values
(represented by NaN) in the financial time series object oldfts with real
values, using either a constant or the interpolation process indicated
by fill_method.

newfts = fillts(oldfts, fill_method, newdates) replaces all the
missing values on the specified dates newdates added to the financial
time series oldfts with new values. The values can be a single constant
or values obtained through the interpolation process designated by
fill_method. If any of the dates in newdates exists in oldfts, the
existing one has precedence.

17-418

fillts

newfts = fillts(oldfts, fill_method, newdates,
{'T1','T2',...}) additionally allows the designation of specific times
of day for addition or replacement of data.

newfts = fillts(oldfts, fill_method, newdates, 'SPAN',
{'TS','TE'}, delta) is similar to the previous format except that
you designate only a start time and an end time. You follow these times
with a spanning time interval, delta.

If you specify only one date for newdates, specifying a start and end
time generates only times for that specific date.

newfts = fillts(... sortmode) additionally denotes whether you
want the order of the dates in the output object to stay the same as in
the input object or to be sorted chronologically.

sortmode = 0 (unsorted) appends any new dates to the end. The
interpolation and zero-order processes that calculate the values for the
new dates work on a sorted object. Upon completion, the existing dates
are reordered as they were originally, and the new dates are appended
to the end.

sortmode = 1 sorts the output. After interpolation, no reordering of
the date sequence occurs.

Examples Example 1. Create a financial time series object with missing data in
the fourth and fifth rows.

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001';...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);

OpenFts = fints(dates_times,[(1:3)'; nan; nan; 6],{'Data1'},1,...

'Open Financial Time Series');

OpenFts looks like this:

OpenFts =

17-419

fillts

desc: Open Financial Time Series
freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]
'02-Jan-2001' '11:00' [3]
' " ' '12:00' [NaN]
'03-Jan-2001' '11:00' [NaN]
' " ' '12:00' [6]

Example 2. Fill the missing data in OpenFts using cubic interpolation.

FilledFts = fillts(OpenFts,'cubic')

FilledFts =

desc: Filled Open Financial Time Series
freq: Unknown (0)

'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]
'02-Jan-2001' '11:00' [3]
' " ' '12:00' [3.0663]
'03-Jan-2001' '11:00' [5.8411]
' " ' '12:00' [6.0000]

Example 3. Fill the missing data in OpenFts with a constant value.

FilledFts = fillts(OpenFts,0.3)

FilledFts =

desc: Filled Open Financial Time Series
freq: Unknown (0)

17-420

fillts

'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]
'02-Jan-2001' '11:00' [3]
' " ' '12:00' [0.3000]
'03-Jan-2001' '11:00' [0.3000]
' " ' '12:00' [6]

Example 4. You can use fillts to identify a specific time on a specific
day for the replacement of missing data. This example shows how to
replace missing data at 12:00 on January 2 and 11:00 on January 3.

FilltimeFts = fillts(OpenFts,'c',...
{'02-Jan-2001';'03-Jan-2001'}, {'12:00';'11:00'},0)

FilltimeFts =

desc: Filled Open Financial Time Series
freq: Unknown (0)

'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]
'02-Jan-2001' '11:00' [3]
' " ' '12:00' [3.0663]
'03-Jan-2001' '11:00' [5.8411]
' " ' '12:00' [6.0000]

Example 5. Use a spanning time interval to add an additional day
to OpenFts.

SpanFts = fillts(OpenFts,'c','04-Jan-2001','span',...
{'11:00';'12:00'},60,0)

SpanFts =

desc: Filled Open Financial Time Series

17-421

fillts

freq: Unknown (0)

'dates: (8)' 'times: (8)' 'Data1: (8)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]
'02-Jan-2001' '11:00' [3]
' " ' '12:00' [3.0663]
'03-Jan-2001' '11:00' [5.8411]
' " ' '12:00' [6.0000]
'04-Jan-2001' '11:00' [9.8404]
' " ' '12:00' [9.9994]

See Also interp1

17-422

filter

Purpose Linear filtering

Syntax newfts = filter(B, A, oldfts)

Description filter filters an entire financial time series object with certain filter
specifications. The filter is specified in a transfer function expression.

newfts = filter(B, A, oldfts) filters the data in the financial
time series object oldfts with the filter described by vectors A and B
to create the new financial time series object newfts. The filter is a
“Direct Form II Transposed” implementation of the standard difference
equation. newfts is a financial time series object containing the same
data series (names) as the input oldfts.

See Also filter | filter2

17-423

fints

Purpose Construct financial time series object

Syntax tsobj = fints(dates_and_data)
tsobj = fints(dates, data)
tsobj = fints(dates, data, datanames)
tsobj = fints(dates, data, datanames, freq)
tsobj = fints(dates, data, datanames, freq, desc)

Arguments

dates_and_data Column-oriented matrix containing one column
of dates and a single column for each series of
data. In this format, dates must be entered in
serial date number format. If the input serial
date numbers encode time-of-day information,
the output object contains a column labeled
'dates' containing the date information and
another labeled 'times' containing the time
information.

You can use the function today to enter date
information or the function now to enter date
with time information.

dates Column vector of dates. Dates can be date
strings or serial date numbers and can include
time of day information. When entering
time-of-day information as serial date numbers,
the entry must be a column-oriented matrix
when multiple entries are present. If the
time-of-day information is in string format,
the entry must be a column-oriented cell array
of dates and times when multiple entries are
present.

Valid date and time string formats are:

17-424

fints

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'

• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'

• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy
hh:mm'

• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy
hh:mm'

Dates and times can initially be separate
column-oriented vectors, but they must be
concatenated into a single column-oriented
matrix before being passed to fints. You can
use the MATLAB functions today and now to
assist in entering date and time information.

data Column-oriented matrix containing a column
for each series of data. The number of values
in each data series must match the number of
dates. If a mismatch occurs, MATLAB does not
generate the financial time series object, and
you receive an error message.

datanames Cell array of data series names. Overrides the
default data series names. Default data series
names are series1, series2, and so on.

17-425

fints

Note Not all strings are accepted as
datanames parameters. Supported data series
names cannot start with a number and must
contain only these characters:

• Lowercase Latin alphabet, a to z

• Uppercase Latin alphabet, A to Z

• Underscore, _

freq Frequency indicator. Allowed values are:

UNKNOWN, Unknown, unknown, U, u,0

DAILY, Daily, daily, D, d,1

WEEKLY, Weekly, weekly, W, w,2

MONTHLY, Monthly, monthly, M, m, 3

QUARTERLY, Quarterly, quarterly, Q, q,4

SEMIANNUAL, Semiannual, semiannual, S, s,5

ANNUAL, Annual, annual, A, a, 6

Default = Unknown.

desc String providing descriptive name for financial
time series object. Default = ''.

17-426

fints

Note The toolbox supports only hourly and minute time series. Seconds
are disregarded when the object is created (for example, 01-jan-2001
12:00:01 is considered to be 01-jan-2001 12:00). If there are duplicate
dates and times, fints sorts the dates and times and chooses the first
instance of the duplicate dates and times. The other duplicate dates and
times are removed from the object along with their corresponding data.

Description fints constructs a financial time series object. A financial time series
object is a MATLAB object that contains a series of dates and one or
more series of data. Before you perform an operation on the data, you
must set the frequency indicator (freq). You can optionally provide a
description (desc) for the time series.

tsobj = fints(dates_and_data) creates a financial time series
object containing the dates and data from the matrix dates_and_data.
If the dates contain time-of-day information, the object contains an
additional series of times. The date series and each data series must
each be a column in the input matrix. The names of the data series
default to series1, ..., seriesn. The desc and freq fields are set to
their defaults.

tsobj = fints(dates, data) generates a financial time series object
containing dates from the dates column vector of dates and data from
the matrix data. If the dates contain time-of-day information, the
object contains an additional series of times. The data matrix must be
column-oriented, that is, each column in the matrix is a data series.
The names of the series default to series1, ..., seriesn, where n
is the total number of columns in data. The desc and freq fields are
set to their defaults.

tsobj = fints(dates, data, datanames) additionally allows you
to rename the data series. The names are specified in the datanames
cell array. The number of strings in datanames must correspond to
the number of columns in data. The desc and freq fields are set to
their defaults.

17-427

fints

tsobj = fints(dates, data, datanames, freq) additionally sets
the frequency when you create the object. The desc field is set to its
default ''.

tsobj = fints(dates, data, datanames, freq, desc) provides a
description string for the financial time series object.

Examples Example 1. Create a financial time series containing days and data
only.

data = [1:6]'

data =

1
2
3
4
5
6

dates = [today:today+5]'

dates =

731132
731133
731134
731135
731136
731137

tsobjkt = fints(dates, data)

tsobjkt =

desc: (none)

17-428

fints

freq: Unknown (0)

'dates: (6)' 'series1: (6)'
'08-Oct-2001' [1]
'09-Oct-2001' [2]
'10-Oct-2001' [3]
'11-Oct-2001' [4]
'12-Oct-2001' [5]
'13-Oct-2001' [6]

Example 2. Expand Example 1 to include time-of-day information:

dates = [now:now+5]';

tsobjkt = fints(dates, data)

tsobjkt =

desc: (none)
freq: Unknown (0)

'dates: (6)' 'times: (6)' 'series1: (6)'
'08-Oct-2001' '14:51' [1]
'09-Oct-2001' '14:51' [2]
'10-Oct-2001' '14:51' [3]
'11-Oct-2001' '14:51' [4]
'12-Oct-2001' '14:51' [5]
'13-Oct-2001' '14:51' [6]

Example 3. Create a financial time series object when dates and times
are located in separate vectors.

Step 1. Create a column vector of times in date number format:

times = datenum(datestr(now:1/24+1/24/60:now+6/24+1/24/60,15))

times =

17-429

fints

0.43750000000000

0.47986111111111

0.52222222222222

0.56458333333333

0.60694444444444

0.64930555555556

Step 2. Create a column vector of dates:

dates = [today:today+5]'

dates =

731133
731134
731135
731136
731137
731138

Step 3. Concatenate dates and times into a single matrix:

dates_times = [dates, times]

dates_times =

1.0e+005 *

7.31133000000000 0.00000437500000
7.31134000000000 0.00000479861111
7.31135000000000 0.00000522222222
7.31136000000000 0.00000564583333
7.31137000000000 0.00000606944444
7.31138000000000 0.00000649305556

Step 4. Create column vector of data:

17-430

fints

data = [1:6]'

Step 5. Create the financial time series object:

tsobj = fints(dates_times, data)

tsobj =

desc: (none)
freq: Unknown (0)

'dates: (6)' 'times: (6)' 'series1: (6)'
'09-Oct-2001' '10:30' [1]
'10-Oct-2001' '11:31' [2]
'11-Oct-2001' '12:32' [3]
'12-Oct-2001' '13:33' [4]
'13-Oct-2001' '14:34' [5]
'14-Oct-2001' '15:35' [6]

See Also datenum | datestr

17-431

fpctkd

Purpose Fast stochastics

Syntax [pctk, pctd] = fpctkd(highp, lowp, closep)
[pctk, pctd] = fpctkd([highp lowp closep])
[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods,
dmamethod)
[pctk, pctd] = fpctkd([highp lowp closep], kperiods, dperiods,
dmamethod)
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod)
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod, ParameterName,
ParameterValue, ...)

Arguments

highp High price (vector).

lowp Low price (vector).

closep Closing price (vector).

kperiods (Optional) %K periods. Default = 10.

dperiods (Optional) %D periods. Default = 3.

damethod (Optional) %D moving average method. Default =
'e' (exponential).

tsobj Financial time series object.

ParameterName Valid parameter names are:

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

ParameterValueParameter values are the strings that represent the
valid parameter names.

17-432

fpctkd

Description fpctkd calculates the stochastic oscillator.

[pctk, pctd] = fpctkd(highp, lowp, closep) calculates the fast
stochastics F%K and F%D from the stock price data highp (high prices),
lowp (low prices), and closep (closing prices).

[pctk, pctd] = fpctkd([highp lowp closep]) accepts a
three-column matrix of high (highp), low (lowp), and closing prices
(closep), in that order.

[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods,
dperiods, dmamethod) calculates the fast stochastics F%K and F%D
from the stock price data highp (high prices), lowp (low prices), and
closep (closing prices). kperiods sets the %K period. dperiods sets
the %D period.

damethod specifies the %D moving average method. Valid moving
average methods for %D are Exponential ('e') and Triangular ('t').
See tsmovavg for explanations of these methods.

[pctk, pctd]= fpctkd([highp lowp closep], kperiods,
dperiods, dmamethod) accepts a three-column matrix of high (highp),
low (lowp), and closing prices (closep), in that order.

pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod)
calculates the fast stochastics F%K and F%D from the stock price data
in the financial time series object tsobj. tsobj must minimally contain
the series High (high prices), Low (low prices), and Close (closing prices).
pkdts is a financial time series object with similar dates to tsobj and
two data series named PercentK and PercentD.

pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod,
ParameterName, ParameterValue, ...) accepts parameter
name/parameter value pairs as input. These pairs specify the name(s)
for the required data series if it is different from the expected default
name(s). Parameter values are the strings that represent the valid
parameter names.

17-433

fpctkd

Examples Compute the stochastic oscillator for Disney stock and plot the results:

load disney.mat
dis_FastStoc = fpctkd(dis)
plot(dis_FastStoc)
title('Stochastic Oscillator for Disney')

References Achelis, Steven B., Technical Analysis from A to Z, Second Edition,
McGraw-Hill, 1995, pp. 268–271.

See Also spctkd | stochosc | tsmovavg

17-434

frac2cur

Purpose Fractional currency value to decimal value

Syntax Decimal = frac2cur(Fraction, Denominator)

Description Decimal = frac2cur(Fraction, Denominator) converts a fractional
currency value to a decimal value. Fraction is the fractional currency
value input as a string, and Denominator is the denominator of the
fraction.

Examples Decimal = frac2cur('12.1', 8)

returns

Decimal =
12.1250

See Also cur2frac | cur2str

17-435

freqnum

Purpose Convert string frequency indicator to numeric frequency indicator

Syntax nfreq = freqnum(sfreq)

Arguments

sfreq UNKNOWN, Unknown, unknown, U, u

DAILY, Daily, daily, D, d

WEEKLY, Weekly, weekly, W, w

MONTHLY, Monthly, monthly, M, m

QUARTERLY, Quarterly, quarterly, Q, q

SEMIANNUAL, Semiannual, semiannual, S, s

ANNUAL, Annual, annual, A, a

Description nfreq = freqnum(sfreq) converts a string frequency indicator into a
numeric value.

String Frequency Indicator Numeric Representation

UNKNOWN, Unknown, unknown, U, u 0

DAILY, Daily, daily, D, d 1

WEEKLY, Weekly, weekly, W, w 2

MONTHLY, Monthly, monthly, M, m 3

QUARTERLY, Quarterly,
quarterly, Q, q

4

SEMIANNUAL, Semiannual,
semiannual, S, s

5

ANNUAL, Annual, annual, A, a 6

17-436

freqnum

See Also freqstr

17-437

freqstr

Purpose Convert numeric frequency indicator to string representation

Syntax sfreq = freqstr(nfreq)

Arguments

nfreq 0

1

2

3

4

5

6

Description sfreq = freqstr(nfreq) converts a numeric frequency indicator into
a string representation.

Numeric Frequency
Indicator String Representation

0 Unknown

1 Daily

2 Weekly

3 Monthly

4 Quarterly

5 Semiannual

6 Annual

17-438

freqstr

See Also freqnum

17-439

frontcon

Purpose Mean-variance efficient frontier

Syntax [PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,
ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups,
GroupBounds, varargin)

Arguments

ExpReturn 1 by number of assets (NASSETS) vector
specifying the expected (mean) return of each
asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the
covariance of asset returns.

NumPorts (Optional) Number of portfolios generated
along the efficient frontier. Returns are equally
spaced between the maximum possible return
and the minimum risk point. If NumPorts is
empty (entered as [], frontcon computes 10
equally spaced points. When entering a target
rate of return (PortReturn), enter NumPorts
as an empty matrix [].

PortReturn (Optional) Vector of length equal to the number
of portfolios (NPORTS) containing the target
return values on the frontier. If PortReturn
is not entered or [], NumPorts equally spaced
returns between the minimum and maximum
possible values are used.

AssetBounds (Optional) 2-by-NASSETS matrix containing the
lower and upper bounds on the weight allocated
to each asset in the portfolio. Default lower
bound = all 0s (no short-selling). Default upper
bound = all 1s (any asset may constitute the
entire portfolio).

17-440

frontcon

Groups (Optional) Number of groups
(NGROUPS)-by-NASSETS matrix specifying
NGROUPS asset groups or classes. Each row
specifies a group. Groups(i,j) = 1 (jth asset
belongs in the ith group). Groups(i,j) = 0
(jth asset not a member of the ith group).

GroupBounds (Optional) NGROUPS-by-2 matrix specifying, for
each group, the lower and upper bounds of
the total weights of all assets in that group.
Default lower bound = all 0s. Default upper
bound = all 1s.

varargin (Optional) varargin supports the following
parameter-value pairs:

• 'algorithm' – Defines which algorithm
to use with frontcon. Use either a value
of 'lcprog' or 'quadprog' to indicate the
algorithm to use. The default is 'lcprog’.

• 'maxiter' – Maximum number of iterations
before termination of algorithm. The default
is 100000.

• 'tiebreak' – Method to break ties for pivot
selection. This value pair applies only to
'lcprog' algorithm. The default is 'first'.
Options are:

- 'first' – Selects pivot with lowest index.

- 'last' – Selects pivot with highest index.

- 'random' – Selects pivot at random.

• 'tolcon' – Tolerance for constraint
violations. This value pair applies only to
'lcprog' algorithm. The default is 1.0e-6.

• 'tolpiv' – Pivot value below which a
number is considered to be zero. This value

17-441

frontcon

pair applies only to 'lcprog'algorithm. The
default is 1.0e-9.

Description [PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,
ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups,
GroupBounds, varargin) returns the mean-variance efficient frontier
with user-specified asset constraints, covariance, and returns. For
a collection of NASSETS risky assets, computes a portfolio of asset
investment weights that minimize the risk for given values of the
expected return. The portfolio risk is minimized subject to constraints
on the asset weights or on groups of asset weights.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each
portfolio.

PortReturn is a NPORTS-by-1 vector of the expected return of each
portfolio.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each
asset. Each row represents a portfolio. The total of all weights in a
portfolio is 1.

frontcon generates a plot of the efficient frontier if you invoke it
without output arguments.

The asset returns are assumed to be jointly normal, with expected
mean returns of ExpReturn and return covariance ExpCovariance. The
variance of a portfolio with 1-by-NASSETS weights PortWts is given by
PortVar = PortWts*ExpCovariance*PortWts'. The portfolio expected
return is PortReturn = dot(ExpReturn, PortWts).

Examples Given three assets with expected returns of

ExpReturn = [0.1 0.2 0.15];

and expected covariance of

ExpCovariance = [0.0100 -0.0061 0.0042

17-442

frontcon

-0.0061 0.0400 -0.0252
0.0042 -0.0252 0.0225];

compute the mean-variance efficient frontier for four points.

NumPorts = 4;
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts)

PortRisk =

0.0426
0.0483
0.1089
0.2000

PortReturn =

0.1569
0.1713
0.1856
0.2000

PortWts =

0.2134 0.3518 0.4348
0.0096 0.4352 0.5552

0 0.7128 0.2872
0 1.0000 0

See Also ewstats | frontier | portopt | portstats

How To • “Portfolio Construction Examples” on page 3-5

17-443

frontier

Purpose Rolling efficient frontier

Syntax [PortWts, AllMean, AllCovariance] = frontier(Universe, Window,
Offset, NumPorts, ActiveMap, ConSet, NumNonNan)

Arguments

Universe Number of observations (NUMOBS) by number of
assets plus one (NASSETS + 1) time series array
containing total return data for a group of securities.
Each row represents an observation. Column
1 contains MATLAB serial date numbers. The
remaining columns contain the total return data for
each security.

Window Number of data periods used to calculate each
frontier.

Offset Increment in number of periods between each
frontier.

NumPorts Number of portfolios to calculate on each frontier.

ActiveMap (Optional) Number of observations (NUMOBS) by
number of assets (NASSETS) matrix with Boolean
elements corresponding to the Universe. Each
element indicates if the asset is part of the
Universe on the corresponding date. Default =
NUMOBS-by-NASSETS matrix of 1’s (all assets active
on all dates).

17-444

frontier

Conset (Optional) Constraint matrix for a portfolio of asset
investments, created using portcons with the
'Default' constraint type. This single constraint
matrix is applied to each frontier.

NumNonNan (Optional) Minimum number of nonNaN points for
each active asset in each window of data needed
to perform the optimization. The default value is
Window - NASSETS.

Description [PortWts, AllMean, AllCovariance] = frontier(Universe,
Window, Offset, NumPorts, ActiveMap, ConSet, NumNonNan)
generates a surface of efficient frontiers showing how asset allocation
influences risk and return over time.

PortWts is a number of curves (NCURVES)-by-1 cell array, where each
element is a NPORTS-by-NASSETS matrix of weights allocated to each
asset.

AllMean is a NCURVES-by-1 cell array, where each element is a
1-by-NASSETS vector of the expected asset returns used to generate each
curve on the surface.

AllCovariance is a NCURVES-by-1 cell array, where each element is a
NASSETS-by-NASSETS vector of the covariance matrix used to generate
each curve on the surface.

See Also portcons | portopt

17-445

fts2ascii

Purpose Write elements of time-series data into ASCII file

Syntax stat = fts2ascii(filename, tsobj, exttext)
stat = fts2ascii(filename, dates, data, colheads, desc, exttext)

Arguments

filename Name of an ASCII file

tsobj Financial time series object

exttext (Optional) Extra text. A string written after the
description line (line 2 in the file).

dates Column vector containing dates. Dates must be in
serial date number format and can specify time of
day.

data Column-oriented matrix. Each column is a series.

colheads (Optional) Cell array of column headers (names);
first cell must always be the one for the dates
column. colheads will be written to the file just
before the data.

desc (Optional) Description string, which will be the first
line in the file.

Description stat = fts2ascii(filename, tsobj, exttext) writes the financial
time series object tsobj into an ASCII file filename. The data in the
file is tab delimited.

stat = fts2ascii(filename, dates, data, colheads, desc,
exttext) writes into an ASCII file filename the dates, times, and data
contained in the column vector dates and the column-oriented matrix
data. The first column in filename contains the dates, followed by
times (if specified). Subsequent columns contain the data. The data
in the file is tab delimited.

17-446

fts2ascii

stat indicates whether file creation is successful (1) or not (0).

See Also ascii2fts

17-447

fts2mat

Purpose Convert to matrix

Syntax tsmat = fts2mat(tsobj)
tsmat = fts2mat(tsobj, datesflag)
tsmat = fts2mat(tsobj, seriesnames)
tsmat = fts2mat(tsobj, datesflag, seriesnames)

Arguments

tsobj Financial time series object

datesflag (Optional) Specifies inclusion of dates vector:

datesflag = 0 (default) excludes dates.

datesflag = 1 includes dates vector.

seriesnames (Optional) Specifies the data series to be included in
the matrix. Can be a cell array of strings.

Description tsmat = fts2mat(tsobj) takes the data series in the financial time
series object tsobj and puts them into the matrix tsmat as columns.
The order of the columns is the same as the order of the data series
in the object tsobj.

tsmat = fts2mat(tsobj, datesflag) specifies whether or not you
want the dates vector included. The dates vector will be the first
column. The dates are represented as serial date numbers. Dates can
include time-of-day information.

tsmat = fts2mat(tsobj, seriesnames) extracts the data series
named in seriesnames and puts its values into tsmat. The seriesnames
argument can be a cell array of strings.

tsmat = fts2mat(tsobj, datesflag, seriesnames) puts into
tsmat the specific data series named in seriesnames. The datesflag
argument must be specified. If datesflag is set to 1, the dates vector

17-448

fts2mat

is included. If you specify an empty matrix ([]) for datesflag, the
default behavior is adopted.

See Also subsref

17-449

ftsbound

Purpose Start and end dates

Syntax datesbound = ftsbound(tsobj)
datesbound = ftsbound(tsobj, dateform)

Arguments

tsobj Financial time series object

dateform dateform is an integer representing the format of a
date string. See datestr for a description of these
formats.

Description ftsbound returns the start and end dates of a financial time series
object. If the object contains time-of-day data, ftsbound additionally
returns the starting time on the first date and the ending time on the
last date.

datesbound = ftsbound(tsobj) returns the start and end dates
contained in tsobj as serial dates in the column matrix datesbound.
The first row in datesbound corresponds to the start date, and the
second corresponds to the end date.

datesbound = ftsbound(tsobj, dateform) returns the starting and
ending dates contained in the object, tsobj, as date strings in the
column matrix, datesbound. The first row in datesbound corresponds
to the start date, and the second corresponds to the end date. The
dateform argument controls the format of the output dates.

See Also datestr

17-450

ftsgui

Purpose Financial time series GUI

Syntax ftsgui

Description ftsgui displays the financial time series graphical user interface
(GUI) main window.

The use of the financial time series GUI is described in Chapter 12,
“Financial Time Series Graphical User Interface”.

Examples ftsgui

See Also

ftstool

17-451

ftsinfo

Purpose Financial time series object information

Syntax ftsinfo(tsobj)
infofts = ftsinfo(tsobj)

Arguments

tsobj Financial time series object.

Description ftsinfo(tsobj) displays information about the financial time series
object tsobj.

infofts = ftsinfo(tsobj) stores information about the financial
time series object tsobj in the structure infofts.

infofts has these fields.

Field Contents

version Financial time series object version.

desc Description of the time series object (tsobj.desc).

freq Numeric representation of the time series data
frequency (tsobj.freq). See freqstr for list of
numeric frequencies and what they represent.

startdate Earliest date in the time series.

enddate Latest date in the time series.

seriesnames Cell array containing the time series data column
names.

ndata Number of data points in the time series.

nseries Number of columns of time series data.

17-452

ftsinfo

Examples Convert the supplied file disney.dat into a financial time series object
named dis:

dis = ascii2fts('disney.dat', 1, 3);

Now use ftsinfo to obtain information about dis:

ftsinfo(dis)

FINTS version: 2.0
Description: Walt Disney Company (DIS)

Frequency: Unknown
Start date: 29-Mar-1996

End date: 29-Mar-1999
Series names: OPEN

HIGH
LOW
CLOSE
VOLUME

of data: 782
of series: 5

Then, executing

infodis = ftsinfo(dis)

creates the structure infodis containing the values

infodis =

ver: '2.0'
desc: 'Walt Disney Company (DIS)'
freq: 0

startdate: '29-Mar-1996'
enddate: '29-Mar-1999'

seriesnames: {5x1 cell}
ndata: 782

nseries: 5

17-453

ftsinfo

See Also fints | freqnum | freqstr | ftsbound

17-454

ftstool

Purpose Financial time series tool

Syntax ftstool

Description ftstool creates and manages Financial Time Series objects. ftstool
allows the creation and management of Financial Time Series objects
via a graphical user interface. ftstool can interface with ftsgui,
meaning Line Plots generated with ftstool can be analyzed with
ftsguiFTSGUI. However, ftsgui must be running prior to the
generation of any Line Plots.

The use of the financial time series tool is described in Chapter 11,
“Financial Time Series Tool (FTSTool)”.

Examples ftstool

17-455

ftstool

See Also

ftsgui

17-456

ftsuniq

Purpose Determine uniqueness

Syntax uniq = ftsuniq(dates_and_times)
[uniq, dup] = ftsuniq(dates_and_times)

Arguments

dates_and_times A single column vector of serial date
numbers. The serial date numbers can include
time-of-day information.

Description uniq = ftsuniq(dates_and_times) returns 1 if the dates and times
within the financial time series object are unique and 0 if duplicates
exist.

[uniq, dup] = ftsuniq(dates_and_times) additionally returns a
structure dup. In the structure

• dup.DT contains the strings of the duplicate dates and times and
their locations in the object.

• dup.intIdx contains the integer indices of duplicate dates and times
in the object.

See Also fints

17-457

fvdisc

Purpose Future value of discounted security

Syntax FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

Arguments

Settle Settlement date. Enter as serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. Enter as serial date number or date
string.

Price Price (present value) of the security.

Discount Bank discount rate of the security. Enter as decimal
fraction.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

17-458

fvdisc

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description FutureVal = fvdisc(Settle, Maturity, Price, Discount,
Basis) finds the amount received at maturity for a fully vested
security.

Examples Using this data

Settle = '02/15/2001';

Maturity = '05/15/2001';

Price = 100;

Discount = 0.0575;

Basis = 2;

FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

returns

FutureVal =
101.44

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd
edition.

See Also acrudisc | discrate | prdisc | ylddisc

17-459

fvfix

Purpose Future value with fixed periodic payments

Syntax FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due)

Arguments

Rate Periodic interest rate, as a decimal fraction.

NumPeriods Number of periods.

Payment Periodic payment.

PresentVal (Optional) Initial value. Default = 0.

Due (Optional) When payments are due or made: 0 = end
of period (default), or 1 = beginning of period.

Description FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal,
Due) returns the future value of a series of equal payments.

Examples A savings account has a starting balance of $1500. $200 is added at
the end of each month for 10 years and the account pays 9% interest
compounded monthly. Using this data

FutureVal = fvfix(0.09/12, 12*10, 200, 1500, 0)

returns

FutureVal =
42379.89

See Also fvvar | pvfix | pvvar

17-460

fvvar

Purpose Future value of varying cash flow

Syntax FutureVal = fvvar(CashFlow, Rate, CFDates)

Arguments

CashFlow A vector of varying cash flows. Include the initial
investment as the initial cash flow value (a negative
number).

Rate Periodic interest rate. Enter as a decimal fraction.

CFDates (Optional) For irregular (nonperiodic) cash flows, a
vector of dates on which the cash flows occur. Enter
dates as serial date numbers or date strings. Default
assumes CashFlow contains regular (periodic) cash
flows.

Description FutureVal = fvvar(CashFlow, Rate, CFDates) returns the future
value of a varying cash flow.

Examples This cash flow represents the yearly income from an initial investment
of $10,000. The annual interest rate is 8%.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000

For the future value of this regular (periodic) cash flow

17-461

fvvar

FutureVal = fvvar([-10000 2000 1500 3000 3800 5000], 0.08)

returns

FutureVal =

2520.47

An investment of $10,000 returns this irregular cash flow. The original
investment and its date are included. The periodic interest rate is 9%.

Cash Flow Dates

($10000) January 12, 2000

$2500 February 14, 2001

$2000 March 3, 2001

$3000 June 14, 2001

$4000 December 1, 2001

To calculate the future value of this irregular (nonperiodic) cash flow

CashFlow = [-10000, 2500, 2000, 3000, 4000];

CFDates = ['01/12/2000'
'02/14/2001'
'03/03/2001'
'06/14/2001'
'12/01/2001'];

FutureVal = fvvar(CashFlow, 0.09, CFDates)

returns

FutureVal =

17-462

fvvar

170.66

See Also fvfix | irr | payuni | pvfix | pvvar

17-463

fwd2zero

Purpose Zero curve given forward curve

Syntax [ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,
Settle, Compounding, Basis)

Arguments

ForwardRates A number of bonds (NUMBONDS)-by-1 vector of
annualized implied forward rates, as decimal
fractions. In aggregate, the rates in ForwardRates
constitute an implied forward curve for the
investment horizon represented by CurveDates.
The first element pertains to forward rates from the
settlement date to the first curve date.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial
date numbers) that correspond to the forward rates.

Settle A serial date number that is the common settlement
date for the forward rates.

Compounding (Optional) Output compounding. A scalar that sets
the compounding frequency per year for annualizing
the output zero rates. Allowed values are:

1 Annual compounding

2 Semiannual compounding (default)

3 Compounding three times per year

4 Quarterly compounding

6 Bimonthly compounding

12 Monthly compounding

365 Daily compounding

17-464

fwd2zero

-1 Continuous compounding

Basis (Optional) Output day-count basis for annualizing
the output zero rates.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description [ZeroRates, CurveDates] = fwd2zero(ForwardRates,
CurveDates, Settle, Compounding, Basis) returns a zero curve
given an implied forward rate curve and its maturity dates.

17-465

fwd2zero

ZeroRates A NUMBONDS-by-1 vector of decimal fractions. In
aggregate, the rates in ZeroRates constitute a zero
curve for the investment horizon represented by
CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial
date numbers) that correspond to the zero rates in
ZeroRates. This vector is the same as the input
vector CurveDates.

Examples Given an implied forward rate curve over a set of maturity dates, a
settlement date, and a compounding rate, compute the zero curve.

ForwardRates = [0.0469
0.0519
0.0549
0.0535
0.0558
0.0508
0.0560
0.0545
0.0615
0.0486];

CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

17-466

fwd2zero

Compounding = 1;

Execute the function

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,...

Settle, Compounding)

which returns the zero curve ZeroRates at the maturity dates
CurveDates.

ZeroRates =

0.0469
0.0515
0.0531
0.0532
0.0538
0.0532
0.0536
0.0539
0.0556
0.0543

CurveDates =

730796
730831
730866
730887
730914
730943
730971
731027
731098
731167

17-467

fwd2zero

For readability, ForwardRates and ZeroRates are shown here only to
the basis point. However, MATLAB software computed them at full
precision. If you enter ForwardRates as shown, ZeroRates may differ
due to rounding.

See Also zero2fwd

How To • “Term Structure of Interest Rates” on page 2-36

17-468

geom2arith

Purpose Geometric to arithmetic moments of asset returns

Syntax [ma, Ca] = geom2arith(mg, Cg);
[ma, Ca] = geom2arith(mg, Cg, t);

Arguments

mg Continuously-compounded or “geometric” mean of
asset returns (positive n-vector).

Cg Continuously-compounded or “geometric”
covariance of asset returns (n-by-n symmetric,
positive-semidefinite matrix).

t (Optional) Target period of arithmetic moments
in terms of periodicity of geometric moments with
default value 1 (positive scalar).

Description geom2arith transforms moments associated with a
continuously-compounded geometric Brownian motion into
equivalent moments associated with a simple Brownian motion with
a possible change in periodicity.

[ma, Ca] = geom2arith(mg, Cg, t) returns ma, arithmetic mean
of asset returns over the target period (n-vector), andCa, which is an
arithmetric covariance of asset returns over the target period (n-by-n
matrix).

Geometric returns over period tG are modeled as multivariate lognormal
random variables with moments

E G[]Y m= +1

and

cov()Y C= G

17-469

geom2arith

Arithmetic returns over period tA are modeled as multivariate normal
random variables with moments

E A[]X m=

cov()X C= A

Given t = tA / tG, the transformation from geometric to arithmetic
moments is

C
C

m mA
G

G G
ij

ij

i j

t= +
+ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

log
()()

1
1 1

m m CA G Ai i ii
t= + −log()1

1
2

For i,j = 1,..., n.

Note If t = 1, then X = log(Y).

This function requires that the input mean must satisfy 1 + mg >
0 and that the input covariance Cg must be a symmetric, positive,
semidefinite matrix.

The functions geom2arith and arith2geom are complementary so that,
given m, C, and t, the sequence

[ma, Ca] = geom2arith(m, C, t);
[mg, Cg] = arith2geom(ma, Ca, 1/t);

yields mg = m and Cg = C.

Examples Example 1. Given geometric mean m and covariance C of monthly total
returns, obtain annual arithmetic mean ma and covariance Ca. In this

17-470

geom2arith

case, the output period (1 year) is 12 times the input period (1 month)
so that t = 12 with

[ma, Ca] = geom2arith(m, C, 12);

Example 2. Given annual geometric mean m and covariance C of asset
returns, obtain monthly arithmetic mean ma and covariance Ca. In this
case, the output period (1 month) is 1/12 times the input period (1 year)
so that t = 1/12 with

[ma, Ca] = geom2arith(m, C, 1/12);

Example 3. Given geometric means m and standard deviations s of
daily total returns (derived from 260 business days per year), obtain
annualized arithmetic mean ma and standard deviations sa with

[ma, Ca] = geom2arith(m, diag(s .^2), 260);
sa = sqrt(diag(Ca));

Example 4. Given geometric mean m and covariance C of monthly total
returns, obtain quarterly arithmetic return moments. In this case, the
output is 3 of the input periods so that t = 3 with

[ma, Ca] = geom2arith(m, C, 3);

Example 5. Given geometric mean m and covariance C of 1254
observations of daily total returns over a 5-year period, obtain
annualized arithmetic return moments. Since the periodicity of the
geometric data is based on 1254 observations for a 5-year period, a
1-year period for arithmetic returns implies a target period of t =
1254/5 so that

[ma, Ca] = geom2arith(m, C, 1254/5);

See Also arith2geom

17-471

Portfolio.getAssetMoments

Purpose Obtain mean and covariance of asset returns from portfolio object

Syntax [AssetMean, AssetCovar] = getAssetMoments(obj)

Description [AssetMean, AssetCovar] = getAssetMoments(obj) to obtain the
mean and covariance of asset returns from a portfolio object.

Tips Use dot notation to obtain the mean and covariance of asset returns
from a portfolio object:

[AssetMean, AssetCovar] = obj.getAssetMoments;

Input
Arguments

obj

A portfolio object [Portfolio].

Output
Arguments

AssetMean

Mean of asset returns [vector].

AssetCovar

Covariance of asset returns [matrix].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given the mean and covariance of asset returns in the variables m and
C, the asset moment properties can be set and then obtained using
getAssetMoments:

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

17-472

Portfolio.getAssetMoments

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;

p = Portfolio;
p = p.setAssetMoments(m, C);
[assetmean, assetcovar] = p.getAssetMoments

assetmean =

0.0042
0.0083
0.0100
0.0150

assetcovar =

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

See Also setAssetMoments

Tutorials • “Working with Asset Returns and Moments of Asset Returns” on
page 4-37

17-473

Portfolio.getBounds

Superclasses AbstractPortfolio

Purpose Obtain bounds for portfolio weights from portfolio object

Syntax [LowerBound, UpperBound] = getBounds(obj)

Description [LowerBound, UpperBound] = getBounds(obj) to obtain bounds for
portfolio weights from a portfolio object.

Tips Use dot notation to obtain bounds for portfolio weights from the
portfolio object:

[LowerBound, UpperBound] = obj.getBounds;

Input
Arguments

obj

A portfolio object [Portfolio].

Output
Arguments

LowerBound

Lower-bound weight for each asset [vector].

UpperBound

Upper-bound weight each asset [vector].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p with the default constraints set, obtain the values
for LowerBound and UpperBound:

17-474

Portfolio.getBounds

p = Portfolio;
p = p.setDefaultConstraints(5);
[LowerBound, UpperBound] = p.getBounds
LowerBound =

0
0
0
0
0

UpperBound =

[]

See Also setBounds

17-475

Portfolio.getBudget

Superclasses AbstractPortfolio

Purpose Obtain budget constraint bounds from portfolio object

Syntax [LowerBudget, UpperBudget] = getBudget(obj)

Description [LowerBudget, UpperBudget] = getBudget(obj) to obtain budget
constraint bounds from a portfolio object.

Tips Use dot notation to obtain the budget constraint bounds from the
portfolio object:

[LowerBudget, UpperBudget] = obj.getBudget;

Input
Arguments

obj

A portfolio object [Portfolio].

Output
Arguments

LowerBudget

Lower-bound for budget constraint [scalar].

UpperBudget

Upper-bound for budget constraint [scalar].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p with the default constraints set, obtain the values for
LowerBudget and UpperBudget:

17-476

Portfolio.getBudget

p = Portfolio;
p = p.setDefaultConstraints(5);
[LowerBudget, UpperBudget] = p.getBudget
LowerBudget =

1

UpperBudget =

1

See Also setBudget

17-477

Portfolio.getCosts

Superclasses AbstractPortfolio

Purpose Obtain buy and sell transaction costs from portfolio object

Syntax [BuyCost, SellCost] = getCosts(obj)

Description [BuyCost, SellCost] = getCosts(obj) to obtain buy and sell
transaction costs from the portfolio object.

Tips Use dot notation to obtain the buy and sell transaction costs from the
portfolio object:

[BuyCost, SellCost] = obj.getCosts;

Input
Arguments

obj

A portfolio object [Portfolio].

Output
Arguments

BuyCost

Proportional transaction cost to purchase each asset [vector].

SellCost

Proportional transaction cost to sell each asset [vector].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p with the costs set, obtain the values for BuyCost and
SellCost:

17-478

Portfolio.getCosts

p = Portfolio;
p = p.setCosts(0.001, 0.001, 5);
[BuyCost, SellCost] = p.getCosts

BuyCost =

1.0000e-003

SellCost =

1.0000e-003

See Also setCosts |

17-479

Portfolio.getEquality

Superclasses AbstractPortfolio

Purpose Obtain equality constraint arrays from portfolio object

Syntax [AEquality, bEquality] = getEquality(obj)

Description [AEquality, bEquality] = getEquality(obj) to obtain the equality
constraint arrays from a portfolio object.

Tips Use dot notation to obtain the equality constraint arrays from the
portfolio object:

[AEquality, bEquality] = obj.getEquality;

Input
Arguments

obj

A portfolio object [Portfolio].

Output
Arguments

AEquality

Matrix to form linear equality constraints [matrix].

bEquality

Vector to form linear equality constraints [vector].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Suppose you have a portfolio of five assets and you want to ensure that
the first three assets are exactly 50% of your portfolio. Given a portfolio

17-480

Portfolio.getEquality

object p, set the linear equality constraints and obtain the values for
AEquality and bEquality:

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setEquality(A, b);
[AEquality, bEquality] = p.getEqualityAEquality =

1 1 1 0 0

bEquality =

0.5000

See Also setEquality

17-481

Portfolio.getGroupRatio

Superclasses AbstractPortfolio

Purpose Obtain group ratio constraint arrays from portfolio object

Syntax [GroupA, GroupB, LowerRatio, UpperRatio] = getGroupRatio(obj)

Description [GroupA, GroupB, LowerRatio, UpperRatio] =
getGroupRatio(obj) to obtain the group ratio constraint
arrays from a portfolio object.

Tips Use dot notation to obtain the equality constraint arrays from the
portfolio object:

[GroupA, GroupB, LowerRatio, UpperRatio] = obj.getGroupRatio;

Input
Arguments

obj

A portfolio object [Portfolio].

Output
Arguments

GroupA

Matrix that forms base groups for comparison [matrix].

GroupB

Matrix that forms comparison groups [matrix].

LowerGroup

Lower-bound for ratio of GroupB groups to GroupA groups [vector].

UpperRatio

Upper-bound for ratio of GroupB groups to GroupA groups [vector].

Attributes
Access public

Static false

Hidden false

17-482

Portfolio.getGroupRatio

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Suppose you want to make sure that the ratio of financial to nonfinancial
companies in your portfolios never goes above 50%. Assume you have
6 assets with 3 financial companies (assets 1-3) and 3 nonfinancial
companies (assets 4-6). After setting group ratio constraints, obtain the
values for GroupA, GroupB, LowerRatio, and UpperRatio:

GA = [true true true false false false]; % financial companies

GB = [false false false true true true]; % nonfinancial companies

p = Portfolio;

p = p.setGroupRatio(GA, GB, [], 0.5);

[GroupA, GroupB, LowerRatio, UpperRatio] = p.getGroupRatio

GroupA =

1 1 1 0 0 0

GroupB =

0 0 0 1 1 1

LowerRatio =

[]

UpperRatio =

0.5000

See Also setGroupRatio

17-483

Portfolio.getGroups

Superclasses AbstractPortfolio

Purpose Obtain group constraint arrays from portfolio object

Syntax [GroupMatrix, LowerGroup, UpperGroup] = getGroups(obj)

Description [GroupMatrix, LowerGroup, UpperGroup] = getGroups(obj) to
obtain the group constraint arrays from a portfolio object.

Tips Use dot notation to obtain the group constraint arrays from the portfolio
object:

[GroupMatrix, LowerGroup, UpperGroup] = obj.getGroups;

Input
Arguments

obj

A portfolio object [Portfolio].

Output
Arguments

GroupMatrix

Group constraint matrix [matrix].

LowerGroup

Lower-bound for group constraints [vector].

UpperGroup

Upper-bound for group constraints [vector].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

17-484

Portfolio.getGroups

Examples Suppose you have a portfolio of five assets and you want to ensure that
the first three assets constitute no more than 30% of your portfolio.
Given a portfolio object p with the group constraints set, obtain the
values for GroupMatrix, LowerGroup, and UpperGroup:

G = [true true true false false];
p = Portfolio;
p = p.setGroups(G, [], 0.3);
[GroupMatrix, LowerGroup, UpperGroup] = p.getGroups

GroupMatrix =

1 1 1 0 0

LowerGroup =

[]

UpperGroup =

0.3000

See Also setGroups

17-485

getfield

Purpose Content of specific field

Syntax fieldval = getfield(tsobj, field)
fieldval = getfield(tsobj, field, {dates})

Arguments

tsobj Financial time series object.

field Field name within tsobj.

dates Date range. Dates can be expanded to include
time-of-day information.

Description getfield treats the contents of a financial times series object tsobj as
fields in a structure.

fieldval = getfield(tsobj, field) returns the contents of the
specified field. This is equivalent to the syntax fieldval = tsobj
field.

fieldval = getfield(tsobj, field, {dates}) returns the contents
of the specified field for the specified dates. dates can be individual
cells of date strings or a cell of a date string range using the :: operator,
such as '03/01/99::03/31/99'.

Examples Create a financial time series object containing both date and
time-of-day information:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);

AnFts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...

'Yet Another Financial Time Series')

17-486

getfield

AnFts =

desc: Yet Another Financial Time Series

freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'

'01-Jan-2001' '11:00' [1]

' " ' '12:00' [2]

'02-Jan-2001' '11:00' [3]

' " ' '12:00' [4]

'03-Jan-2001' '11:00' [NaN]

' " ' '12:00' [6]

Example 1. Get the contents of the times field in AnFts:

F = datestr(getfield(AnFts, 'times'))

F =

11:00 AM
12:00 PM
11:00 AM
12:00 PM
11:00 AM
12:00 PM

Example 2. Extract the contents of specific data fields within AnFts:

FF = getfield(AnFts,'Data1',...
'01-Jan-2001 12:00::02-Jan-2001 12:00')

FF =

2
3
4

17-487

getfield

See Also chfield | fieldnames | isfield | rmfield | setfield

17-488

Portfolio.getInequality

Superclasses AbstractPortfolio

Purpose Obtain inequality constraint arrays from portfolio object

Syntax [AInequality, bInequality] = getInequality(obj)

Description [AInequality, bInequality] = getInequality(obj) to obtain the
inequality constraint arrays from a portfolio object.

Tips Use dot notation to obtain the inequality constraint arrays from the
portfolio object:

[AInequality, bInequality] = obj.getInequality;

Input
Arguments

obj

A portfolio object [Portfolio].

Output
Arguments

AInequality

Matrix to form linear inequality constraints [matrix].

bInequality

Vector to form linear inequality constraints [vector].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Suppose you have a portfolio of five assets and you want to ensure that
the first three assets are no more than 50% of your portfolio. Given a

17-489

Portfolio.getInequality

portfolio object p, set the linear inequality constraints and then obtain
values for AInequality and bInequality:

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setInequality(A, b);
[AInequality, bInequality] = p.getInequalityAInequality =

1 1 1 0 0

bInequality =

0.5000

See Also setInequality

17-490

Portfolio.getOneWayTurnover

Purpose Obtain one-way turnover constraints from portfolio object

Syntax [BuyTurnover,SellTurnover] = getOneWayTurnover(obj)

Description [BuyTurnover,SellTurnover] = getOneWayTurnover(obj) obtains
one-way turnover constraints from the portfolio object.

Tips Use dot notation to set up the maximum portfolio turnover constraint:

[BuyTurnover,SellTurnover] = obj.getOneWayTurnover

Input
Arguments

obj

Portfolio object [Portfolio].

Output
Arguments

BuyTurnover

Turnover constraint on purchases [scalar].

SellTurnover

Turnover constraint on sales [scalar].

Definitions One-Way Turnover Constraint

One-way turnover constraints ensure that estimated optimal portfolios
differ from an initial portfolio by no more than specified amounts
according to whether the differences are purchases or sales. The
constraints take the form

1 0 0T
Bx x max ,

1 0 0T
Sx x max ,

with

• x — The portfolio (n vector)

• x0 — Initial portfolio (n vector)

17-491

Portfolio.getOneWayTurnover

• τB— Upper-bound for turnover constraint on purchases (scalar)

• τS— Upper-bound for turnover constraint on sales (scalar)

where n is the number of assets in the universe.

Specify one-way turnover constraints using the following properties
in the portfolio object: BuyTurnover for τB, SellTurnover for τS, and
InitPort for x0.

Note The average turnover constraint (which is the turnover constraint
that currently exists in the object) is not just the combination of the
one-way turnover constraints with the same value for the constraint.

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Set one-way turnover costs:

p = Portfolio('AssetMean',[0.1, 0.2, 0.15], 'AssetCovar',...

[0.005, -0.010, 0.004; -0.010, 0.040, -0.002; 0.004, -0.002, 0.023]);

p = p.setBudget(1, 1);

p = p.setOneWayTurnover(1.3, 0.3, 0); %130-30 portfolio

p.plotFrontier;

17-492

Portfolio.getOneWayTurnover

Obtain one-way turnover costs:

[BuyTurnover,SellTurnover] = p.getOneWayTurnoverBuyTurnover

BuyTurnover =

1.3000

SellTurnover =

0.3000

See Also setOneWayTurnover | Portfolio | setTurnover

Tutorials • “One-Way Turnover Constraints” on page 4-11

17-493

Portfolio.getOneWayTurnover

How To • “Working with One-Way Turnover Constraints” on page 4-74

17-494

getnameidx

Purpose Find name in list

Syntax nameidx = getnameidx(list, name)

Arguments

list Cell array of name strings.

name String or cell array of name strings.

Description nameidx = getnameidx(list, name) finds the occurrence of a name
or set of names in a list. It returns an index (order number) indicating
where the specified names are located within the list. If name is not
found, nameidx returns 0.

If name is a cell array of names, getnameidx returns a vector containing
the indices (order number) of the name strings within list. If none of
the names in the name cell array is in list, it returns zero. If some of the
names in name are not found, the indices for these names will be zeros.

getnameidx finds only the first occurrence of the name in the list of
names. This function is meant to be used on a list of unique names
(strings) only. It does not find multiple occurrences of a name or a list of
names within list.

Examples Given

poultry = {'duck', 'chicken'}
animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}
nameidx = getnameidx(animals, poultry)
ans =

1 5

Given

poultry = {'duck', 'goose', 'chicken'}

17-495

getnameidx

animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}
nameidx = getnameidx(animals, poultry)
ans =

1 0 5

See Also strcmp | strfind

17-496

hhigh

Purpose Highest high

Syntax hhv = hhigh(data)
hhv = hhigh(data, nperiods, dim)
hhvts = hhigh(tsobj, nperiods)
hhvts = hhigh(tsobj, nperiods, ParameterName, ParameterValue)

Arguments

data Data series matrix.

nperiods (Optional) Number of periods. Default = 14.

dim (Optional) Dimension.

tsobj Financial time series object.

ParameterName The valid parameter name is:

• HighName: high prices series name

ParameterValue The parameter value is a string that represents
the valid parameter name.

Description hhv = hhigh(data) generates a vector of highest high values the past
14 periods from the matrix data.

hhv = hhigh(data, nperiods, dim) generates a vector of highest
high values the past nperiods periods. dim indicates the direction in
which the highest high is to be searched. If you input [] for nperiods,
the default is 14.

hhvts = hhigh(tsobj, nperiods) generates a vector of highest high
values from tsobj, a financial time series object. tsobj must include at
least the series High. The output hhvts is a financial time series object
with the same dates as tsobj and data series named HighestHigh. If
nperiods is specified, hhigh generates a financial time series object of
highest high values for the past nperiods periods.

17-497

hhigh

hhvts = hhigh(tsobj, nperiods, ParameterName,
ParameterValue) specifies the name for the required data series
when it is different from the default name. The valid parameter name
isHighName. The parameter value is a string that represents the valid
parameter name.

Examples Compute the highest high prices for Disney stock and plot the results:

load disney.mat
dis_HHigh = hhigh(dis)
plot(dis_HHigh)
title('Highest High for Disney')

See Also llow

17-498

highlow (fts)

Purpose Time series High-Low plot

Syntax highlow(tsobj)
highlow(tsobj, color)
highlow(tsobj, color, dateform)
highlow(tsobj, color, dateform, ParameterName, ParameterValue, ...)
hhll = highlow(tsobj, color, dateform, ParameterName,
ParameterValue, ...)

Arguments

tsobj Financial time series object.

color (Optional) A three-element row vector
representing RGB or a color identifier. (See
plot in the MATLAB documentation.)

dateform (Optional) Date string format used as the
x-axis tick labels. (See datetick in the
MATLAB documentation.) You can specify a
dateform only when tsobj does not contain
time-of-day data. If tsobj contains time-of-day
data, dateform is restricted to 'dd-mmm-yyyy
HH:MM'.

ParameterName ParameterName can be:

• HighName: high prices series name

• LowName: low prices series name

• OpenName: open prices series name

• CloseName: closing prices series name

ParameterValue The parameter value is a string that represents
the valid parameter name.

17-499

highlow (fts)

Description highlow(tsobj) generates a High-Low plot of the data in the financial
time series object tsobj. tsobj must contain at least four data series
representing the high, low, open, and closing prices. These series must
have the names High, Low, Open, and Close (case-insensitive).

highlow(tsobj, color) additionally specifies the color of the plot.

highlow(tsobj, color, dateform) additionally specifies the date
string format used as the x-axis tick labels. See datestr for a list of
date string formats.

highlow(tsobj, color, dateform, ParameterName,
ParameterValue,...) indicates the actual name(s) of the required
data series if the data series do not have the default names.

You can specify open prices as optional by providing the parameter
name 'OpenName' and the parameter value '' (empty string).

highlow(tsobj, color, dateform, 'OpenName', '')

hhll = highlow(tsobj, color, dateform, ParameterName,
ParameterValue, ...) returns the handle to the line object that
makes up the High-Low plot.

Examples Generate a High-Low plot for Disney stock for the dates from May 28 to
June 18, 1998:

load disney.mat
highlow(dis('28-May-1998::18-Jun-1998'))
title('High-Low Plot for Disney')

17-500

highlow (fts)

See Also candle

17-501

highlow

Purpose High, low, open, close chart

Syntax highlow(High, Low, Close, Open, Color)
highlow(High, Low, Close, Open, Color, Dates, Dateform)
Handles = highlow(High, Low, Close, Open, Color, Dates, Dateform)

Arguments

High High prices for a security. A column vector.

Low Low prices for a security. A column vector.

Close Closing prices for a security. A column vector.

Open (Optional) Opening prices for a security. A column
vector. To specify Color when Open is unknown,
enter Open as an empty matrix [].

Color (Optional) Vertical line color. A string. MATLAB
software supplies a default color if none is
specified. The default color differs depending on
the background color of the figure window. See
ColorSpec in the MATLAB documentation for color
names.

Dates (Optional) User-defined dates. A column vector.

Dateform (Optional) Format of the date string as tick labels.
For more information on date string formats, see
dateaxis.

Description highlow(High, Low, Close, Open, Color) plots the high, low,
opening, and closing prices of an asset. Plots are vertical lines whose
top is the high, bottom is the low, open is a short horizontal tick to the
left, and close is a short horizontal tick to the right.

highlow(High, Low, Close, Open, Color, Dates, Dateform) plots
the high, low, opening, and closing prices of an asset. Plots are vertical

17-502

highlow

lines whose top is the high, bottom is the low, open is a short horizontal
tick to the left, and close is a short horizontal tick to the right. The plot
also contains user-defined dates and date string format for tick labels.

Handles = highlow(High, Low, Close, Open, Color, Dates,
Dateform) plots the figure and returns the handles of the lines.

Examples The high, low, and closing prices for an asset are stored in equal-length
vectors AssetHi, AssetLo, and AssetCl respectively.

highlow(AssetHi, AssetLo, AssetCl, [], 'cyan')

plots the price data using cyan lines.

See Also bolling | candle | dateaxis | highlow | movavg | pointfig

17-503

hist

Purpose Histogram

Syntax hist(tsobj, numbins)
ftshist = hist(tsobj, numbins)
[ftshist, binpos] = hist(tsobj, numbins)

Arguments

tsobj Financial time series object.

numbins (Optional) Number of histogram bins. Default = 10.

Description hist(tsobj, numbins) calculates and displays the histogram of the
data series contained in the financial time series object tsobj.

ftshist = hist(tsobj, numbins) calculates, but does not display,
the histogram of the data series contained in the financial time series
object tsobj. The output ftshist is a structure with field names
similar to the data series names of tsobj.

[ftshist, binpos] = hist(tsobj, numbins) additionally returns
the bin positions binpos. The positions are the centers of each bin.
binpos is a column vector.

Examples Create a histogram of Disney open, high, low, and close prices:

load disney.mat
dis = rmfield(dis,'VOLUME') % Remove VOLUME field
hist(dis)
title('Disney Histogram')

17-504

hist

See Also mean | std | hist

17-505

holdings2weights

Purpose Portfolio holdings into weights

Syntax Weights = holdings2weights(Holdings, Prices, Budget)

Arguments

Holdings Number of portfolios (NPORTS) by number of assets
(NASSETS) matrix with the holdings of NPORTS
portfolios containing NASSETS assets.

Prices NASSETS vector of asset prices.

Budget (Optional) Scalar or NPORTS vector of nonzero budget
constraints. Default = 1.

Description Weights = holdings2weights(Holdings, Prices, Budget) converts
portfolio holdings into portfolio weights. The weights must satisfy
a budget constraint such that the weights sum to Budget for each
portfolio.

Weights is a NPORTS by NASSETS matrix containing the normalized
weights of NPORTS portfolios containing NASSETS assets.

Notes

• Holdings may be negative to indicate a short position, but the overall
portfolio weights must satisfy a nonzero budget constraint.

• The weights in each portfolio sum to the Budget value (which is 1
if Budget is unspecified.)

See Also weights2holdings

17-506

holidays

Purpose Holidays and nontrading days

Syntax H = holidays
H = holidays(StartDate, EndDate)
H = holidays(AltHolidays)

Description H = holidays returns a vector of serial date numbers corresponding to
all holidays and nontrading days.

H = holidays(StartDate, EndDate) returns a vector of serial date
numbers corresponding to the holidays and nontrading days between
StartDate and EndDate, inclusive.

H = holidays(AltHolidays) returns a vector of serial date numbers
corresponding to the alternate list of holidays and nontrading days.

Input
Arguments

StartDate

Start date. Enter as a serial date number or date string.

EndDate

End date. Enter as a serial date number or date string.

AltHolidays

Alternate list of holidays and nontrading days stored as serial date
numbers.

Output
Arguments

H

Returns a vector of serial date numbers corresponding to all holidays
and nontrading days.

Definitions holidays is based on a modern 5-day workweek. This function contains
all holidays and special nontrading days for the New York Stock
Exchange from January 1, 1885 to December 31, 2050. Since the
New York Stock Exchange was open on Saturdays before September
29, 1952, exact closures from 1885 to 2050 should include Saturday

17-507

holidays

trading days. To capture these dates, use the function nyseclosures.
The results from holidays and nyseclosures are identical if the
WorkWeekFormat in nyseclosures is 'Modern'.

Examples Create a vector of serial date numbers corresponding to all holidays and
nontrading dates between a specified StartDate and EnDate:

H = holidays('jan 1 2001', 'jun 23 2001')

This returns:

H =

730852
730866
730901
730954
730999

The serial date numbers for these values are:

01-Jan-2001 (New Year's Day)
15-Jan-2001 (Martin Luther King Day)
19-Feb-2001 (President's Day)
13-Apr-2001 (Good Friday)
28-May-2001 (Memorial Day)

See Also busdate | createholidays | fbusdate | isbusday | lbusdate |
nyseclosures

17-508

horzcat

Purpose Concatenate financial time series objects horizontally

Description horzcat implements horizontal concatenation of financial time series
objects. horzcat essentially merges the data columns of the financial
time series objects. The time series objects must contain the exact same
dates and times.

When multiple instances of a data series name occur, concatenation
adds a suffix to the current names of the data series. The suffix has the
format _objectname<n>, where n is a number indicating the position of
the time series, from left to right, in the concatenation command. The n
part of the suffix appears only when there is more than one instance
of a particular data series name.

The description fields are concatenated as well. They are separated by
two forward slashes (//).

Examples Construct three financial time series, each containing a data series
named DataSeries:

firstfts = fints((today:today+4)', (1:5)','DataSeries','d');

secondfts = fints((today:today+4)', (11:15)','DataSeries','d');

thirdfts = fints((today:today+4)', (21:25)','DataSeries','d');

Concatenate the time series horizontally into a new financial time
series newfts:

newfts = [firstfts secondfts thirdfts secondfts];

The resulting object newfts has data series names
DataSeries_firstfts, DataSeries_secondfts2,
DataSeries_thirdfts, and DataSeries_secondfts4.

Verify this with the command

fieldnames(newfts)

ans =

17-509

horzcat

'desc'
'freq'
'dates'
'DataSeries_firstfts'
'DataSeries_secondfts2'
'DataSeries_thirdfts'
'DataSeries_secondfts4'
'times'

Use chfield to change the data series names.

Note If all input objects have the same frequency, the new object has
that frequency as well. However, if one of the objects concatenated has
a different frequency from the others, the frequency indicator of the
resulting object is set to Unknown (0).

See Also vertcat

17-510

hour

Purpose Hour of date or time

Syntax Hour = hour(Date)

Description Hour = hour(Date) returns the hour of the day given a serial date
number or a date string.

Examples Hour = hour(730473.5584278936)

or

Hour = hour('19-dec-1999, 13:24:08.17')

returns

Hour =
13

See Also datevec | minute | second

17-511

inforatio

Purpose Calculate information ratio for one or more assets

Syntax inforatio(Asset, Benchmark)
Ratio = inforatio(Asset, Benchmark)
[Ratio, TE] = inforatio(Asset, Benchmark)

Arguments

Asset NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
observations of asset returns for NUMSERIES asset
return series.

Benchmark NUMSAMPLES vector of returns for a benchmark asset.
The periodicity must be the same as the periodicity
of Asset. For example, if Asset is monthly data,
then Benchmark must be monthly returns.

Description Given NUMSERIES assets with NUMSAMPLES returns for each asset in
a NUMSAMPLES x NUMSERIES matrix Asset and given a NUMSAMPLES
vector of benchmark returns in Benchmark, inforatio computes the
information ratio and tracking error for each asset relative to the
Benchmark.

To summarize the outputs of inforatio:

• Ratio is a 1 x NUMSERIES row vector of information ratios for each
series in Asset. Any series in Asset with a tracking error of 0 will
have a NaN value for its information ratio.

• TE is a 1 x NUMSERIES row vector of tracking errors, that is, the
standard deviation of Asset relative to Benchmark returns, for each
series.

17-512

inforatio

Note NaN values in the data are ignored. If the Asset and Benchmark
series are identical, the information ratio will be NaN since the tracking
error is 0. The information ratio and the Sharpe ratio of an Asset
versus a riskless Benchmark (a Benchmark with standard deviation of
returns equal to 0) are equivalent. This equivalence is not necessarily
true if the Benchmark is risky.

Examples See “Information Ratio Example” on page 5-8.

References Richard C. Grinold and Ronald N. Kahn, Active Portfolio Management,
2nd. ed., McGraw-Hill, 2000.

Jack Treynor and Fischer Black, "How to Use Security Analysis to
Improve Portfolio Selection," Journal of Business, Vol. 46, No. 1,
January 1973, pp. 66-86.

See Also portalpha | sharpe

17-513

irr

Purpose Internal rate of return

Syntax Return = irr(CashFlow)
[Return, AllRates] = irr(CashFlow)

Description Return = irr(CashFlow) calculates the internal rate of return for a
series of periodic cash flows.

[Return, AllRates] = irr(CashFlow) calculates the internal rate of
return and a vector of all internal rates for a series of periodic cash flows.

Input
Arguments

CashFlow

A vector containing a stream of periodic cash flows. The first entry in
CashFlow is the initial investment. If CashFlow is a matrix, irr handles
each column of CashFlow as a separate cash-flow stream.

Output
Arguments

Return

An internal rate of return associated to CashFlow. If CashFlow is a
matrix, then Return is a vector whose entry j is an internal rate of
return for column j in CashFlow.

AllRates

A vector containing all the internal rates of return associated with
CashFlow. If CashFlow is a matrix, then AllRates is also a matrix,
with the same number of columns as CashFlow and one less row. Also,
column j in AllRates contains all the rates of return associated to
column j in CashFlow (including complex-valued rates).

Definitions irr uses the following conventions:

• If one or more internal rate of returns (warning if multiple) are
strictly positive rates, Return sets to the minimum.

• If no strictly positive rate of returns, but one or multiple (warning if
multiple) returns are nonpositive rates, Return sets to the maximum.

• If no real-valued rates exist, Return sets to NaN (no warnings).

17-514

irr

Examples Find the internal rate of return for a simple investment with a unique
positive rate of return. The initial investment is $100,000 and the
following cash flows represent the yearly income from the investment.

• Year 1 — $10,000

• Year 2 — $20,000

• Year 3 — $30,000

• Year 4 — $40,000

• Year 5 — $50,000

Calculate the internal rate of return on the investment:

Return = irr([-100000 10000 20000 30000 40000 50000])

This returns:

Return =

0.1201

If the cash flow payments were monthly, then the resulting rate of
return is multiplied by 12 for the annual rate of return.

Find the internal rate of return for multiple rates of return. The project
has the following cash flows and a market rate of 10%.

CashFlow = [-1000 6000 -10900 5800]

Use irr with a single output argument:

Return = irr(CashFlow)

A warning appears and irr returns a 100% rate of return. The 100%
rate on the project looks attractive:

Warning: Multiple rates of return

17-515

irr

> In irr at 166

Return =

1.0000

Use irr with two output arguments:

[Return, AllRates] = irr(CashFlow)

This returns:

>> [Return, AllRates] = irr(CashFlow)

Return =

1.0000

AllRates =

-0.0488
1.0000
2.0488

The rates of return in AllRates are -4.88%, 100%, and 204.88%. Though
some rates are lower and some higher than the market rate, based on
the work of Hazen, any rate gives a consistent recommendation on the
project. However, you can use a present value analysis in these kinds of
situations. To check the present value of the project, use pvvar:

PV = pvvar(CashFlow,0.10)

This returns:

PV =

-196.0932

17-516

irr

The second argument is the 10% market rate. The present value is
-196.0932, negative, so the project is undesirable.

References Brealey and Myers, Principles of Corporate Finance, McGraw-Hill
Higher Education, Chapter 5, 2003.

Hazen G., “A New Perspective on Multiple Internal Rates of Return,”
The Engineering Economist, Vol. 48-1, 2003, pp. 31-51.

See Also effrr | mirr | nomrr | xirr | pvvar

How To • “Interest Rates/Rates of Return” on page 2-17

17-517

isbusday

Purpose True for dates that are business days

Syntax Busday = isbusday(Date, Holiday, Weekend)

Arguments

Date Date(s) being checked. Enter as a vector of serial
date numbers or date strings. Date can contain
multiple dates, but they must all be in the same
format. Dates are assumed to be whole date numbers
or date stamps with no fractional or time values.

Holiday (Optional) Vector of holidays and nontrading-day
dates. All dates in Holidaymust be the same format:
either serial date numbers or date strings. (Using
date numbers improves performance.) The holidays
function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the
value 1 indicating weekend days. The first element
of this vector corresponds to Sunday. Thus, when
Saturday and Sunday form the weekend (default),
then Weekend = [1 0 0 0 0 0 1].

Description Busday = isbusday(Date, Holiday, Weekend) returns logical true
(1) if Date is a business day and logical false (0) otherwise.

Examples Example 1:

Busday = isbusday('16 jun 2001')

Busday =

0

17-518

isbusday

Date = ['15 feb 2001'; '16 feb 2001'; '17 feb 2001'];

Busday = isbusday(Date)

Busday =

1
1
0

Example 2: Set June 21, 2003 (a Saturday) as a business day.

Weekend = [1 0 0 0 0 0 0];

isbusday('June 21, 2003', [], Weekend)

ans =

1

Note If the second argument, Holiday, is empty ([]), the default
Holidays vector (generated with holidays and then associated to the
NYSE calendar) is used. To consider a calendar without holidays
(except for weekends as controlled by third input), use a serial (or text
date) out of your range. For example 0-Jan-0 or the value0 are with
high probabilities out of the range. This value overwrites the default
calendar allowing you to remove any specific country holiday:

isbusday(datenum('06092010','ddmmyyyy'),0)
ans =

1

See Also busdate | fbusdate | holidays | lbusdate

17-519

iscompatible

Purpose Structural equality

Syntax iscomp = iscompatible(tsobj_1, tsobj_2)

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.

Description iscomp = iscompatible(tsobj_1, tsobj_2) returns 1 if both
financial time series objects tsobj_1 and tsobj_2 have the same dates
and data series names. It returns 0 if any component is different.

iscomp = 1 indicates that the two objects contain the same number
of data points and equal number of data series. However, the values
contained in the data series can be different.

Note Data series names are case-sensitive.

See Also isequal

17-520

isequal

Purpose Multiple object equality

Syntax iseq = isequal(tsobj_1, tsobj_2, ...)

Arguments

tsobj_1 ... A list of financial time series objects.

Description iseq = isequal(tsobj_1, tsobj_2, ...) returns 1 if all listed
financial time series objects have the same dates, data series names,
and values contained in the data series. It returns 0 if any of those
components is different.

Note Data series names are case-sensitive.

iseq = 1 implies that each object contains the same number of dates
and the same data. Only the descriptions can differ.

See Also eq | iscompatible

17-521

isempty

Purpose True for empty financial time series objects

Syntax tf = isempty(fts)

Arguments

fts Financial time series object.

Description isempty for financial times series objects is based on the MATLAB
isempty function. See isempty in the MATLAB documentation.

tf = isempty(fts) returns true (1) if fts is an empty financial time
series object and false (0) otherwise. An empty financial times series
object has no elements, that is, length(fts) = 0.

See Also nanmax | nanmean | nanmedian | nanmin | nanstd | nanvar

17-522

isfield

Purpose Check whether string is field name

Syntax F = isfield(tsobj, name)

Description F = isfield(tsobj, name) returns true (1) if name is the name of a
data series in tsobj. Otherwise, isfield returns false (0).

See Also fieldnames | getfield | setfield

17-523

issorted

Purpose Check whether dates and times are monotonically increasing

Syntax monod = issorted(tsobj)

Arguments

tsobj Financial time series object

Description monod = issorted(tsobj) returns 1 if the dates and times in tsobj
are monotonically increasing or 0 if they are not.

See Also sortfts

17-524

kagi

Purpose Kagi chart

Syntax kagi(X)

Arguments

X M-by-2 matrix where the first column contains date
numbers and the second column is the asset price.

Description kagi(X) plots asset price with respect to dates.

Examples If asset X is an M-by-2 matrix of date numbers and asset price:

X = [...

733299.00 41.99;...
733300.00 42.14;...
733303.00 41.93;...
733304.00 41.98;...
733305.00 41.75;...
733306.00 41.61;...
733307.00 42.29;...
733310.00 42.19;...
733311.00 41.82;...
733312.00 41.93;...
733313.00 41.81;...
733314.00 41.37;...
733317.00 41.17;...
733318.00 42.02]

then the Kagi chart is

kagi(X)

which plots the asset prices with respect to dates as follows.

17-525

kagi

See Also bolling | candle | highlow | linebreak | movavg | pointfig |
priceandvol | renko | volarea

17-526

lagts

Purpose Lag time series object

Syntax newfts = lagts(oldfts)
newfts = lagts(oldfts, lagperiod)
newfts = lagts(oldfts, lagperiod, padmode)

Arguments

oldfts Financial time series object

lagperiod Number of lag periods expressed in the frequency
of the time series object

padmode Data padding value

Description lagts delays a financial time series object by a specified time step.

newfts = lagts(oldfts) delays the data series in oldfts by one time
series date entry and returns the result in the object newfts. The end
will be padded with zeros, by default.

newfts = lagts(oldfts, lagperiod) shifts time series values to
the right on an increasing time scale. lagts delays the data series
to happen at a later time. lagperiod is the number of lag periods
expressed in the frequency of the time series object oldfts. For
example, if oldfts is a daily time series, lagperiod is specified in days.
lagts pads the data with zeros (default).

newfts = lagts(oldfts, lagperiod, padmode) lets you pad the
data with an arbitrary value, NaN, or Inf rather than zeros by setting
padmode to the desired value.

See Also leadts

17-527

lbusdate

Purpose Last business date of month

Syntax Date = lbusdate(Year, Month, Holiday, Weekend)

Arguments

Year Enter as four-digit integer.

Month Enter as integer from 1 through 12.

Holiday (Optional) Vector of holidays and nontrading-day
dates. All dates in Holiday must be the same format:
either serial date numbers or date strings. (Using
date numbers improves performance.) The holidays
function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the
value 1 indicating weekend days. The first element
of this vector corresponds to Sunday. Thus, when
Saturday and Sunday form the weekend (default),
then Weekend = [1 0 0 0 0 0 1].

Description Date = lbusdate(Year, Month, Holiday, Weekend) returns the
serial date number for the last business date of the given year and
month. Holiday specifies nontrading days.

Year and Month can contain multiple values. If one contains multiple
values, the other must contain the same number of values or a single
value that applies to all. For example, if Year is a 1-by-n vector of
integers, then Month must be a 1-by-n vector of integers or a single
integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted
date strings.

17-528

lbusdate

Examples Example 1.

Date = lbusdate(2001, 5)

Date =

731002

datestr(Date)

ans =

31-May-2001

c
ans =

31-May-2001
31-May-2002
30-May-2003

Example 2. You can indicate that Saturday is a business day by
appropriately setting the Weekend argument.

Weekend = [1 0 0 0 0 0 0];

May 31, 2003, is a Saturday. Use lbusdate to check that this Saturday
is actually the last business day of the month.

Date = datestr(lbusdate(2003, 5, [], Weekend))

Date =

31-May-2003

See Also busdate | eomdate | fbusdate | holidays | isbusday

17-529

leadts

Purpose Lead time series object

Syntax newfts = leadts(oldfts)
newfts = leadts(oldfts, leadperiod)
newfts = leadts(oldfts, leadperiod, padmode)

Arguments

oldfts Financial time series object.

leadperiod Number of lead periods expressed in the frequency
of the time series object.

padmode Data padding value.

Description leadts advances a financial time series object by a specified time step.

newfts = leadts(oldfts) advances the data series in oldfts by one
time series date entry and returns the result in the object newfts. The
end will be padded with zeros, by default.

newfts = leadts(oldfts, leadperiod) shifts time series values
to the left on an increasing time scale. leadts advances the data
series to happen at an earlier time. leadperiod is the number of lead
periods expressed in the frequency of the time series object oldfts. For
example, if oldfts is a daily time series, leadperiod is specified in
days. leadts pads the data with zeros (default).

newfts = leadts(oldfts, leadperiod, padmode) lets you pad the
data with an arbitrary value, NaN, or Inf rather than zeros by setting
padmode to the desired value.

See Also lagts

17-530

length

Purpose Get number of dates (rows)

Syntax lenfts = length(tsobj)

Description lenfts = length(tsobj) returns the number of dates (rows) in the
financial time series object tsobj. This is the same as issuing lenfts
= size(tsobj, 1).

See Also size | length

17-531

linebreak

Purpose Line break chart

Syntax linebreak(X)

Arguments

X M -by-2 matrix where the first column contains date
numbers and the second column is the asset price.

Description linebreak(X) plots asset price with respect to dates.

Examples If asset X is an M-by-2 matrix of date numbers and asset price:

X = [...

733299.00 41.99;...
733300.00 42.14;...
733303.00 41.93;...
733304.00 41.98;...
733305.00 41.75;...
733306.00 41.61;...
733307.00 42.29;...
733310.00 42.19;...
733311.00 41.82;...
733312.00 41.93;...
733313.00 41.81;...
733314.00 41.37;...
733317.00 41.17;...
733318.00 42.02]

then the Line break chart is

linebreak(X)

which plots the asset prices with respect to dates as follows.

17-532

linebreak

See Also bolling | candle | highlow | kagi | movavg | pointfig |
priceandvol | renko | volarea

17-533

llow

Purpose Lowest low

Syntax llv = llow(data)
llv = llow(data, nperiods, dim)
llvts = llow(tsobj, nperiods)
llvts = llow(tsobj, nperiods, ParameterName, ParameterValue)

Arguments

data Data series matrix.

nperiods (Optional) Number of periods. Default = 14.

dim Dimension.

tsobj Financial time series object.

ParameterName The valid parameter name is:

• LowName: low prices series name

ParameterValue The parameter value is a string that represents
the valid parameter name.

Description llv = llow(data) generates a vector of lowest low values for the past
14 periods from the matrix data.

llv = llow(data, nperiods, dim) generates a vector of lowest low
values for the past nperiods periods. dim indicates the direction in
which the lowest low is to be searched. If you input [] for nperiods,
the default is 14.

llvts = llow(tsobj, nperiods) generates a vector of lowest low
values from tsobj, a financial time series object. tsobj must include at
least the series Low. The output llvts is a financial time series object
with the same dates as tsobj and data series named LowestLow. If
nperiods is specified, llow generates a financial time series object of
lowest low values for the past nperiods periods.

17-534

llow

llvts = llow(tsobj, nperiods, ParameterName,
ParameterValue) specifies the name for the required data
series when it is different from the default name. The parameter value
is a string that represents the valid parameter name.

Examples Compute the lowest low prices for Disney stock and plot the results.

load disney.mat
dis_LLow = llow(dis)
plot(dis_LLow)
title('Lowest Low for Disney')

See Also hhigh

17-535

log

Purpose Natural logarithm

Syntax newfts = log(tsobj)

Description newfts = log(tsobj) calculates the natural logarithm (log base e)
of the data series in a financial time series object tsobj. It returns
another time series object newfts containing the natural logarithms.

See Also exp | log2 | log10

17-536

log10

Purpose Common logarithm

Syntax newfts = log10(tsobj)

Description newfts = log10(tsobj) calculates the common logarithm (base 10) of
all the data in the data series of the financial time series object tsobj
and returns the result in the object newfts.

See Also exp | log | log2

17-537

log2

Purpose Base 2 logarithm

Syntax newfts = log2(tsobj)

Description newfts = log2(tsobj) calculates the base 2 logarithm of the data
series in a financial time series object tsobj. It returns another time
series object newfts containing the logarithms.

See Also exp | log | log10

17-538

lpm

Purpose Compute sample lower partial moments of data

Syntax lpm(Data)
lpm(Data, MAR)
lpm(Data, MAR, Order)
Moment = lpm(Data, MAR, Order)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
observations of NUMSERIES asset returns.

MAR (Optional) Scalar minimum acceptable return
(default MAR = 0). This is a cutoff level of return such
that all returns above MAR contribute nothing to the
lower partial moment.

Order (Optional) Either a scalar or a NUMORDERS-vector
of nonnegative integer moment orders. If no order
specified, default Order = 0, which is the shortfall
probability. Although this function will work for
noninteger orders and, in some cases, for negative
orders, this falls outside customary usage.

Description Given NUMSERIES assets with NUMSAMPLES returns in a
NUMSAMPLES-by-NUMSERIES matrix Data, a scalar minimum acceptable
return MAR, and one or more nonnegative moment orders in a NUMORDERS
vector Order, lpm computes lower partial moments relative to MAR for
each asset in a NUMORDERS x NUMSERIES matrix Moment.

The output Moment is a NUMORDERS x NUMSERIES matrix of lower partial
moments with NUMORDERS Orders and NUMSERIES series, that is, each
row contains lower partial moments for a given order.

17-539

lpm

Note To compute upper partial moments, just reverse the signs of both
Data and MAR (do not reverse the sign of the output). This function
computes sample lower partial moments from data. To compute
expected lower partial moments for multivariate normal asset returns
with a specified mean and covariance, use elpm. With lpm, you can
compute various investment ratios such as Omega ratio, Sortino ratio,
and Upside Potential ratio, where:

• Omega = lpm(-Data, -MAR, 1) / lpm(Data, MAR, 1)

• Sortino = (mean(Data) - MAR) / sqrt(lpm(Data, MAR, 2))

• Upside = lpm(-Data, -MAR, 1) / sqrt(lpm(Data, MAR, 2))

Examples See “Sample Lower Partial Moments Example” on page 5-14.

References Vijay S. Bawa, "Safety-First, Stochastic Dominance, and Optimal
Portfolio Choice," Journal of Financial and Quantitative Analysis, Vol.
13, No. 2, June 1978, pp. 255-271.

W. V. Harlow, "Asset Allocation in a Downside-Risk Framework,"
Financial Analysts Journal, Vol. 47, No. 5, September/October 1991,
pp. 28-40.

W. V. Harlow and K. S. Rao, "Asset Pricing in a Generalized
Mean-Lower Partial Moment Framework: Theory and Evidence,"
Journal of Financial and Quantitative Analysis, Vol. 24, No. 3,
September 1989, pp. 285-311.

Frank A. Sortino and Robert van der Meer, "Downside Risk," Journal of
Portfolio Management, Vol. 17, No. 5, Spring 1991, pp. 27-31.

See Also elpm

17-540

lweekdate

Purpose Date of last occurrence of weekday in month

Syntax LastDate = lweekdate(Weekday, Year, Month, NextDay)

Arguments

Weekday Weekday whose date you seek. Enter as an integer
from 1 through 7:

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Year Year. Enter as a four-digit integer.

Month Month. Enter as an integer from 1 through 12.

NextDay (Optional) Weekday that must occur after Weekday in
the same week. Enter as an integer from 0 through
7, where 0 = ignore (default) and 1 through 7 are the
same as for Weekday.

Any input can contain multiple values, but if so, all other inputs must
contain the same number of values or a single value that applies to all.
For example, if Year is a 1-by-n vector of integers, then Month must be a
1-by-n vector of integers or a single integer. LastDate is then a 1-by-n
vector of date numbers.

17-541

lweekdate

Description LastDate = lweekdate(Weekday, Year, Month, NextDay) returns
the serial date number for the last occurrence of Weekday in the given
year and month and in a week that also contains NextDay.

Use the function datestr to convert serial date numbers to formatted
date strings.

Examples Example 1. To find the last Monday in June 2001

LastDate = lweekdate(2, 2001, 6); datestr(LastDate)

ans =

25-Jun-2001

Example 2. To find the last Monday in a week that also contains a
Friday in June 2001

LastDate = lweekdate(2, 2001, 6, 6); datestr(LastDate)

ans =

25-Jun-2001

Example 3. To find the last Monday in May for 2001, 2002, and 2003

Year = [2001:2003];

LastDate = lweekdate(2, Year, 5)

LastDate =

730999 731363 731727
datestr(LastDate)

ans =

28-May-2001

17-542

lweekdate

27-May-2002
26-May-2003

See Also eomdate | lbusdate | nweekdate

17-543

m2xdate

Purpose MATLAB serial date number to Excel serial date number

Syntax DateNum = m2xdate(MATLABDateNumber, Convention)

Arguments

MATLABDateNumber A vector or scalar of MATLAB serial date
numbers.

Convention (Optional) Excel date system. A vector or
scalar. When Convention = 0 (default), the
Excel 1900 date system is in effect. When
Convention = 1, the Excel 1904 date system
in used.

In the Excel 1900 date system, the Excel serial
date number 1 corresponds to January 1,
1900 A.D. In the Excel 1904 date system, date
number 0 is January 1, 1904 A.D.

Due to a software limitation in Excel software,
the year 1900 is considered a leap year. As a
result, all DATEVALUE’s reported by Excel
software between Jan. 1, 1900 and Feb. 28,
1900 (inclusive) differs from the values reported
by 1. For example:

• In Excel software, Jan. 1, 1900 = 1

• In MATLAB, Jan. 1, 1900 = 2

Vector arguments must have consistent dimensions.

Description DateNum = m2xdate(MATLABDateNumber, Convention) converts
MATLAB serial date numbers to Excel serial date numbers. MATLAB
date numbers start with 1 = January 1, 0000 A.D., hence there is a
difference of 693960 relative to the 1900 date system, or 695422 relative

17-544

m2xdate

to the 1904 date system. This function is useful with Spreadsheet
Link™ EX software.

Examples Given MATLAB date numbers for Christmas 2001 through 2004

DateNum = datenum(2001:2004, 12, 25)

DateNum =

731210 731575 731940 732306

convert them to Excel date numbers in the 1904 system

ExDate = m2xdate(DateNum, 1)

ExDate =

35788 36153 36518 36884

or the 1900 system

ExDate = m2xdate(DateNum)

ExDate =

37250 37615 37980 38346

See Also datenum | datestr | x2mdate

17-545

macd

Purpose Moving Average Convergence/Divergence (MACD)

Syntax [macdvec, nineperma] = macd(data)
[macdvec, nineperma] = macd(data, dim)
macdts = macd(tsobj, series_name)

Arguments

data Data matrix

dim Dimension. Default = 1 (column orientation).

tsobj Financial time series object

series_name Data series name

Description [macdvec, nineperma] = macd(data) calculates the Moving Average
Convergence/Divergence (MACD) line, macdvec, from the data matrix,
data, as well as the nine-period exponential moving average, nineperma,
from the MACD line.

When the two lines are plotted, they can give you an indication of
whether to buy or sell a stock, when an overbought or oversold condition
is occurring, and when the end of a trend might occur.

The MACD is calculated by subtracting the 26-period (7.5%) exponential
moving average from the 12-period (15%) moving average. The 9-day
(20%) exponential moving average of the MACD line is used as the
signal line. For example, when the MACD and the 20% moving average
line have just crossed and the MACD line falls below the other line, it
is time to sell.

[macdvec, nineperma] = macd(data, dim) lets you specify the
orientation direction for the input. If the input data is a matrix, you
need to indicate whether each row is a set of observations (dim = 2) or
each column is a set of observations (dim = 1, the default).

17-546

macd

macdts = macd(tsobj, series_name) calculates the MACD line from
the financial time series tsobj, as well as the nine-period exponential
moving average from the MACD line. The MACD is calculated for the
closing price series in tsobj, presumed to have been named Close. The
result is stored in the financial time series object macdts. The macdts
object has the same dates as the input object tsobj and contains
only two series, named MACDLine and NinePerMA. The first series
contains the values representing the MACD line and the second is the
nine-period exponential moving average of the MACD line.

Examples Compute the MACD for Disney stock and plot the results:

load disney.mat
dis_CloseMACD = macd(dis);
dis_OpenMACD = macd(dis, 'OPEN');
plot(dis_CloseMACD);
plot(dis_OpenMACD);
title('MACD for Disney')

17-547

macd

See Also adline | willad

17-548

max

Purpose Maximum value

Syntax tsmax = max(tsobj)

Description tsmax = max(tsobj) finds the maximum value in each data series
in the financial time series object tsobj and returns it in a structure
tsmax. The tsmax structure contains field name(s) identical to the data
series name(s).

Note tsmax returns only the values and does not return the dates
associated with the values. The maximum values are not necessarily
from the same date.

See Also min

17-549

maxdrawdown

Purpose Compute maximum drawdown for one or more price series

Syntax MaxDD = maxdrawdown(Data)
MaxDD = maxdrawdown(Data, Format)
[MaxDD, MaxDDIndex] = maxdrawdown(Data, Format)

Arguments

Data T-by-N matrix with T samples of N total return price
series (also known as total equity).

Format (Optional) MATLAB string indicating format of data.
Possible values are:

'return' (default): Maximum drawdown in terms of
maximum percentage drop from a peak.

'arithmetic': Maximum drawdown of an
arithmetic Brownian motion with drift (differences
of data from peak to trough) using the equation

dX t dt dW t() = + () .

'geometric': Maximum drawdown of a geometric
Brownian motion with drift (differences of log of data
from peak to trough) using the equation

dS t S t dt S t dW t() = () + () () 0 0

Description MaxDD = maxdrawdown(Data, Format) computes maximum drawdown
for each series in an N-vector MaxDD and identifies start and end indexes
of maximum drawdown periods for each series in a 2 x N matrix
MaxDDIndex.

To summarize the outputs of maxdrawdown:

17-550

maxdrawdown

• MaxDD is a 1-by-N vector with maximum drawdown for each of N time
series.

• MaxDDIndex is a 2-by-N vector of start and end indexes for each
maximum drawdown period for each total equity time series, where
the first row contains the start indexes and the second row contains
the end indexes of each maximum drawdown period.

Notes

• Drawdown is the percentage drop in total returns from the start to
the end of a period. If the total equity time series is increasing over
an entire period, drawdown is 0. Otherwise, it is a positive number.
Maximum drawdown is an ex-ante proxy for downside risk that
computes the largest drawdown over all intervals of time that can
be formed within a specified interval of time.

• Maximum drawdown is sensitive to quantization error.

Examples See “Maximum Drawdown Example” on page 5-17.

References Christian S. Pederson and Ted Rudholm-Alfvin, "Selecting a
Risk-Adjusted Shareholder Performance Measure," Journal of Asset
Management, Vol. 4, No. 3, 2003, pp. 152-172.

See Also emaxdrawdown

17-551

mean

Purpose Arithmetic average

Syntax tsmean = mean(tsobj)

Description tsmean = mean(tsobj) computes the arithmetic mean of all data in
all series in tsobj and returns it in a structure tsmean. The tsmean
structure contains field name(s) identical to the data series name(s).

See Also peravg | tsmovavg

17-552

medprice

Purpose Median price

Syntax mprc = medprice(highp, lowp)
mprc = medprice([highp lowp])
mprcts = medprice(tsobj)
mprcts = medprice(tsobj, ParameterName, ParameterValue, ...)

Arguments

highp High price (vector)

lowp Low price (vector)

tsobj Financial time series object

ParameterName Valid parameter names are:

• HighName: high prices series name

• LowName: low prices series name

ParameterValue Parameter values are the strings that
represent the valid parameter names.

Description mprc = medprice(highp, lowp) calculates the median prices mprc
from the high (highp) and low (lowp) prices. The median price is the
average of the high and low price for each period.

mprc = medprice([highp lowp]) accepts a two-column matrix as the
input rather than two individual vectors. The columns of the matrix
represent the high and low prices, in that order.

mprcts = medprice(tsobj) calculates the median prices of a financial
time series object tsobj. The object must minimally contain the series
High and Low. The median price is the average of the high and low
price each period. mprcts is a financial time series object with the same
dates as tsobj and the data series MedPrice.

17-553

medprice

mprcts = medprice(tsobj, ParameterName, ParameterValue,
...) accepts parameter name/parameter value pairs as input. These
pairs specify the name(s) for the required data series if it is different
from the expected default name(s). Parameter values are the strings
that represent the valid parameter names.

Examples Compute the median price for Disney stock and plot the results:

load disney.mat
dis_MedPrice = medprice(dis)
plot(dis_MedPrice)
title('Median Price for Disney')

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 177 -178.

17-554

merge

Purpose Merge multiple financial time series objects

Syntax newfts = merge(fts1, fts2)
newfts = merge(fts1, fts2, ..., ftsx)
newfts = merge(fts1, fts2, ..., ftsx, 'PARAM1', VALUE1, 'PARAM2',
VALUE2, ...)

Arguments

fts1,
fts2, ...

Comma-separated list of financial time series
objects to merge.

Note Multiple Financial Time Series objects
can be merged at once. The merged objects
must appear in a comma separated list before
the optional inputs. The order of the inputs is
significant.

'DateSetMethod' (Optional) Merge method. Valid merge values are:
'union': (Default) Returns the combined values
of all merged objects.
'intersection': Returns the values common to
all merged objects.
RefObf: Maps all values to a reference time
contained in a Financial Time Series object
(RefObj) or vector of date numbers.

17-555

merge

'DataSetMethod' (Optional) Merge method. Valid merge values are:
'closest': (Default) Returns data based on the
order of the inputs. However, the first missing
data point (NaN value) of a date will be replaced by
the closest non-NaN data point that appears on the
same date of subsequent merged objects.
'order': Returns data based strictly on the order
of the inputs.

'SortColumns' (Optional) Sorts columns. Valid merge values are:

True/1: Sorts the columns based on the headers
(series names). The headers are sorted in
alphabetical order.
False/0: Columns are not sorted.

Description newfts = merge(fts1, fts2, ..., ftsx, 'PARAM1', VALUE1,
'PARAM2', VALUE2', ...) merges multiple financial time series
objects. The optional parameter and value pair argument specifies the
values contained in the output financial time series object ftsout.

Examples Example 1. Create three financial time series objects and merge them
into a single object.

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; ...
'jan-04-2001'; 'jan-06-2001'};

data = [1; 1; 1; 1; 1];
t1 = fints(dates, data);

dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001';
'jan-05-2001'};

data = [2; 2; 2; 2];
t2 = fints(dates, data);

dates = {'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001';
'jan-06-2001'};

17-556

merge

data = [3; 3; 3; 3];
t3 = fints(dates, data);

t123 = merge(t1, t2, t3)

ans =

desc: || ||
freq: Unknown (0)

'dates: (6)' 'series1: (6)'
'01-Jan-2001' [1]
'02-Jan-2001' [1]
'03-Jan-2001' [1]
'04-Jan-2001' [1]
'05-Jan-2001' [2]
'06-Jan-2001' [1]

If you change the order of input time series, the output may contain
different data when duplicate dates exist. Here, for example, is the
result of using the same three time series defined above but with the
order changed.

merge(t3, t2, t1)

ans =

desc: || ||
freq: Unknown (0)

'dates: (6)' 'series1: (6)'
'01-Jan-2001' [1]
'02-Jan-2001' [2]
'03-Jan-2001' [3]
'04-Jan-2001' [3]
'05-Jan-2001' [3]
'06-Jan-2001' [3]%

17-557

merge

Note t123 contains all 1s except on '05-Jan-2001' because t1
appears first in the list of inputs and takes precedence. The same logic
can be applied tot321.

By changing the order of inputs, you can overwrite old financial time
series data with new data by placing the new time series ahead of the
old one in the list of inputs to the merge function.

Example 2. Merging time series objects with different headers (series
names).

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; ...

'jan-04-2001'; 'jan-06-2001'};

data = [1; 1; 1; 1; 1];

t4 = fints(dates, data, 'ts4');

dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001'};

data = [2; 2; 2; 2];

t5 = fints(dates, data, 'ts5');

t45 = merge(t4, t5)

t45 =

desc: ||

freq: Unknown (0)

'dates: (6)' 'ts4: (6)' 'ts5: (6)'

'01-Jan-2001' [1] [NaN]

'02-Jan-2001' [1] [2]

'03-Jan-2001' [1] [2]

'04-Jan-2001' [1] [2]

'05-Jan-2001' [NaN] [2]

'06-Jan-2001' [1] [NaN]

See Also horzcat | vertcat

17-558

min

Purpose Minimum value

Syntax tsmin = min(tsobj)

Description tsmin = min(tsobj) finds the minimum value in each data series in
the financial time series object tsobj and returns it in the structure
tsmin. The tsmin structure contains field name(s) identical to the data
series name(s).

Note tsmin returns only the values and does not return the dates
associated with the values. The minimum values are not necessarily
from the same date.

See Also max

17-559

minus

Purpose Financial time series subtraction

Syntax newfts = tsobj_1 - tsobj_2
newfts = tsobj - array
newfts = array - tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects .

array A scalar value or array with the number of
rows equal to the number of dates in tsobj and
the number of columns equal to the number of
data series in tsobj.

Description minus is an element-by-element subtraction of the components.

newfts = tsobj_1 - tsobj_2 subtracts financial time series objects.
If an object is to be subtracted from another object, both objects must
have the same dates and data series names, although the order need not
be the same. The order of the data series, when one financial time series
object is subtracted from another, follows the order of the first object.

newfts = tsobj - array subtracts an array element by element from
a financial time series object.

newfts = array - tsobj subtracts a financial time series object
element by element from an array.

See Also rdivide | plus | times

17-560

minute

Purpose Minute of date or time

Syntax Minute = minute(Date)

Description Minute = minute(Date) returns the minute given a serial date
number or a date string.

Examples Minute = minute(731204.5591223380)

or

Minute = minute('19-dec-2001, 13:25:08.17')

returns

Minute =

25

See Also datevec | hour | second

17-561

mirr

Purpose Modified internal rate of return

Syntax Return = mirr(CashFlow, FinRate, Reinvest)

Arguments

CashFlow Vector of cash flows. The first entry is the initial
investment.

FinRate Finance rate for negative cash flow values. Enter as
a decimal fraction.

Reinvest Reinvestment rate for positive cash flow values, as
a decimal fraction.

Description Return = mirr(CashFlow, FinRate, Reinvest) calculates the
modified internal rate of return for a series of periodic cash flows. This
function calculates only positive rates of return; for nonpositive rates of
return, Return = 0.

Examples This cash flow represents the yearly income from an initial investment
of $100,000. The finance rate is 9% and the reinvestment rate is 12%.

Year 1 $20,000

Year 2 ($10,000)

Year 3 $30,000

Year 4 $38,000

Year 5 $50,000

To calculate the modified internal rate of return on the investment

17-562

mirr

Return = mirr([-100000 20000 -10000 30000 38000 50000], 0.09,...

0.12)

returns

Return =
0.0832 (8.32%)

References Brealey and Myers, Principles of Corporate Finance, Chapter 5

See Also annurate | effrr | irr | nomrr | pvvar | xirr

17-563

month

Purpose Month of date

Syntax [MonthNum, MonthString] = month(Date)
[MonthNum, MonthString] = month(Date, F)

Description [MonthNum, MonthString] = month(Date) returns the month in
numeric and string form given a serial date number or a date string.

[MonthNum, MonthString] = month(Date, F) returns the day of the
of the month, given a serial date number or date string, in a specified
date format.

Examples [MonthNum, MonthString] = month(730368)

or

[MonthNum, MonthString] = month('05-Sep-1999')

returns

MonthNum =

9

MonthString =

Sep

You can also use the F argument to designate a country-specific date
format:

[MonthNum, MonthString] = month('1999/05/09','yyyy/dd/mm')

returns

hmiMonthNum =

17-564

month

9

MonthString =

Sep

See Also datevec | day | year

17-565

months

Purpose Number of whole months between dates

Syntax MyMonths = months(StartDate, EndDate, EndMonthFlag)

Arguments

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

EndMonthFlag (Optional) end-of-month flag. If StartDate and
EndDate are end-of-month dates and EndDate
has fewer days than StartDate, EndMonthFlag
= 1 (default) treats EndDate as the end of a
whole month, while EndMonthFlag = 0 does
not.

Description MyMonths = months(StartDate, EndDate, EndMonthFlag) returns
the number of whole months between StartDate and EndDate. If
EndDate is earlier than StartDate, MyMonths is negative. Enter dates
as serial date numbers or date strings.

Any input argument can contain multiple values, but if so, all other
inputs must contain the same number of values or a single value that
applies to all. For example, if StartDate is an n-row character array of
date strings, then EndDate must be an n-row character array of date
strings or a single date. MyMonths is then an n-by-1 vector of numbers.

Examples MyMonths = months('may 31 2000', 'jun 30 2000', 1)
MyMonths =

1

MyMonths = months('may 31 2000','jun 30 2000', 0)
MyMonths =

0

17-566

months

Dates = ['mar 31 2002'; 'apr 30 2002'; 'may 31 2002'];
MyMonths = months(Dates, 'jun 30 2002')
MyMonths =

3
2
1

See Also yearfrac

17-567

movavg

Purpose Leading and lagging moving averages chart

Syntax movavg(Asset, Lead, Lag, Alpha)
[Short, Long] = movavg(Asset, Lead, Lag, Alpha)

Arguments

Asset Security data, a vector of time-series prices.

Lead Number of samples to use in leading average
calculation. A positive integer. Lead must be less
than or equal to Lag.

Lag Number of samples to use in the lagging average
calculation. A positive integer.

Alpha (Optional) Control parameter that determines
the type of moving averages. 0 = simple moving
average (default), 0.5 = square root weighted moving
average, 1 = linear moving average, 2 = square
weighted moving average, and so on. To calculate
the exponential moving average, set Alpha ='e'.

Description movavg(Asset, Lead, lag, Alpha) plots leading and lagging moving
averages.

[Short, Long] = movavg(Asset, Lead, lag, Alpha) returns the
leading Short and lagging Longmoving average data without plotting it.

Examples If asset A is a vector of stock price data from 01/01/2006 to 02/01/2006

>> A(:,2)

ans =

8.6500

17-568

movavg

9.0000
8.8500
9.3500
9.5000
9.3500
9.2500
9.7000
9.9500

10.5000
10.1000
9.9000

10.0000
9.9000
9.6000
9.7000
9.8000
9.7000
9.9500

10.1500
9.8500
9.9000

10.2000
10.0000
9.9500
9.8500
9.9500

10.0000
10.0000
10.5400
10.5900
11.1900
11.0400
11.0900
10.7400
10.3500
10.2500
10.4500

17-569

movavg

10.7400
10.5900
10.3000
10.0500
9.8500
9.9000
9.9000

10.3000
10.4500
10.7400
10.9400
10.6900
10.9400
10.7900
10.2000
11.4900
11.9400
11.9400
12.4800
13.1800
12.9800
12.9800
13.6800
13.4800
13.9300
14.9200
13.9300
14.4200
14.0300
14.9700
15.0700
15.0200
15.0700
14.4200
13.7800
14.2800
14.8700

17-570

movavg

15.5700
15.5200
15.5200
15.5200
15.5200
15.7200
15.8200
15.9700
15.2700
14.9500
14.8000
15.1500
14.5000
15.0500
14.5500
14.6000
14.5500
17.5500
16.7000
16.8000
17.9500
17.3000
17.6000
17.5500
16.5000
15.8500
16.3000

then the moving average is

[Short,Long]= movavg(A(:,2),3,20,1);
movavg(A(:,2),3,20,1);
ylabel('Price')
legend('Asset Price','Lagging Long','Leading Short')

this plots linear three-sample leading and 20-sample lagging moving
averages

17-571

movavg

See Also bolling | candle | dateaxis | highlow | pointfig

17-572

mrdivide

Purpose Financial time series matrix division

Syntax newfts = tsobj_1 / tsobj_2
newfts = tsobj / array
newfts = array / tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.

array A scalar value or array with number of rows
equal to the number of dates in tsobj and
number of columns equal to the number of data
series in tsobj.

Description The mrdivide method divides element by element the components of
one financial time series object by the components of the other. You
can also divide the whole object by an array or divide a financial time
series object into an array.

If an object is to be divided by another object, both objects must have
the same dates and data series names, although the order need not be
the same. The order of the data series, when an object is divided by
another object, follows the order of the first object.

newfts = tsobj_1 / tsobj_2 divides financial time series objects
element by element.

newfts = tsobj / array divides a financial time series object
element by element by an array.

newfts = array / tsobj divides an array element by element by a
financial time series object.

For financial time series objects, the mrdivide operation is identical
to the rdivide operation.

17-573

mrdivide

See Also minus | plus | rdivide | times

17-574

mtimes

Purpose Financial time series matrix multiplication

Syntax newfts = tsobj_1 * tsobj_2
newfts = tsobj * array
newfts = array * tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.

array A scalar value or array with number of rows
equal to the number of dates in tsobj and
number of columns equal to the number of data
series in tsobj.

Description The mtimes method multiplies element by element the components of
one financial time series object by the components of the other. You can
also multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have
the same dates and data series names, although the order need not be
the same. The order of the data series, when an object is multiplied by
another object, follows the order of the first object.

newfts = tsobj_1 * tsobj_2 multiplies financial time series objects
element by element.

newfts = tsobj * array multiplies a financial time series object
element by element by an array.

newfts = array * tsobj newfts = array / tsobj multiplies an
array element by element by a financial time series object.

For financial time series objects, the mtimes operation is identical to
the times operation.

See Also minus | mrdivide | plus | times

17-575

mvnrfish

Purpose Fisher information matrix for multivariate normal or least-squares
regression

Syntax Fisher = mvnrfish(Data, Design, Covariance, MatrixFormat,
CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix
with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector.
If a data sample has missing values,
represented as NaNs, the sample is ignored.

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard
form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array.
The cell array contains either one or
NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed
to have the same Design matrix for each
sample. If Design has more than one cell,
each cell contains a Design matrix for each
sample.

17-576

mvnrfish

Covariance NUMSERIES-by-NUMSERIES matrix of estimates
for the covariance of the residuals of the
regression.

MatrixFormat (Optional) String that identifies parameters to
be included in the Fisher information matrix:

• full - Default format. Compute the full
Fisher information matrix for both model
and covariance parameter estimates.

• paramonly - Compute only components of
the Fisher information matrix associated
with the model parameter estimates.

CovarFormat (Optional) String that specifies the format for
the covariance matrix. The choices are:

• 'full' - Default method. The covariance
matrix is a full matrix.

• 'diagonal' - The covariance matrix is a
diagonal matrix.

Description Fisher = mvnrfish(Data, Design, Covariance, MatrixFormat,
CovarFormat) computes a Fisher information matrix based on current
maximum likelihood or least-squares parameter estimates.

Fisher is a TOTALPARAMS-by-TOTALPARAMS Fisher information matrix.
The size of TOTALPARAMS depends on MatrixFormat and on current
parameter estimates. If MatrixFormat = 'full',

TOTALPARAMS = NUMPARAMS + NUMSERIES * (NUMSERIES + 1)/2

If MatrixFormat = 'paramonly',

TOTALPARAMS = NUMPARAMS

17-577

mvnrfish

Note mvnrfish operates slowly if you calculate the full Fisher
information matrix.

Examples See “Multivariate Normal Linear Regression” on page 7-3.

See Also mvnrstd | mvnrmle

17-578

mvnrmle

Purpose Multivariate normal regression (ignore missing data)

Syntax [Parameters, Covariance, Resid, Info] = mvnrmle(Data, Design,
MaxIterations, TolParam, TolObj, Covar0, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix
with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector.
If a data sample has missing values,
represented as NaNs, the sample is ignored.
(Use ecmmvnrmle to handle missing data.)

Design Matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard
form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array.
The cell array contains either one or
NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed
to have the same Design matrix for each
sample. If Design has more than one cell,
each cell contains a Design matrix for each
sample.

MaxIterations (Optional) Maximum number of iterations for
the estimation algorithm. Default value is 100.

17-579

mvnrmle

TolParam (Optional) Convergence tolerance for
estimation algorithm based on changes in
model parameter estimates. Default value is
sqrt(eps) which is about 1.0e-8 for double
precision. The convergence test for changes in
model parameters is

Param Param TolParam Paramk k k− < × +()−1 1

where Param represents the output Parameters,
and iteration k = 2, 3, Convergence is
assumed when both the TolParam and TolObj
conditions are satisfied. If both TolParam ≤
0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the
results of the convergence tests.

TolObj (Optional) Convergence tolerance for estimation
algorithm based on changes in the objective
function. Default value is eps ∧ 3/4 which
is about 1.0e-12 for double precision. The
convergence test for changes in the objective
function is

Obj Obj TolObj Objk k k− < × +()−1 1

for iteration k = 2, 3, Convergence is
assumed when both the TolParam and TolObj
conditions are satisfied. If both TolParam ≤
0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the
results of the convergence tests.

17-580

mvnrmle

Covar0 (Optional) NUMSERIES-by-NUMSERIES matrix
that contains a user-supplied initial or known
estimate for the covariance matrix of the
regression residuals.

CovarFormat (Optional) String that specifies the format for
the covariance matrix. The choices are:

• 'full' - Default method. Compute the full
covariance matrix.

• 'diagonal' - Force the covariance matrix to
be a diagonal matrix.

Description [Parameters, Covariance, Resid, Info] = mvnrmle(Data,
Design, MaxIterations, TolParam, TolObj, Covar0,
CovarFormat) estimates a multivariate normal regression model
without missing data. The model has the form

Data N Design Parameters Covariancek k ×(),

for samples k = 1, ... , NUMSAMPLES.

mvnrmle estimates a NUMPARAMS-by-1 column vector of model parameters
called Parameters, and a NUMSERIES-by-NUMSERIESmatrix of covariance
parameters called Covariance.

mvnrmle(Data, Design) with no output arguments plots the
log-likelihood function for each iteration of the algorithm.

To summarize the outputs of mvnrmle:

• Parameters is a NUMPARAMS-by-1 column vector of estimates for the
parameters of the regression model.

• Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the regression model’s residuals.

• Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from
the regression. For any row with missing values in Data, the

17-581

mvnrmle

corresponding row of residuals is represented as all NaN missing
values, since this routine ignores rows with NaN values.

Another output, Info, is a structure that contains additional
information from the regression. The structure has these fields:

• Info.Obj – A variable-extent column vector, with no more than
MaxIterations elements, that contains each value of the objective
function at each iteration of the estimation algorithm. The last value
in this vector, Obj(end), is the terminal estimate of the objective
function. If you do maximum likelihood estimation, the objective
function is the log-likelihood function.

• Info.PrevParameters – NUMPARAMS-by-1 column vector of estimates
for the model parameters from the iteration just before the terminal
iteration.

• Info.PrevCovariance – NUMSERIES-by-NUMSERIES matrix of
estimates for the covariance parameters from the iteration just before
the terminal iteration.

Notes mvnrmle does not accept an initial parameter vector, because the
parameters are estimated directly from the first iteration onward.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell
array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a
NUMPARAMS row vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a
NUMSERIES-by-NUMPARAMS matrix.

These points concern how Design handles missing data:

• Although Design should not have NaN values, ignored samples due
to NaN values in Data are also ignored in the corresponding Design
array.

• If Design is a 1-by-1 cell array, which has a single Design matrix
for each sample, no NaN values are permitted in the array. A

17-582

mvnrmle

model with this structure must have NUMSERIES ≥ NUMPARAMS with
rank(Design{1}) = NUMPARAMS.

• Two functions for handling missing data, ecmmvnrmle and ecmlsrmle,
are stricter about the presence of NaN values in Design.

Use the estimates in the optional output structure Info for diagnostic
purposes.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

References Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.

Xiao-Li Meng and Donald B. Rubin, “Maximum Likelihood Estimation
via the ECM Algorithm,” Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.

See Also ecmmvnrmle | mvnrstd | mvnrobj

17-583

mvnrobj

Purpose Log-likelihood function for multivariate normal regression without
missing data

Syntax Objective = mvnrobj(Data, Design, Parameters, Covariance,
CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
If a data sample has missing values, represented
as NaNs, the sample is ignored. (Use ecmmvnrmle to
handle missing data.)

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell
array contains either one or NUMSAMPLES cells.
Each cell contains a NUMSERIES-by-NUMPARAMS
matrix of known values.

If Design has a single cell, it is assumed to have
the same Design matrix for each sample. If
Design has more than one cell, each cell contains
a Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the
parameters of the regression model.

17-584

mvnrobj

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the residuals of the regression.

CovarFormat (Optional) String that specifies the format for the
covariance matrix. The choices are:

• 'full' - Default method. The covariance matrix
is a full matrix.

• 'diagonal' - The covariance matrix is a diagonal
matrix.

Description Objective = mvnrobj(Data, Design, Parameters, Covariance,
CovarFormat) computes the log-likelihood function based on current
maximum likelihood parameter estimates without missing data.
Objective is a scalar that contains the log-likelihood function.

Notes You can configure Design as a matrix if NUMSERIES = 1 or as a cell
array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a
NUMPARAMS row vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a
NUMSERIES-by-NUMPARAMS matrix.

Although Design should not have NaN values, ignored samples due to
NaN values in Data are also ignored in the corresponding Design array.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

See Also ecmmvnrmle | ecmmvnrobj | mvnrmle

17-585

mvnrstd

Purpose Evaluate standard errors for multivariate normal regression model

Syntax [StdParameters, StdCovariance] = mvnrstd(Data, Design, Covariance,
CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
If a data sample has missing values, represented as
NaNs, the sample is ignored. (Use ecmmvnrmle to
handle missing data.)

Design A matrix or a cell array that handles two model
structures:

• If NUMSERIES = 1, Design is a
NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell
array contains either one or NUMSAMPLES cells.
Each cell contains a NUMSERIES-by-NUMPARAMS
matrix of known values.

If Design has a single cell, it is assumed to have
the same Design matrix for each sample. If
Design has more than one cell, each cell contains
a Design matrix for each sample.

17-586

mvnrstd

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the regression residuals.

CovarFormat (Optional) String that specifies the format for the
covariance matrix. The choices are:

• 'full' - Default method. The covariance matrix
is a full matrix.

• 'diagonal' - The covariance matrix is a diagonal
matrix.

Description [StdParameters, StdCovariance] = mvnrstd(Data, Design,
Covariance, CovarFormat) evaluates standard errors for a
multivariate normal regression model without missing data. The model
has the form

Data N Design Parameters Covariancek k ×(),

for samples k = 1, ... , NUMSAMPLES.

mvnrstd computes two outputs:

• StdParameters is a NUMPARAMS-by-1 column vector of standard errors
for each element of Parameters, the vector of estimated model
parameters.

• StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard
errors for each element of Covariance, the matrix of estimated
covariance parameters.

Note mvnrstd operates slowly when you calculate the standard
errors associated with the covariance matrix Covariance.

Notes You can configure Design as a matrix if NUMSERIES = 1 or as a cell
array if NUMSERIES ≥ 1.

17-587

mvnrstd

• If Design is a cell array and NUMSERIES = 1, each cell contains a
NUMPARAMS row vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a
NUMSERIES-by-NUMPARAMS matrix.

Examples See “Multivariate Normal Regression” on page 7-17, “Least-Squares
Regression” on page 7-18, “Covariance-Weighted Least Squares” on
page 7-19, “Feasible Generalized Least Squares” on page 7-20, and
“Seemingly Unrelated Regression” on page 7-21.

References Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.

See Also ecmmvnrmle | ecmmvnrstd | mvnrmle

17-588

nancov

Purpose Covariance ignoring NaNs

Syntax c = nancov(X)
c = nancov(..., 'pairwise')

Arguments

X Financial times series object.

Y Financial times series object.

Description nancov for financial times series objects is based on the Statistics
Toolbox function nancov. See nancov in the Statistics Toolbox
documentation.

c = nancov(X), if X is a financial time series object with one series and
returns the sample variance of the values in X, treating NaNs as missing
values. For a financial time series object containing more than one
series, where each row is an observation and each series a variable,
nancov(X) is the covariance matrix computing using rows of X that do
not contain any NaN values. nancov(X,Y), where X and Y are financial
time series objects with the same number of elements, is equivalent to
nancov([X(:) Y(:)]).

nancov(X) or nancov(X,Y) normalizes by (N-1) if N >1, where N is the
number of observations after removing missing values. This makes
nancov the best unbiased estimate of the covariance matrix if the
observations are from a normal distribution. For N = 1, cov normalizes
by N.

nancov(X,1) or nancov(X,Y,1) normalizes by N and produces
the second moment matrix of the observations about their mean.
nancov(X,Y,0) is the same as nancov(X,Y), and nancov(X,0) is the
same as nancov(X).

c = nancov(..., 'pairwise') computes c(i,j) using rows with no
NaN values in columns ior j. The result may not be a positive definite

17-589

nancov

matrix. c = nancov(..., 'complete') is the default, and it omits
rows with any NaN values, even if they are not in column i or j. The
mean is removed from each column before calculating the result.

Examples To generate random data having nonzero covariance between column
4 and the other columns:

x = randn(30, 4); % uncorrelated data

x(:, 4) = sum(x, 2); % introduce correlation

x(2, 3) = NaN; % introduce one missing value

f = fints((today:today+29)', x); % create a fints object using x

c = nancov(f) % compute sample covariance

See Also cov | nanvar | var

17-590

nanmax

Purpose Maximum ignoring NaNs

Syntax m = nanmax(X)
[m,ndx] = nanmax(X)
m = nanmax(X,Y)
[m,ndx] = nanmax(X,[],DIM)

Arguments

X Financial times series object.

Y Financial times series object or scalar.

DIM Dimension of X.

Description nanmax for financial times series objects is based on the Statistics
Toolbox function nanmax. See nanmax in the Statistics Toolbox
documentation.

m = nanmax(X) returns the maximum of a financial time series object X
with NaNs treated as missing. m is the largest non-NaN element in X.

[m,ndx] = nanmax(X) returns the indices of the maximum values in X.
If the values along the first nonsingleton dimension contain multiple
maximal elements, the index of the first one is returned.

m = nanmax(X,Y) returns an array the same size as X and Y with the
largest elements taken from X or Y. Only Y can be a scalar double.

[m,ndx] = nanmax(X,[],DIM) operates along the dimension DIM.

Examples To compute nanmax for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;

17-591

nanmax

f.series3(2) = nan;

[nmax, maxidx] = nanmax(f)

nmax =
4 5 6

maxidx =
3 2 1

See Also max | nanmean | nanmedian | nanmin | nanstd | nanvar

17-592

nanmean

Purpose Mean ignoring NaNs

Syntax m = nanmean(X)
m = nanmean(X,DIM)

Arguments

X Financial times series object.

DIM Dimension along which the operation is conducted.

Description nanmean for financial times series objects is based on the Statistics
Toolbox function nanmean. See nanmean in the Statistics Toolbox
documentation.

m = nanmean(X) returns the sample mean of a financial time series
object X, treating NaNs as missing values. m is a row vector containing
the mean value of the non-NaN elements in each series.

m = nanmean(X,DIM) takes the mean along dimension DIM of X.

Examples To compute nanmean for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;

nmean = nanmean(f)

nmean =

3.5000 3.0000 4.0000

See Also mean | nanmax | nanmin | nanstd | nansum | nanvar

17-593

nanmedian

Purpose Median ignoring NaNs

Syntax m = nanmedian(X)
m = nanmedian(X,DIM)

Arguments

X Financial times series object.

DIM Dimension along which the operation is condcuted.

Description nanmedian for financial times series objects is based on the Statistics
Toolbox function nanmedian. See nanmedian in the Statistics Toolbox
documentation.

m = nanmedian(X) returns the sample median of a financial time series
object X, treating NaNs as missing values. m is a row vector containing
the median value of non-NaN elements in each column.

m = nanmedian(X,DIM) takes the median along the dimension DIM of X.

Examples To compute nanmedian for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007';'04-Jan-2007'};

f = fints(dates, magic(4));

f.series1(1) = nan;

f.series2(2) = nan;

f.series3([1 3]) = nan;

nmedian = nanmedian(f)

nmedian =

5.0000 7.0000 12.5000 10.0000

See Also mean | nanmax | nanmin | nanstd | nansum | nanvar

17-594

nanmin

Purpose Minimum ignoring NaNs

Syntax m = nanmin(X)
[m,ndx] = nanmin(X)
m = nanmin(X,Y)
[m,ndx] = nanmin(X,[],DIM)

Arguments

X Financial times series object.

Y Financial times series object or scalar.

DIM Dimension along which the operation is conducted.

Description nanmin for financial times series objects is based on the Statistics
Toolbox function nanmin. See nanmin in the Statistics Toolbox
documentation.

m = nanmin(X) returns the minimum of a financial time series object X
with NaNs treated as missing. m is the smallest non-NaN element in X.

[m,ndx] = nanmin(X) returns the indices of the minimum values in X.
If the values along the first nonsingleton dimension contain multiple
elements, the index of the first one is returned.

m = nanmin(X,Y) returns an array the same size as X and Y with the
smallest elements taken from X or Y. Only Y can be a scalar double.

[m,ndx] = nanmin(X, [], DIM) operates along the dimension DIM.

Examples To compute nanmin for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;

17-595

nanmin

[nmin, minidx] = nanmin(f)
nmin =

3 1 2
minidx =

2 1 3

See Also mean | nanmax | nanstd | nanvar

17-596

nanstd

Purpose Standard deviation ignoring NaNs

Syntax y = nanstd(X)
y = nanstd(X,1)
y = nanstd(X,FLAG,DIM)

Arguments

X Financial times series object.

FLAG Normalization flag.

DIM Dimension along which the operation is conducted.

Description nanstd for financial times series objects is based on the Statistics
Toolbox function nanstd. See nanstd in the Statistics Toolbox
documentation.

y = nanstd(X) returns the sample standard deviation of the values in
a financial time series object X, treating NaNs as missing values. y is the
standard deviation of the non-NaN elements of X.

nanstd normalizes y by (N – 1), where N is the sample size. This is the
square root of an unbiased estimator of the variance of the population
from which X is drawn, as long as X consists of independent, identically
distributed samples and data are missing at random.

y = nanstd(X,1) normalizes by N and produces the square root of the
second moment of the sample about its mean. nanstd(X,0) is the same
as nanstd(X).

y = nanstd(X,flag,dim) takes the standard deviation along the
dimension dim of X. Set the value of flag to 0 to normalize the result by
n – 1; set the value of flag to 1 to normalize the result by n.

Examples To compute nanstd for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};

17-597

nanstd

f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;

nstd = nanstd(f)

See Also nanmax | nanmean | nanmedian | nanmin | nanvar | std

17-598

nansum

Purpose Sum ignoring NaNs

Syntax y = nansum(X)
y = nansum(X,DIM)

Arguments

X Financial time series object.

DIM Dimension along which the operation is conducted.

Description nansum for financial times series objects is based on the Statistics
Toolbox function nansum. See nansum in the Statistics Toolbox
documentation.

y = nansum(X) returns the sum of a financial time series object X,
treating NaNs as missing values. y is the sum of the non-NaN elements
in X.

y = nansum(X,DIM) takes the sum along dimension DIM of X.

Examples To compute nansum for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;

nsum = nansum(f)

nsum =
7 6 8

See Also nanmax | nanmean | nanmedian | nanmin | nanstd | nanvar

17-599

nanvar

Purpose Variance ignoring NaNs

Syntax y = nanvar(X)
y = nanvar(X,1)
y = nanvar(X,W)
y = nanvar(X,W,DIM)

Arguments

X Financial times series object.

W Weight vector.

DIM Dimension along which the operation is conducted.

Description nanvar for financial times series objects is based on the Statistics
Toolbox function nanvar. See nanvar in the Statistics Toolbox
documentation.

y = nanvar(X) returns the sample variance of the values in a financial
time series object X, treating NaNs as missing values. y is the variance of
the non-NaN elements of each series in X.

nanvar normalizes y by N – 1 if N > 1, where N is the sample size of the
non-NaN elements. This is an unbiased estimator of the variance of the
population from which X is drawn, as long as X consists of independent,
identically distributed samples, and data are missing at random. For N
= 1, y is normalized by N.

y = nanvar(X,1) normalizes by N and produces the second moment of
the sample about its mean. nanvar(X, 0) is the same as nanvar(X).

y = nanvar(X,W) computes the variance using the weight vector W. The
length of W must equal the length of the dimension over which nanvar
operates, and its non-NaN elements must be nonnegative. Elements of X
corresponding to NaN elements of Ware ignored.

y = nanvar(X,W,DIM) takes the variance along dimension DIM of X.

17-600

nanvar

Examples To compute nanvar:

f = fints((today:today+1)', [4 -2 1; 9 5 7])
f.series1(1) = nan;
f.series3(2) = nan;

nvar = nanvar(f)

nvar =
0 24.5000 0

See Also nanmax | nanmean | nanmedian | nanmin | nanstd | var

17-601

negvolidx

Purpose Negative volume index

Syntax nvi = negvolidx(closep, tvolume, initnvi)
nvi = negvolidx([closep tvolume], initnvi)
nvits = negvolidx(tsobj)
nvits = negvolidx(tsobj, initnvi, ParameterName, ParameterValue,
...)

Arguments

closep Closing price (vector).

tvolume Volume traded (vector).

initnvi (Optional) Initial value for negative volume
index (Default = 100).

tsobj Financial time series object.

ParameterName Valid parameter names are:

• CloseName: closing prices series name

• VolumeName: volume traded series name

ParameterValue Parameter values are the strings that
represent the valid parameter names.

Description nvi = negvolidx(closep, tvolume, initnvi) calculates the
negative volume index from a set of stock closing prices (closep) and
volume traded (tvolume) data. nvi is a vector representing the negative
volume index. If initnvi is specified, negvolidx uses that value
instead of the default (100).

nvi = negvolidx([closep tvolume], initnvi) accepts a two-column
matrix, the first column representing the closing prices (closep) and

17-602

negvolidx

the second representing the volume traded (tvolume). If initnvi is
specified, negvolidx uses that value instead of the default (100).

nvits = negvolidx(tsobj) calculates the negative volume index from
the financial time series object tsobj. The object must contain, at least,
the series Close and Volume. The nvits output is a financial time
series object with dates similar to tsobj and a data series named NVI.
The initial value for the negative volume index is arbitrarily set to 100.

nvits = negvolidx(tsobj, initnvi, ParameterName,
ParameterValue, ...) accepts parameter name/ parameter value
pairs as input. These pairs specify the name(s) for the required data
series if it is different from the expected default name(s). Parameter
values are the strings that represent the valid parameter names.

Examples Compute the negative volume index for Disney stock and plot the
results:

load disney.mat
dis_NegVol = negvolidx(dis)
plot(dis_NegVol)
title('Negative Volume Index for Disney')

17-603

negvolidx

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 193 - 194.

See Also onbalvol | posvolidx

17-604

nomrr

Purpose Nominal rate of return

Syntax Return = nomrr(Rate, NumPeriods)

Arguments

Rate Effective annual percentage rate. Enter as a decimal
fraction.

NumPeriods Number of compounding periods per year, an integer.

Description Return = nomrr(Rate, NumPeriods) calculates the nominal rate of
return.

Examples To find the nominal annual rate of return based on an effective annual
percentage rate of 9.38% compounded monthly

Return = nomrr(0.0938, 12)

returns

Return =
0.0900 (9.0%)

See Also effrr | irr | mirr | taxedrr | xirr

17-605

now

Purpose Current date and time

Syntax t = now

Description t = now returns the current date and time as a serial date number. To
return the time only, use rem(now,1). To return the date only, use
floor(now).

Examples t1 = now, t2 = rem(now,1)

t1 =

7.2908e+05

t2 =

0.4013

See Also date | datenum | today

17-606

nweekdate

Purpose Date of specific occurrence of weekday in month

Syntax Date = nweekdate(n, Weekday, Year, Month, Same)

Arguments

n Nth occurrence of the weekday in a month. Enter as
integer from 1 through 5.

Weekday Weekday whose date you seek. Enter as integer from
1 through 7.

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Year Year. Enter as a four-digit integer.

Month Month. Enter as an integer from 1 through 12.

Same (Optional) Weekday that must occur in the same
week with Weekday. Enter as an integer from 0
through 7, where 0 = ignore (default) and 1 through
7 are as for Weekday.

Description Date = nweekdate(n, Weekday, Year, Month, Same) returns the
serial date number for the specific occurrence of the weekday in the
given year and month, and in a week that also contains the weekday
Same.

If n is larger than the last occurrence of Weekday, Date = 0.

17-607

nweekdate

Any input can contain multiple values, but if so, all other inputs must
contain the same number of values or a single value that applies to all.
For example, if Year is a 1-by-n vector of integers, then Month must be
a 1-by-n vector of integers or a single integer. Date is then a 1-by-n
vector of date numbers.

Use the function datestr to convert serial date numbers to formatted
date strings.

Examples To find the first Thursday in May 2001

Date = nweekdate(1, 5, 2001, 5); datestr(Date)

ans =

03-May-2001

To find the first Thursday in a week that also contains a Wednesday
in May 2001

Date = nweekdate(2, 5, 2001, 5, 4); datestr(Date)

ans =

10-May-2001

To find the third Monday in February for 2001, 2002, and 2003

Year = [2001:2003];

Date = nweekdate(3, 2, Year, 2)

Date =
730901 731265 731629

datestr(Date)

ans =

17-608

nweekdate

19-Feb-2001
18-Feb-2002
17-Feb-2003

See Also fbusdate | lbusdate | lweekdate

17-609

nyseclosures

Purpose New York Stock Exchange closures from 1885 to 2050

Syntax Closures = nyseclosures(StartDate, EndDate, WorkWeekFormat)
SatTransition = nyseclosures(StartDate, EndDate,
WorkWeekFormat)

Description Closures = nyseclosures(StartDate, EndDate, WorkWeekFormat)
returns a vector of serial date numbers corresponding to market
closures between StartDate and EndDate, inclusive. If you do not
specify StartDate and EndDate, Closures contains all known or
anticipated closures from January 1, 1885 to December 31, 2050. By
default, WorkWeekFormat argument uses the 'Implicit' value.

SatTransition = nyseclosures(StartDate, EndDate,
WorkWeekFormat) returns the date of transition for the New York Stock
Exchange from a 6-day workweek to a 5-day workweek. The date for
this transition is September 29, 1952 and this date returns the serial
date number 713226.

Since the New York Stock Exchange was open on Saturdays before
September 29, 1952, exact closures from 1885 to 1952 are based on
a 6-day workweek. nyseclosures contains all holiday and special
non-trading days for the New York Stock Exchange from 1885 through
2050 based on a six-day work week (always closed on Sundays). Use
WorkWeekFormat to modify the list of dates.

Input
Arguments

StartDate

First date of a specified date range that is a date string or a serial date
number.

Default: January 1, 1885 (start of the default date range)

EndDate

Last date of a specified date range that is a date string or a serial date
number. If specified, the EndDate must be a date after the StartDate.

17-610

nyseclosures

Default: December 31, 2050 (end of the default date range)

WorkWeekFormat

Specifies method to handle the workweek. The default is 'Implicit'.
This function accepts the first letter for each method as input and is not
case sensitive. Acceptable values are:

• 'Modern'— 5-day workweek with all Saturday trading days removed

• 'Implicit'— 6-day workweek until 1952 and 5-day week afterward
(no need to exclude Saturdays)

• 'Archaic'— 6-day workweek throughout and Saturdays treated as
closures after 1952

Output
Arguments

Closures

A vector of serial date numbers corresponding to market closures
between the dates StartDate and EndDate, inclusive

SatTransition

The date of transition for the New York Stock Exchange from a 6-day
workweek to a 5-day workweek.

Definitions holidays is based on a modern 5-day workweek and contains all
holidays and special nontrading days for the New York Stock Exchange
from January 1, 1885 to December 31, 2050. Since the New York Stock
Exchange was open on Saturdays before September 29, 1952, exact
closures for the period from 1885 to 2050 should include Saturday
trading days. To capture these dates, use the function nyseclosures.
The results from holidays and nyseclosures are identical if the
WorkWeekFormat in nyseclosures is 'modern'.

Examples Find the NYSE closures for 1899:

datestr(nyseclosures('1-jan-1899','31-dec-1899'),'dd-mmm-yyyy ddd')

This returns:

17-611

nyseclosures

ans =

02-Jan-1899 Mon
11-Feb-1899 Sat
13-Feb-1899 Mon
22-Feb-1899 Wed
31-Mar-1899 Fri
29-May-1899 Mon
30-May-1899 Tue
03-Jul-1899 Mon
04-Jul-1899 Tue
04-Sep-1899 Mon
29-Sep-1899 Fri
30-Sep-1899 Sat
07-Nov-1899 Tue
25-Nov-1899 Sat
30-Nov-1899 Thu
25-Dec-1899 Mon

Find the NYSE closure dates using the 'Archaic' value for
WorkWeekFormat:

datestr(nyseclosures('1-sep-1952','31-oct-1952','a'),1)

This returns:

ans =

01-Sep-1952
06-Sep-1952
13-Sep-1952
20-Sep-1952
27-Sep-1952
04-Oct-1952
11-Oct-1952
13-Oct-1952

17-612

nyseclosures

18-Oct-1952
25-Oct-1952

The exchange was closed on Saturdays for much of 1952 before the
official transition to a 5-day workweek.

See Also busdate | createholidays | fbusdate | isbusday | lbusdate |
holidays

17-613

onbalvol

Purpose On-Balance Volume (OBV)

Syntax obv = onbalvol(closep, tvolume)
obv = onbalvol([closep tvolume])
obvts = onbalvol(tsobj)
obvts = onbalvol(tsobj, ParameterName, ParameterValue, ...)

Arguments

closep Closing price (vector)

tvolume Volume traded

tsobj Financial time series object

Description obv = onbalvol(closep, tvolume) calculates the On-Balance
Volume (OBV) from the stock closing price (closep) and volume traded
(tvolume) data.

obv = onbalvol([closep tvolume]) accepts a two-column matrix
representing the closing price (closep) and volume traded (tvolume), in
that order.

obvts = onbalvol(tsobj) calculates the OBV from the stock data
in the financial time series object tsobj. The object must minimally
contain series names Close and Volume. The obvts output is a financial
time series object with the same dates as tsobj and a series named
OnBalVol.

obvts = onbalvol(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/ parameter value pairs as input. These pairs
specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• CloseName: closing prices series name

• VolumeName: volume traded series name

17-614

onbalvol

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the OBV for Disney stock and plot the results:

load disney.mat
dis_OnBalVol = onbalvol(dis)
plot(dis_OnBalVol)
title('On-Balance Volume for Disney')

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 207 - 209.

See Also negvolidx

17-615

opprofit

Purpose Option profit

Syntax Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)

Arguments

AssetPrice Asset price.

Strike Strike or exercise price.

Cost Cost of the option.

PosFlag Option position. 0 = long, 1 = short.

OptType Option type. 0 = call option, 1 = put option.

Description Profit = opprofit(AssetPrice, Strike, Cost, PosFlag,
OptType) returns the profit of an option.

Examples Buying (going long on) a call option with a strike price of $90 on an
underlying asset with a current price of $100 for a cost of $4

Profit = opprofit(100, 90, 4, 0, 0)

returns

Profit =
6.00

a profit of $6 if the option is exercised under these conditions.

See Also binprice | blsprice

17-616

payadv

Purpose Periodic payment given number of advance payments

Syntax Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue,
Advance)

Arguments

Rate Lending or borrowing rate per period. Enter
as a decimal fraction. Must be greater than or
equal to 0.

NumPeriods Number of periods in the life of the instrument.

PresentValue Present value of the instrument.

FutureValue Future value or target value to be attained
after NumPeriods periods.

Advance Number of advance payments. If the payments
are made at the beginning of the period, add
1 to Advance.

Description Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue,
Advance) returns the periodic payment given a number of advance
payments.

Examples The present value of a loan is $1000.00 and it will be paid in full in 12
months. The annual interest rate is 10% and three payments are made
at closing time. Using this data

Payment = payadv(0.1/12, 12, 1000, 0, 3)

returns

Payment =

85.94

17-617

payadv

for the periodic payment.

See Also amortize | payodd | payper

17-618

payodd

Purpose Payment of loan or annuity with odd first period

Syntax Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)

Arguments

rate Interest rate per period. Enter as a decimal
fraction.

NumPeriods Number of periods in the life of the instrument.

PresentValue Present value of the instrument.

FutureValue Future value or target value to be attained
after NumPeriods periods.

Days Actual number of days until the first payment
is made.

Description Payment = payodd(Rate, NumPeriods, PresentValue,
FutureValue, Days) returns the payment for a loan or annuity with
an odd first period.

Examples A two-year loan for $4000 has an annual interest rate of 11%. The first
payment will be made in 36 days. To find the monthly payment

Payment = payodd(0.11/12, 24, 4000, 0, 36)

returns

Payment =

186.77

See Also amortize | payadv | payper

17-619

payper

Purpose Periodic payment of loan or annuity

Syntax Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)

Arguments

Rate Interest rate per period. Enter as a decimal
fraction.

NumPeriods Number of payment periods in the life of the
instrument.

PresentValue Present value of the instrument.

FutureValue (Optional) Future value or target value to be
attained after NumPeriods periods. Default = 0.

Due (Optional) When payments are due: 0 = end of
period (default), or 1 = beginning of period.

Description Payment = payper(Rate, NumPeriods, PresentValue,
FutureValue, Due) returns the periodic payment of a loan or annuity.

Examples Find the monthly payment for a three-year loan of $9000 with an
annual interest rate of 11.75%

Payment = payper(0.1175/12, 36, 9000, 0, 0)

returns

Payment =

297.86

See Also amortize | fvfix | payadv | payodd | pvfix

17-620

payuni

Purpose Uniform payment equal to varying cash flow

Syntax Series = payuni(CashFlow, Rate)

Arguments

CashFlow A vector of varying cash flows. Include the initial
investment as the initial cash flow value (a negative
number).

Rate Periodic interest rate. Enter as a decimal fraction.

Description Series = payuni(CashFlow, Rate) returns the uniform series value
of a varying cash flow.

Examples This cash flow represents the yearly income from an initial investment
of $10,000. The annual interest rate is 8%.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000

To calculate the uniform series value

Series = payuni([-10000 2000 1500 3000 3800 5000], 0.08)

returns

Series =

17-621

payuni

429.63

See Also fvfix | fvvar | irr | pvfix | pvvar

17-622

pcalims

Purpose Linear inequalities for individual asset allocation

Syntax [A,b] = pcalims(AssetMin, AssetMax, NumAssets)

Arguments

AssetMin Scalar or NASSETS vector of minimum allocations in
each asset. NaN indicates no constraint.

AssetMax Scalar or NASSETS vector of maximum allocations in
each asset. NaN indicates no constraint.

NumAssets (Optional) Number of assets. Default = length of
AssetMin or AssetMax.

Description [A,b] = pcalims(AssetMin, AssetMax, NumAssets) specifies the
lower and upper bounds of portfolio allocations in each of NumAssets
available asset investments.

A is a matrix and b is a vector such that A*PortWts' <= b, where
PortWts is a 1-by-NASSETS vector of asset allocations.

If pcalims is called with fewer than two output arguments, the function
returns A concatenated with b [A,b].

Examples Set the minimum weight in every asset to 0 (no short-selling), and set
the maximum weight of IBM stock to 0.5 and CSCO to 0.8, while letting
the maximum weight in INTC float.

Asset IBM INTC CSCO

Min. Wt. 0 0 0

Max. Wt. 0.5 0.8

17-623

pcalims

AssetMin = 0
AssetMax = [0.5 NaN 0.8]
[A,b] = pcalims(AssetMin, AssetMax)

A =
1 0 0
0 0 1

-1 0 0
0 -1 0
0 0 -1

b =

0.5000
0.8000

0
0
0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the
constraints.

Set the minimum weight in every asset to 0 and the maximum weight
to 1.

Asset IBM INTC CSCO

Min. Wt. 0 0 0

Max. Wt. 1 1 1

AssetMin = 0
AssetMax = 1
NumAssets = 3

[A,b] = pcalims(AssetMin, AssetMax, NumAssets)

17-624

pcalims

A =

1 0 0
0 1 0
0 0 1

-1 0 0
0 -1 0
0 0 -1

b =
1
1
1
0
0
0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the
constraints.

See Also pcgcomp | pcglims | pcpval | portcons | portopt

How To • “Portfolio Construction Examples” on page 3-5

17-625

pcgcomp

Purpose Linear inequalities for asset group comparison constraints

Syntax [A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

Arguments

GroupA

GroupB

Number of groups (NGROUPS) by number of assets
(NASSETS) specifications of groups to compare.
Each row specifies a group. For a specific group,
Group(i,j) = 1 if the group contains asset j;
otherwise, Group(i,j) = 0.

AtoBmin

AtoBmax

Scalar or NGROUPS-long vectors of minimum
and maximum ratios of allocations in GroupA to
allocations in GroupB. NaN indicates no constraint
between the two groups. Scalar bounds are applied to
all group pairs. The total number of assets allocated
to GroupA divided by the total number of assets
allocated to GroupB is >= AtoBmin and <= AtoBmax.

Description [A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB) specifies
that the ratio of allocations in one group to allocations in another group
is at least AtoBmin to 1 and at most AtoBmax to 1. Comparisons can be
made between an arbitrary number of group pairs NGROUPS comprising
subsets of NASSETS available investments.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts
is a 1-by-NASSETS vector of asset allocations.

If pcgcomp is called with fewer than two output arguments, the function
returns A concatenated with b [A,b].

17-626

pcgcomp

Examples Asset INTC XOM RD

Region North America North America Europe

Sector Technology Energy Energy

Group Min. Exposure Max. Exposure

North America 0.30 0.75

Europe 0.10 0.55

Technology 0.20 0.50

Energy 0.20 0.80

Make the North American energy sector compose exactly 20% of the
North American investment.

% INTC XOM RD
GroupA = [0 1 0]; % North American Energy
GroupB = [1 1 0]; % North America

AtoBmin = 0.20;
AtoBmax = 0.20;

[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

A =

0.2000 -0.8000 0
-0.2000 0.8000 0

b =

0
0

17-627

pcgcomp

Portfolio weights of 40% for INTC, 10% for XOM, and 50% for RD
satisfy the constraints.

See Also pcalims | pcglims | pcpval | portcons | portopt

How To • “Portfolio Construction Examples” on page 3-5

17-628

pcglims

Purpose Linear inequalities for asset group minimum and maximum allocation

Syntax [A,b] = pcglims(Groups, GroupMin, GroupMax)

Arguments

Groups Number of groups (NGROUPS) by number of assets
(NASSETS) specification of which assets belong to
which group. Each row specifies a group. For a
specific group, Group(i,j) = 1 if the group contains
asset j; otherwise, Group(i,j) = 0.

GroupMin

GroupMax

Scalar or NGROUPS-long vectors of minimum and
maximum combined allocations in each group. NaN
indicates no constraint. Scalar bounds are applied to
all groups.

Description [A,b] = pcglims(Groups, GroupMin, GroupMax) specifies minimum
and maximum allocations to groups of assets. An arbitrary number of
groups, NGROUPS, comprising subsets of NASSETS investments, is allowed.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts
is a 1-by-NASSETS vector of asset allocations.

If pcglims is called with fewer than two output arguments, the function
returns A concatenated with b [A,b].

Examples Asset INTC XOM RD

Region North America North America Europe

Sector Technology Energy Energy

17-629

pcglims

Group Min. Exposure Max. Exposure

North America 0.30 0.75

Europe 0.10 0.55

Technology 0.20 0.50

Energy 0.50 0.50

Set the minimum and maximum investment in various groups.

% INTC XOM RD
Groups = [1 1 0 ; % North America

0 0 1 ; % Europe
1 0 0 ; % Technology
0 1 1]; % Energy

GroupMin = [0.30
0.10
0.20
0.50];

GroupMax = [0.75
0.55
0.50
0.50];

[A,b] = pcglims(Groups, GroupMin, GroupMax)

A =

-1 -1 0
0 0 -1

-1 0 0
0 -1 -1
1 1 0
0 0 1
1 0 0

17-630

pcglims

0 1 1

b =

-0.3000
-0.1000
-0.2000
-0.5000
0.7500
0.5500
0.5000
0.5000

Portfolio weights of 50% in INTC, 25% in XOM, and 25% in RD satisfy
the constraints.

See Also pcalims | pcgcomp | pcpval | portcons | portopt

How To • “Portfolio Construction Examples” on page 3-5

17-631

pcpval

Purpose Linear inequalities for fixing total portfolio value

Syntax [A,b] = pcpval(PortValue, NumAssets)

Arguments

PortValue Scalar total value of asset portfolio (sum of
the allocations in all assets). PortValue = 1
specifies weights as fractions of the portfolio
and return and risk numbers as rates instead
of value.

NumAssets Number of available asset investments.

Description [A,b] = pcpval(PortValue, NumAssets) scales the total value of
a portfolio of NumAssets assets to PortValue. All portfolio weights,
bounds, return, and risk values except ExpReturn and ExpCovariance
(see portopt) are in terms of PortValue.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts
is a 1-by-NASSETS vector of asset allocations.

If pcpval is called with fewer than two output arguments, the function
returns A concatenated with b [A,b].

Examples Scale the value of a portfolio of three assets = 1, so all return values are
rates and all weight values are in fractions of the portfolio.

PortValue = 1;
NumAssets = 3;

[A,b] = pcpval(PortValue, NumAssets)

A =

1 1 1

17-632

pcpval

-1 -1 -1

b =

1
-1

Portfolio weights of 40%, 10%, and 50% in the three assets satisfy the
constraints.

See Also pcalims | pcgcomp | pcglims | portcons | portopt

How To • “Portfolio Construction Examples” on page 3-5

17-633

peravg

Purpose Periodic average of FINTS object

Syntax avgfts = peravg(tsobj)
avgfts = peravg(tsobj, numperiod)
avgfts = peravg(tsobj, daterange)

Arguments

tsobj Financial time series object

numperiod (Optional) Integer specifying the number of data
points over which each periodic average should be
averaged

daterange (Optional) Time period over which the data is
averaged

Description peravg calculates periodic averages of a financial time series object.
Periodic averages are calculated from the values per period defined. If
the period supplied is a string, it is assumed as a range of date string. If
the period is entered as numeric, the number represents the number
of data points (financial time series periods) to be included in a period
for the calculation. For example, if you enter '01/01/98::01/01/99'
as the period input argument, peravg returns the average of the time
series between those dates, inclusive. However, if you enter the number
5 as the period input, peravg returns a series of averages from the time
series data taken 5 date points (financial time series periods) at a time.

avgfts = peravg(tsobj, numperiod) returns a structure avgfts that
contains the periodic (per numperiod periods) average of the financial
time series object. avgfts has field names identical to the data series
names of tsobj.

avgfts = peravg(tsobj, daterange) returns a structure avgfts
that contains the periodic (as specified by daterange) average of the

17-634

peravg

financial time series object. avgfts has field names identical to the
data series names of tsobj.

Note peravg calculates periodic averages of a FINTS object. Periodic
averages are calculated from the values per period defined. If the period
supplied is a string, it is assumed as a range of date strings. If the
period is entered as numeric, the number represents the number of data
points to be included in a period for the calculation.

Examples If you enter 01-Jan-2001::03-Jan-2001 as the period input argument,
peravg returns the average of the time series between those dates,
inclusive. However, if you enter the number 5 as the period input,
peravg returns a series of averages from the time series data, taken 5
date points at a time.

%% Create the FINTS object %%

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ', size(dates, 1), 1), times]);

data = [(1:6)', 2*(1:6)'];

myFts = fints(dates_times, data, {'Data1', 'Data2'}, 1, 'My first FINTS')

%% Create the FINTS object %%

[p, pFts] = peravg(myFts, 3)

p =

Data1: [2 5]

Data2: [4 10]

pFts =

desc: My first FINTS

freq: Daily (1)

17-635

peravg

'dates: (2)' 'times: (2)' 'Data1: (2)' 'Data2: (2)'

'02-Jan-2001' '11:00' [2] [4]

'03-Jan-2001' '12:00' [5] [10]

[p, pFts] = peravg(myFts,'01-Jan-2001 12:00::03-Jan-2001 11:00')

p =

Data1: 3.5000

Data2: 7

pFts =

desc: My first FINTS

freq: Daily (1)

'dates: (1)' 'times: (1)' 'Data1: (1)' 'Data2: (1)'

'03-Jan-2001' '11:00' [3.5000] [7]

See Also mean | tsmovavg | mean

17-636

periodicreturns

Purpose Periodic total returns from total return prices

Syntax TotalReturn = periodicreturns(TotalReturnPrices)
TotalReturn = periodicreturns(TotalReturnPrices, Period)

Arguments

TotalReturnPrices Number of observations (NUMOBS) by number
of assets (NASSETS + 1) matrix of total return
prices for a given security. Column 1 contains
MATLAB serial date numbers. The remaining
columns contain total return price data.

Period (Optional) Periodicity flag used to compute
total returns:

'd' = daily values (default)
'w' = weekly values
'm' = monthly values
n = rolling return periodic values, where n
is an integer

Description TotalReturn = periodicreturns(TotalReturnPrices) calculates
the daily total returns from a daily total return price series.

TotalReturn = periodicreturns(TotalReturnPrices, Period)
calculates the total returns for a periodicity you specify from a daily
total return price series.

TotalReturn is a NUMOBS-by-NASSETS + 1matrix containing month-end
dates and return values. Each row represents an observation. Column
1 contains month-end dates in MATLAB serial date number format.
The remaining columns contain monthly return values.

17-637

periodicreturns

Note Although input returns can have dates in either ascending or
descending order, output total returns in TotalReturn have dates in
ascending order, with the earliest date in the first row TotalReturn,
and the most recent date in the last row of TotalReturn.

See Also totalreturnprice

17-638

plot

Purpose Plot data series

Syntax plot(tsobj)
hp = plot(tsobj)
plot(tsobj, linefmt)
hp = plot(tsobj, linefmt)
plot(..., volumename, bar)
hp = plot(..., volumename, bar)

Arguments

tsobj Financial time series object.

linefmt (Optional) Line format.

volumename (Optional) Specifies which data series is the volume
series. volumename must be the exact data series
name for the volume column (case sensitive).

bar (Optional)

• bar = 0 (default). Plot volume as a line.

• bar = 1. Plot volume as a bar chart. The width of
each bar is the same as the default in bar, barh.

Description plot(tsobj) plots the data series contained in the object tsobj. Each
data series will be a line. plot automatically generates a legend and
dates on the x-axis. Grid is turned on by default. plot uses the default
color order as if plotting a matrix.

The plot command automatically creates subplots when multiple time
series are encountered, and they differ greatly on their decimal scales.
For example, subplots are generated if one time series data set is in the
10s and another is in the 10,000s.

17-639

plot

hp = plot(tsobj) additionally returns the handle(s) to the object(s)
inside the plot figure. If there are multiple lines in the plot, hp is a
vector of multiple handles.

plot(tsobj, linefmt) plots the data series in tsobj using the line
format specified. For a list of possible line formats, see plot in the
MATLAB documentation. The plot legend is not generated, but the
dates on the x-axis and the plot grid are. The specified line format is
applied to all data series; that is, all data series will have the same
line type.

hp = plot(tsobj, linefmt) plots the data series in tsobj using the
format specified. The plot legend is not generated, but the dates on the
x-axis and the plot grid are. The specified line format is applied to all
data series, that is, all data series can have the same line type. If there
are multiple lines in the plot, hp is a vector of multiple handles.

plot(..., volumename, bar) additionally specifies which data series
is the volume. The volume is plotted in a subplot below the other data
series. If bar = 1, the volume is plotted as a bar chart. Otherwise,
a line plot is used.

hp = plot(..., volumename, bar) returns handles for each line. If
bar = 1, the handle to the patch for the bars is also returned.

Note To turn the legend off, enter legend off at the MATLAB
command line. Once you turn it off, the legend is essentially deleted.
To turn it back on, recreate it using the legend command as if you
are creating it for the first time. To turn the grid off, enter grid off.
To turn it back on, enter grid on.

See Also candle | chartfts | highlow | grid | legend | plot

17-640

Portfolio.plotFrontier

Superclasses AbstractPortfolio

Purpose Plot efficient frontier

Syntax [prsk, pret] = plotFrontier(obj)
[prsk, pret] = plotFrontier(obj, varargin)

Description [prsk, pret] = plotFrontier(obj) to plot the efficient frontier.

[prsk, pret] = plotFrontier(obj, varargin) to plot the efficient
frontier with multiple types of input methods. There are four ways to
use plotFrontier:

• Method 1 — Given a portfolio object obj, estimate efficient frontier
with default number of 10 portfolios on the frontier.

• Method 2 — Given a portfolio object obj, estimate efficient frontier
with specified number of portfolios NumPorts on the frontier.

• Method 3 — Given a portfolio object obj with estimated efficient
portfolios in PortWeights, plot the efficient frontier with those
portfolios. This method assumes that you provide valid inputs with
either efficient portfolios or efficient portfolio risks and returns.

• Method 4 — Given a portfolio object obj with estimated portfolio
risks (PortRisk) and returns (PortReturn), plot the efficient frontier.
This method assumes that you provide valid inputs with either
efficient portfolios or efficient portfolio risks and returns.

Note plotFrontier handles multiple input formats as described
above. Given an asset universe with NumAssets assets and an efficient
frontier with NumPorts portfolios, remember that portfolio weights are
NumAsset-by-NumPortsmatrices and that portfolio risks and returns are
NumPorts column vectors.

17-641

Portfolio.plotFrontier

Tips Use dot notation to plot the efficient frontier:

[prsk, pret] = obj.plotFrontier;

Input
Arguments

obj

A portfolio object [Portfolio].

varargin

(Optional) varargin can be NumPorts, PortRisk, PortReturn, or
PortWeights depending on which of the four input methods you
use:

• Method 1 — Given a portfolio object obj, estimate efficient
frontier with default number of 10 portfolios on the frontier:

[prsk, pret, pwgt] = obj.plotFrontier

• Method 2 — Given a portfolio object obj, estimate efficient
frontier with specified number of portfolios NumPorts on the
frontier:

[prsk, pret, pwgt] = obj.plotFrontier(NumPorts)

• Method 3 — Given a portfolio object obj with estimated
efficient portfolios in PortWeights, plot the efficient frontier
with those portfolios:

[prsk, pret, pwgt] = obj.plotFrontier(PortWeights)

This method assumes that you provide valid inputs with either
efficient portfolios or efficient portfolio risks and returns.

• Method 4 — Given a portfolio object obj with estimated
portfolio risks (PortRisk) and returns (PortReturn), plot the
efficient frontier:

[prsk, pret, pwgt] = obj.plotFrontier(PortRisk,PortReturn)

17-642

Portfolio.plotFrontier

This method assumes that you provide valid inputs with either
efficient portfolios or efficient portfolio risks and returns.

Output
Arguments

prsk

Estimated efficient portfolio returns.

pret

Estimated efficient portfolio risks (standard deviation of returns).

Note If the portfolio object has a name in the Name property, the name
is displayed as the title of the plot. Otherwise, the plot is just labeled
"Efficient Frontier".

If the Portfolio object has an initial portfolio in the InitPort property,
the initial portfolio is plotted and labeled.

If portfolio risks and returns are inputs, make sure that risks come
first in the calling sequence. In addition, if portfolio risks and returns
are not sorted in ascending order, this method performs the sort. On
output, the sorted moments are returned.

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given portfolio p, plot the efficient frontier:

load CAPMuniverse

17-643

Portfolio.plotFrontier

p = Portfolio('AssetList',Assets(1:12));

p = p.estimateAssetMoments(Data(:,1:12),'missingdata',true);

p = p.setDefaultConstraints;

p.plotFrontier;

See Also Portfolio

Tutorials • “Plotting the Efficient Frontier” on page 4-98

17-644

plus

Purpose Financial time series addition

Syntax newfts = tsobj_1 + tsobj_2
newfts = tsobj + array
newfts = array + tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.

array A scalar value or array with the number of
rows equal to the number of dates in tsobj and
the number of columns equal to the number of
data series in tsobj.

Description plus is an element-by-element addition of the components.

newfts = tsobj_1 + tsobj_2 adds financial time series objects. If an
object is to be added to another object, both objects must have the same
dates and data series names, although the order need not be the same.
The order of the data series, when one financial time series object is
added to another, follows the order of the first object.

newfts = tsobj + array adds an array element by element to a
financial time series object.

newfts = array + tsobj adds a financial time series object element
by element to an array.

See Also minus | rdivide | times

17-645

pointfig

Purpose Point and figure chart

Syntax pointfig(Asset)

Description pointfig(Asset) plots a point and figure chart for a vector of price
data Asset. Upward price movements are plotted as X’s and downward
price movements are plotted as O’s.

See Also bolling | candle | dateaxis | highlow | movavg

17-646

portalloc

Purpose Optimal capital allocation to efficient frontier portfolios

Syntax [RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk,
OverallReturn] = portalloc(PortRisk, PortReturn, PortWts,
RisklessRate, BorrowRate, RiskAversion)

Arguments

PortRisk Standard deviation of each risky asset efficient
frontier portfolio. A number of portfolios
(NPORTS) by 1 vector.

PortReturn Expected return of each risky asset efficient
frontier portfolio. An NPORTS-by-1 vector.

PortWts Weights allocated to each asset. An NPORTS by
number of assets (NASSETS) matrix of weights
allocated to each asset. Each row represents an
efficient frontier portfolio of risky assets. Total
of all weights in a portfolio is 1.

RisklessRate Risk-free lending rate. A decimal number.

BorrowRate (Optional) Borrowing rate. A decimal number.
If borrowing is not desired, or not an option,
set to NaN (default).

RiskAversion (Optional) Coefficient of investor’s degree of
risk aversion. Higher numbers indicate greater
risk aversion. Typical coefficients range
between 2.0 and 4.0 (Default = 3).

17-647

portalloc

Note Consider that a less risk-averse investor
would be expected to accept much greater risk
and, consequently, a more risk-averse investor
would accept less risk for a given level of return.
Therefore, making the RiskAversionargument
higher reflects the risk-return tradeoff in the
data.

Description [RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction,
OverallRisk, OverallReturn] = portalloc(PortRisk,
PortReturn, PortWts, RisklessRate, BorrowRate,
RiskAversion) computes the optimal risky portfolio, and the optimal
allocation of funds between the risky portfolio and the risk-free asset.

RiskyRisk is the standard deviation of the optimal risky portfolio.

RiskyReturn is the expected return of the optimal risky portfolio.

RiskyWts is a 1-by-NASSETS vector of weights allocated to the optimal
risky portfolio. The total of all weights in the portfolio is 1.

RiskyFraction is the fraction of the complete portfolio allocated to
the risky portfolio.

OverallRisk is the standard deviation of the optimal overall portfolio.

OverallReturn is the expected rate of return of the optimal overall
portfolio.

portalloc generates a plot of the optimal capital allocation if you
invoke it without output arguments.

Examples Generate the efficient frontier from the asset data.

ExpReturn = [0.1 0.2 0.15];

17-648

portalloc

ExpCovariance = [0.005 -0.010 0.004
-0.010 0.040 -0.002
0.004 -0.002 0.023];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance);

Find the optimal risky portfolio and allocate capital. The risk free
investment return is 8%, and the borrowing rate is 12%.

RisklessRate = 0.08;

BorrowRate = 0.12;

RiskAversion = 3;

[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, ...

OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn,...

PortWts, RisklessRate, BorrowRate, RiskAversion)

RiskyRisk =

0.1283

RiskyReturn =

0.1788

RiskyWts =

0.0265 0.6023 0.3712

RiskyFraction =

1.1898

OverallRisk =

0.1527

OverallReturn =

17-649

portalloc

0.1899

References Bodie, Kane, and Marcus, Investments, Second Edition, Chapters 6
and 7.

See Also frontcon | portrand | portstats

17-650

portalpha

Purpose Compute risk-adjusted alphas and returns for one or more assets

Syntax portalpha(Asset, Benchmark)
portalpha(Asset, Benchmark, Cash)
portalpha(Asset, Benchmark, Cash, Choice)
Alpha = portalpha(Asset, Benchmark, Cash, Choice)
[Alpha, RAReturn] = portalpha(Asset, Benchmark, Cash, Choice)

Arguments

Asset NUMSAMPLES x NUMSERIES matrix with
NUMSAMPLES observations of asset returns for
NUMSERIES asset return series.

Benchmark NUMSAMPLES vector of returns for a benchmark
asset. The periodicity must be the same as the
periodicity of Asset. For example, if Asset
is monthly data, then Benchmark should be
monthly returns.

Cash (Optional) Either a scalar return for a riskless
asset or a vector of asset returns to be a
proxy for a “riskless” asset. In either case, the
periodicity must be the same as the periodicity
of Asset. For example, if Asset is monthly
data, then Cash must be monthly returns. If
no value is supplied, the default value for Cash
returns is 0.

Choice (Optional) A number, string, or cell array of
numbers or strings to indicate one or more
measures to be computed from among a number
of risk-adjusted alphas and return measures.
The number of choices selected in Choice is
NUMCHOICES. The current list of choices is given
in the following table:

17-651

portalpha

Code Description

'xs' Excess Return (no risk
adjustment)

'sml' Security Market Line

'capm' Jensen’s Alpha

'mm' Modigliani & Modigliani

'gh1' Graham-Harvey 1

'gh2' Graham-Harvey 2

'all' Compute all measures

Choice is specified by using the code from the
table (for example, to select the Modigliani &
Modigliani measure, Choice = 'mm'). A single
choice is either a string or a scalar cell array
with a single code from the table.

Multiple choices can be selected with a cell
array of choice codes (for example, to select
both Graham-Harvey measures, Choice =
{'gh1','gh2'}). To select all choices, specify
Choice = 'all'. If no value is supplied,
the default choice is to compute the excess
return with Choice = 'xs'. Choice is not case
sensitive.

Description Given NUMSERIES assets with NUMSAMPLES returns in a
NUMSAMPLES-by-NUMSERIES matrix Asset, a NUMSAMPLES vector of
Benchmark returns, and either a scalar Cash return or a NUMSAMPLES
vector of Cash returns, compute risk-adjusted alphas and returns for
one or more methods specified by Choice.

To summarize the outputs of portalpha:

17-652

portalpha

• Alpha is a NUMCHOICES-by-NUMSERIES matrix of risk-adjusted alphas
for each series in Asset with each row corresponding to a specified
measure in Choice.

• RAReturn is a NUMCHOICES-by-NUMSERIES matrix of risk-adjusted
returns for each series in Asset with each row corresponding to a
specified measure in Choice.

Note NaN values in the data are ignored and, if NaNs are present, some
results could be unpredictable. Although the alphas are comparable
across measures, risk-adjusted returns depend on whether the Asset or
Benchmark is levered or unlevered to match its risk with the alternative.
If Choice = 'all', the order of rows in Alpha and RAReturn follows
the order in the table. In addition, Choice = 'all' overrides all other
choices.

Examples See “Risk-Adjusted Return Example” on page 5-11.

References
John Lintner, "The Valuation of Risk Assets and the Selection of Risky
Investments in Stocks Portfolios and Capital Budgets," Review of
Economics and Statistics, Vol. 47, No. 1, February 1965, pp. 13-37.

John R. Graham and Campbell R. Harvey, "Market Timing Ability
and Volatility Implied in Investment Newsletters’ Asset Allocation
Recommendations," Journal of Financial Economics, Vol. 42, 1996,
pp. 397-421.

Franco Modigliani and Leah Modigliani, "Risk-Adjusted Performance:
How to Measure It and Why," Journal of Portfolio Management, Vol.
23, No. 2, Winter 1997, pp. 45-54.

Jan Mossin, "Equilibrium in a Capital Asset Market," Econometrica,
Vol. 34, No. 4, October 1966, pp. 768-783.

17-653

portalpha

William F. Sharpe, "Capital Asset Prices: A Theory of Market
Equilibrium under Conditions of Risk," Journal of Finance, Vol. 19, No.
3, September 1964, pp. 425-442.

See Also inforatio | sharpe

17-654

portcons

Purpose Portfolio constraints

Syntax ConSet = portcons(varargin)

Description Using linear inequalities, portcons generates a matrix of constraints
for a portfolio of asset investments. The matrix ConSet is defined as
ConSet = [A b]. A is a matrix and b a vector such that A*PortWts' <=
b sets the value, where PortWts is a 1-by-number of assets (NASSETS)
vector of asset allocations.

ConSet = portcons('ConstType', Data1, ..., DataN) creates
a matrix ConSet, based on the constraint type ConstType, and the
constraint parameters Data1, ..., DataN.

ConSet = portcons('ConstType1', Data11, ..., Data21, ...,
Data2N, ...) creates a matrix ConSet, based on the constraint types
ConstTypeN, and the corresponding constraint parameters DataN1,
..., DataNN.

Constraint Type Description Values

Default All allocations are
>= 0; no short
selling allowed.
Combined value
of portfolio
allocations
normalized to 1.

NumAssets (required). Scalar representing
number of assets in portfolio.

PortValue Fix total value of
portfolio to PVal.

PVal (required). Scalar representing total
value of portfolio.

NumAssets (required). Scalar representing
number of assets in portfolio. See pcpval.

17-655

portcons

Constraint Type Description Values

AssetLims Minimum and
maximum
allocation per
asset.

AssetMin (required). Scalar or vector of length
NASSETS, specifying minimum allocation per
asset.

AssetMax (required). Scalar or vector of length
NASSETS, specifying maximum allocation per
asset.

NumAssets (optional). See pcalims.

GroupLims Minimum and
maximum
allocations to asset
group.

Groups (required). NGROUPS-by-NASSETS matrix
specifying which assets belong to each group.

GroupMin (required). Scalar or a vector of
length NGROUPS, specifying minimum combined
allocations in each group.

GroupMax (required). Scalar or a vector of
length NGROUPS, specifying maximum combined
allocations in each group.

See pcglims.

GroupComparison Group-to-group
comparison
constraints.

GroupA (required). NGROUPS-by-NASSETS matrix
specifying first group in the comparison.

AtoBmin (required). Scalar or vector of
length NGROUPS specifying minimum ratios of
allocations in GroupA to allocations in GroupB.

AtoBmax (required). Scalar or vector of
length NGROUPS specifying maximum ratios of
allocations in GroupA to allocations in GroupB.

GroupB (required). NGROUPS-by-NASSETS matrix
specifying second group in the comparison.

See pcgcomp.

Custom Custom linear
inequality

A (required). NCONSTRAINTS-by-NASSETS
matrix, specifying weights for each asset in
each inequality equation.

17-656

portcons

Constraint Type Description Values

constraints
A*PortWts' <=
b.

b (required). Vector of length NCONSTRAINTS
specifying the right hand sides of the
inequalities.

Note For more information using Custom, see
“Specifying Additional Constraints” on page
3-17.

Examples Constrain a portfolio of three assets:

Asset IBM HPQ XOM

Group A A B

Min. Wt. 0 0 0

Max. Wt. 0.5 0.9 0.8

NumAssets = 3;

PVal = 1; % Scale portfolio value to 1.

AssetMin = 0;

AssetMax = [0.5 0.9 0.8];

GroupA = [1 1 0];

GroupB = [0 0 1];

AtoBmax = 1.5 % Value of assets in Group A at most 1.5 times value

% in group B.

ConSet = portcons('PortValue', PVal, NumAssets,'AssetLims',...

AssetMin, AssetMax, NumAssets, 'GroupComparison',GroupA, NaN,...

AtoBmax, GroupB)

17-657

portcons

ConSet =

1.0000 1.0000 1.0000 1.0000

-1.0000 -1.0000 -1.0000 -1.0000

1.0000 0 0 0.5000

0 1.0000 0 0.9000

0 0 1.0000 0.8000

-1.0000 0 0 0

0 -1.0000 0 0

0 0 -1.0000 0

1.0000 1.0000 -1.5000 0

For instance, one possible solution for portfolio weights that satisfy the
constraints is 30% in IBM, 30% in HPQ, and 40% in XOM.

See Also pcalims | pcgcomp | pcglims | pcpval | portopt

How To • “Portfolio Construction Examples” on page 3-5

17-658

Portfolio

Superclasses AbstractPortfolio

Purpose Portfolio object for mean-variance portfolio optimization and analysis

Description The portfolio object implements mean-variance portfolio optimization
and is derived from the abstract portfolio optimization class
AbstractPortfolio. Portfolio objects implement all methods in the
AbstractPortfolio class along with methods that are specific to
mean-variance portfolio optimization.

The main workflow for portfolio optimization is to create an instance
of a portfolio object that completely specifies a portfolio optimization
problem and to operate on the portfolio object to obtain and analyze
efficient portfolios. A mean-variance optimization problem is completely
specified with the following three elements:

• A universe of assets with estimates for the prospective mean and
covariance of asset total returns for a period of interest.

• A portfolio set that specifies the set of portfolio choices in terms of a
collection of constraints.

• A model for portfolio return and risk, which, for mean-variance
optimization, is either the gross or net mean of portfolio returns and
the standard deviation of portfolio returns.

After you specify three elements in an unambiguous way, you can
solve and analyze portfolio optimization problems. The simplest
mean-variance portfolio optimization problem has:

• A mean and covariance of asset total returns

• Nonnegative weights for all portfolios that sum to 1 (the summation
constraint is known as a budget constraint)

• Built-in models for portfolio return and risk that use the mean and
covariance of asset total returns

17-659

Portfolio

Given mean and covariance of asset returns in the variables AssetMean
and AssetCovar, this problem is completely specified by:

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar,...

'LowerBound', 0, 'Budget')

or equivalently by:

p = Portfolio;
p = p.setAssetMoments(AssetMean, AssetCovar);
p = p.setDefaultConstraints;

Construction p = Portfolio constructs an empty portfolio object for mean-variance
portfolio optimization and analysis. You can then add elements to the
portfolio object using “Add Methods” on page 15-17 and “Set Methods”
on page 15-16.

p = Portfolio(Name,Value) constructs a portfolio object for
mean-variance portfolio optimization and analysis with additional
options specified by one or more Name,Value pair arguments. Name
is a property name and Value is its corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

p = Portfolio(p, Name,Value) constructs a portfolio object for
mean-variance portfolio optimization and analysis using a previously
constructed portfolio object p with additional options specified by one or
more Name,Value pair arguments.

Input Arguments

p

(Optional) Previously constructed portfolio object (p).

Property Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

17-660

Portfolio

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AInequality

Linear inequality constraint matrix ([] or [matrix]).

Default: []

AssetCovar

Covariance of asset returns ([] or square matrix.

Default: []

AssetList

Names or symbols of assets in universe ([] or [vector cell of
strings]).

Default: []

AssetMean

Mean of asset returns ([] or vector).

Default: []

bInequality

Linear inequality constraint vector ([] or [vector]).

Default: []

BuyCost

Proportional purchase costs ([] or vector).

Default: []

17-661

Portfolio

BuyTurnover

Turnover constraint on purchases ([] or [scalar]).

Default: []

GroupA

Group A weights to be bounded by weights in group B ([] or
[matrix]).

Default: []

GroupB

Group B weights ([] or [matrix]).

Default: []

GroupMatrix

Group membership matrix ([] or [matrix]).

Default: []

InitPort

Initial portfolio ([] or vector).

Default: []

LowerBudget

Lower-bound budget constraint ([] or [scalar]).

Default: []

LowerGroup

Lower-bound group constraint ([] or [vector]).

17-662

Portfolio

Default: []

LowerRatio

Mnimum ratio of allocations between groups A and B ([] or
[vector]).

Default: []

Name

Name for instance of the portfolio object ([] or [string]).

Default: []

NumAssets

Number of assets in universe ([] or [integer scalar]).

Default: []

RiskFreeRate

Risk-free rate ([] or scalar).

Default: []

SellCost

Proportional sales costs ([] or vector).

Default: []

SellTurnover

Turnover constraint on sales ([] or [scalar]).

Default: []

Turnover

17-663

Portfolio

Turnover constraint ([] or [scalar]).

Default: []

UpperBound

Upper-bound constraint ([] or [vector]).

Default: []

UpperBudget

Upper-bound budget constraint ([] or [scalar]).

Default: []

UpperGroup

Upper-bound group constraint ([] or [vector]).

Default: []

UpperRatio

Maximum ratio of allocations between groups A and B ([] or
[vector]).

Default: []

Properties The following properties are from the Portfolio class.

AssetCovar

Covariance of asset returns ([] or matrix).

Attributes:

SetAccess public

GetAccess public

17-664

Portfolio

AssetMean

Mean of asset returns ([] or vector).

Attributes:

SetAccess public

GetAccess public

BuyCost

Proportional purchase costs ([] or vector).

Attributes:

SetAccess public

GetAccess public

BuyTurnover

Turnover constraint on purchases ([] or [scalar]).

Attributes:

SetAccess public

GetAccess public

RiskFreeRate

Risk-free rate ([] or scalar).

Attributes:

SetAccess public

GetAccess public

SellCost

Proportional sales costs ([] or vector).

17-665

Portfolio

Attributes:

SetAccess public

GetAccess public

SellTurnover

Turnover constraint on sales ([] or [scalar]).

Attributes:

SetAccess public

GetAccess public

Turnover

Turnover constraint ([] or [scalar]).

Attributes:

SetAccess public

GetAccess public

Inherited
Properties

The following properties are inherited from the AbstractPortfolio
class.

AEquality

Linear equality constraint matrix ([] or [matrix]).

Attributes:

SetAccess public

GetAccess public

AInequality

17-666

Portfolio

Linear inequality constraint matrix ([] or [matrix]).

Attributes:

SetAccess public

GetAccess public

AssetList

Names or symbols of assets in universe ([] or [vector cell of
strings]).

Attributes:

SetAccess public

GetAccess public

bEquality

Linear equality constraint vector ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

bInequality

Linear inequality constraint vector ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

GroupA

Group A weights to be bounded by group B ([] or [matrix]).

Attributes:

17-667

Portfolio

SetAccess public

GetAccess public

GroupB

Group B weights ([] or [matrix]).

Attributes:

SetAccess public

GetAccess public

GroupMatrix

Group membership matrix ([] or [matrix]).

Attributes:

SetAccess public

GetAccess public

InitPort

Initial portfolio ([] or vector).

Attributes:

SetAccess public

GetAccess public

LowerBound

Lower-bound constraint ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

17-668

Portfolio

LowerBudget

Lower-bound budget constraint ([] or [scalar]).

Attributes:

SetAccess public

GetAccess public

LowerGroup

Lower-bound group constraint ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

LowerRatio

Mnimum ratio of allocations between groups A and B ([] or
[vector]).

Attributes:

SetAccess public

GetAccess public

Name

Name for instance of the portfolio object ([] or [string]).

Attributes:

SetAccess public

GetAccess public

NumAssets

Number of assets in universe ([] or [integer scalar]).

17-669

Portfolio

Attributes:

SetAccess public

GetAccess public

UpperBound

Upper-bound constraint ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

UpperBudget

Upper-bound budget constraint ([] or [scalar]).

Attributes:

SetAccess public

GetAccess public

UpperGroup

Upper-bound group constraint ([] or [vector]).

Attributes:

SetAccess public

GetAccess public

UpperRatio

Maximum ratio of allocations between groups A and B ([] or
[vector]).

Attributes:

17-670

Portfolio

SetAccess public

GetAccess public

Inherited
Methods

The following methods are inherited from the AbstractPortfolio class.

addEquality Add linear equality constraints
for portfolio weights to existing
constraints

addGroupRatio Add group ratio constraints for
portfolio weights to existing group
ratio constraints

addGroups Add group constraints for
portfolio weights to existing
group constraints

addInequality Add linear inequality constraints
for portfolio weights to existing
constraints

checkFeasibility Check feasibility of input
portfolios against a portfolio
object

estimateBounds Estimate global lower and upper
bounds for set of portfolios

estimateFrontier Estimate specified number of
optimal portfolios over entire
efficient frontier

estimateFrontierByReturn Estimate optimal portfolios with
targeted portfolio returns

estimateFrontierByRisk Estimate optimal portfolios with
targeted portfolio risks

estimateFrontierLimits Estimate optimal portfolios at
endpoints of efficient frontier

17-671

Portfolio

estimateMaxSharpeRatio Estimate efficient portfolio to
maximize Sharpe ratio

estimatePortReturn Estimate mean of portfolio
returns (portfolio return)

estimatePortRisk Estimate standard deviation of
portfolio returns (portfolio risk)

getBounds Obtain bounds for portfolio
weights from portfolio object

getBudget Obtain budget constraint bounds
from portfolio object

getEquality Obtain equality constraint arrays
from portfolio object

getGroupRatio Obtain group ratio constraint
arrays from portfolio object

getGroups Obtain group constraint arrays
from portfolio object

getInequality Obtain inequality constraint
arrays from portfolio object

plotFrontier Plot efficient frontier

setAssetList Set up list of identifiers for assets

setBounds Set up bounds for portfolio
weights

setBudget Set up budget constraints

setDefaultConstraints Set up portfolio constraints with
nonnegative weights that must
sum to 1

setEquality Set up linear equality constraints
for portfolio weights

setGroupRatio Set up group ratio constraints for
portfolio weights

17-672

Portfolio

setGroups Set up group constraints for
portfolio weights

setInequality Set up linear inequality
constraints for portfolio weights

setInitPort Set up initial or current portfolio

setOptions Set hidden properties in portfolio
object

setSolver Choose main solver and specify
associated solver options for
portfolio optimization

Methods
estimateAssetMoments Estimate mean and covariance of

asset returns from data

estimatePortMoments Estimate moments of portfolio
returns

getAssetMoments Obtain mean and covariance of
asset returns from portfolio object

getCosts Obtain buy and sell transaction
costs from portfolio object

getOneWayTurnover Obtain one-way turnover
constraints from portfolio object

setAssetMoments Set moments (mean and
covariance) of asset returns

setCosts Set up proportional transaction
costs

setOneWayTurnover Set up one-way portfolio turnover
constraints

setTurnover Set up maximum portfolio
turnover constraint

17-673

Portfolio

Definitions Mean-Variance Portfolio Optimization

For more information on the theory and definition of mean-variance
optimization supported by portfolio optimization tools in Financial
Toolbox software, see “Portfolio Optimization Theory” on page 4-2.

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples Efficient portfolios can be obtained with:

load CAPMuniverse

p = Portfolio('AssetList',Assets(1:12));
p = p.estimateAssetMoments(Data(:,1:12),'missingdata',true);
p = p.setDefaultConstraints;
p.plotFrontier;

pwgt = p.estimateFrontier(5);

pnames = cell(1,5);
for i = 1:5
pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

Port1 Port2 Port3 Port4 Port5
AAPL 0.017926 0.058247 0.097816 0.12955 0
AMZN 0 0 0 0 0
CSCO 0 0 0 0 0
DELL 0.0041906 0 0 0 0
EBAY 0 0 0 0 0
GOOG 0.16144 0.35678 0.55228 0.75116 1

17-674

Portfolio

HPQ 0.052566 0.032302 0.011186 0 0
IBM 0.46422 0.36045 0.25577 0.11928 0
INTC 0 0 0 0 0
MSFT 0.29966 0.19222 0.082949 0 0
ORCL 0 0 0 0 0
YHOO 0 0 0 0 0

References For a complete list of references for the portfolio object and portfolio
optimization tools, see “Portfolio Optimization” on page A-12.

Alternatives You can also perform portfolio optimization using a collection of
special-purpose functions in Financial Toolbox software. For more
information, see “Portfolio Optimization Functions” on page 3-3.

17-675

Portfolio

See Also plotFrontier

Tutorials • “Portfolio Optimization Theory” on page 4-2

• “Portfolio Object” on page 4-13

How To • “Constructing the Portfolio Object” on page 4-23

• Class Attributes

• Property Attributes

17-676

portopt

Purpose Portfolios on constrained efficient frontier

Syntax [PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,
NumPorts, PortReturn, ConSet, varargin)

Arguments

ExpReturn 1 by number of assets (NASSETS) vector
specifying the expected (mean) return of each
asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the
covariance of the asset returns.

NumPorts (Optional) Number of portfolios generated
along the efficient frontier. Returns are equally
spaced between the maximum possible return
and the minimum risk point. If NumPorts is
empty (entered as []), computes 10 equally
spaced points.

PortReturn (Optional) Expected return of each portfolio. A
number of portfolios (NPORTS) by 1 vector. If
not entered or empty, NumPorts equally spaced
returns between the minimum and maximum
possible values are used.

17-677

portopt

ConSet (Optional) Constraint matrix for a portfolio of
asset investments, created using portcons. If
not specified, a default is created.

varargin (Optional) varargin supports the following
parameter-value pairs:

• 'algorithm' – Defines which algorithm
to use with portopt. Use either a value
of 'lcprog' or 'quadprog' to indicate the
algorithm to use. The default is 'lcprog’.

• 'maxiter' – Maximum number of iterations
before termination of algorithm. The default
is 100000.

• 'tiebreak' – Method to break ties for pivot
selection. This value pair applies only to
'lcprog' algorithm. The default is 'first'.
Options are:

- 'first' – Selects pivot with lowest index.

- 'last' – Selects pivot with highest index.

- 'random' – Selects pivot at random.

• 'tolcon' – Tolerance for constraint
violations. This value pair applies only to
'lcprog' algorithm. The default is 1.0e-6.

• 'tolpiv' – Pivot value below which a
number is considered to be zero. This value
pair applies only to 'lcprog'algorithm. The
default is 1.0e-9.

Description [PortRisk, PortReturn, PortWts] = portopt(ExpReturn,
ExpCovariance, NumPorts, PortReturn, ConSet, varargin)
returns the mean-variance efficient frontier with user-specified
covariance, returns, and asset constraints (ConSet). Given a collection

17-678

portopt

of NASSETS risky assets, computes a portfolio of asset investment
weights that minimize the risk for given values of the expected return.
The portfolio risk is minimized subject to constraints on the total
portfolio value, the individual asset minimum and maximum allocation,
the asset group minimum and maximum allocation, or the asset
group-to-group comparison.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each
portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each
portfolio.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each
asset. Each row represents a portfolio. The total of all weights in a
portfolio is 1.

If portopt is invoked without output arguments, it returns a plot of
the efficient frontier.

Examples Plot the risk-return efficient frontier of portfolios allocated among three
assets. Connect 20 portfolios along the frontier having evenly spaced
returns. By default, choose among portfolios without short-selling and
scale the value of the portfolio to 1.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004
-0.010 0.040 -0.002
0.004 -0.002 0.023];

NumPorts = 20;
portopt(ExpReturn, ExpCovariance, NumPorts)

17-679

portopt

Return the two efficient portfolios that have returns of 16% and 17%.
Limit to portfolios that have at least 20% of the allocation in the first
asset, and cap the total value in the first and third assets at 50% of
the portfolio.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004

-0.010 0.040 -0.002

0.004 -0.002 0.023];

PortReturn = [0.16

0.17];

NumAssets = 3;

AssetMin = [0.20 NaN NaN];

Group = [1 0 1];

17-680

portopt

GroupMax = 0.50;

ConSet = portcons('Default', NumAssets, 'AssetLims', AssetMin,...

NaN,'GroupLims', Group, NaN, GroupMax);

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...

ExpCovariance, [], PortReturn, ConSet)

PortRisk =

0.0919

0.1138

PortReturn =

0.1600

0.1700

PortWts =

0.3000 0.5000 0.2000

0.2000 0.6000 0.2000

See Also ewstats | frontcon | frontier | portcons | portstats

How To • “Portfolio Construction Examples” on page 3-5

17-681

portrand

Purpose Randomized portfolio risks, returns, and weights

Syntax [PortRisk, PortReturn, PortWts] = portrand(Asset, Return,
Points, Method)
portrand(Asset, Return, Points, Method)

Arguments

Asset Matrix of time series data. Each row is an observation
and each column represents a single security.

Return (Optional) Row vector where each column represents
the rate of return for the corresponding security in
Asset. By default, Return is computed by taking the
average value of each column of Asset.

Points (Optional) Scalar that specifies how many random
points should be generated. Default = 1000.

Method (Optional) A string that specifies how to generate
random portfolios from the set of portfolios with two
possible methods:

• 'uniform' – Uniformly-distributed portfolio
weights (default method). The 'uniform'
method generates portfolio weights that are
uniformly-distributed on the set of portfolio
weights.

• 'geometric' – Concentrated portfolio weights
around the geometric center of the set of portfolios.
The 'geometric' method generates portfolio
weights that are concentrated around the
geometric center of the set of portfolio weights.

17-682

portrand

Note The 'uniform' and 'geometric' methods
generate weights that are distributed symmetrically
around the geometric center of the set of weights.

Description [PortRisk, PortReturn, PortWts] = portrand(Asset, Return,
Points, Method) returns the risks, rates of return, and weights of
random portfolio configurations.

PortRisk Points-by-1 vector of standard deviations.

PortReturn Points-by-1 vector of expected rates of return.

PortWts Points by number of securities matrix of asset
weights. Each row of PortWts is a different portfolio
configuration.

portrand(Asset, Return, Points, Method) plots the points
representing each portfolio configuration. It does not return any data to
the MATLAB workspace.

Note Portfolios are selected at random from a set of portfolios such
that portfolio weights are nonnegative and sum to 1. The sample mean
and covariance of asset returns are used to compute portfolio returns
for each random portfolio.

References Bodie, Kane, and Marcus, Investments, Chapter 7.

17-683

portrand

See Also frontcon | portror | portvar

17-684

portror

Purpose Portfolio expected rate of return

Syntax R = portror(Return, Weight)

Arguments

Return 1-by-N matrix of rates of return. Each column of
Return represents the rate of return for a single
security

Weight M-by-N matrix of weights. Each row of Weight
represents a different weighting combination of the
assets in the portfolio.

Description R = portror(Return, Weight) returns a 1-by-M vector for the expected
rate of return.

Examples A portfolio is made up of two assets ABC and XYZ having expected rates
of return of 10% and 14%, respectively. If 40% percent of the portfolio’s
funds are allocated to asset ABC and the remaining funds are allocated
to asset XYZ, the portfolio’s expected rate of return is:

r = portror([.1 .14],[.4 .6])
r =
0.1240

References Bodie, Kane, and Marcus, Investments, Chapter 7.

See Also frontcon | portrand | portvar

17-685

portsim

Purpose Monte Carlo simulation of correlated asset returns

Syntax RetSeries = portsim(ExpReturn, ExpCovariance, NumObs, RetIntervals,
NumSim, Method)

Arguments

ExpReturn 1 by number of assets (NASSETS) vector
specifying the expected (mean) return of each
asset.

ExpCovariance NASSETS-by-NASSETS matrix of asset
return covariances. ExpCovariance
must be symmetric and positive
semidefinite (no negative eigenvalues).
The standard deviations of the returns are
ExpSigma = sqrt(diag(ExpCovariance)).

NumObs Positive scalar integer indicating the number
of consecutive observations in the return time
series. If NumObs is entered as the empty matrix
[], the length of RetIntervals is used.

RetIntervals (Optional) Positive scalar or number of
observations (NUMOBS)-by-1 vector of interval
times between observations. If RetIntervals
is not specified, all intervals are assumed to
have length 1.

17-686

portsim

NumSim (Optional) Positive scalar integer indicating
the number of simulated sample paths
(realizations) of NUMOBS observations. Default =
1 (single realization of NUMOBS correlated asset
returns).

Method (Optional) String indicating the type of Monte
Carlo simulation:

'Exact' (default) generates correlated asset
returns in which the sample mean and
covariance match the input mean (ExpReturn)
and covariance (ExpCovariance) specifications.

'Expected' generates correlated asset returns
in which the sample mean and covariance
are statistically equal to the input mean and
covariance specifications. (The expected value
of the sample mean and covariance are equal
to the input mean (ExpReturn) and covariance
(ExpCovariance) specifications.)

For either method the sample mean and
covariance returned are appropriately scaled
by RetIntervals.

Description portsim simulates correlated returns of NASSETS assets over NUMOBS
consecutive observation intervals. Asset returns are simulated as the
proportional increments of constant drift, constant volatility stochastic
processes, thereby approximating continuous-time geometric Brownian
motion.

RetSeries is a NUMOBS-by-NASSETS-by-NUMSIM three-dimensional array
of correlated, normally distributed, proportional asset returns. Asset
returns over an interval of length dt are given by

17-687

portsim

dS
S

dt dz dt dt= + = + ,

where S is the asset price, μ is the expected rate of return, σ is the
volatility of the asset price, and ε represents a random drawing from a
standardized normal distribution.

Notes

• When Method is 'Exact', the sample mean and covariance of all
realizations (scaled by RetIntervals) match the input mean and
covariance. When the returns are subsequently converted to asset
prices, all terminal prices for a given asset are in close agreement.
Although all realizations are drawn independently, they produce
similar terminal asset prices. Set Method to 'Expected’ to avoid
this behavior.

• The returns from the portfolios in PortWts are given by
PortReturn = PortWts * RetSeries(:,:,1)', where PortWts is a
matrix in which each row contains the asset allocations of a portfolio.
Each row of PortReturn corresponds to one of the portfolios identified
in PortWts, and each column corresponds to one of the observations
taken from the first realization (the first plane) in RetSeries. See
portopt and portstats for portfolio specification and optimization.

Examples Example 1. Distinction Between Simulation Methods

This example highlights the distinction between the Exact and
Expected methods of simulation.

Consider a portfolio of five assets with the following expected returns,
standard deviations, and correlation matrix based on daily asset
returns (where ExpReturn and Sigmas are divided by 100 to convert
percentages to returns):

ExpReturn = [0.0246 0.0189 0.0273 0.0141 0.0311]/100;

Sigmas = [0.9509 1.4259 1.5227 1.1062 1.0877]/100;

17-688

portsim

Correlations = [1.0000 0.4403 0.4735 0.4334 0.6855

0.4403 1.0000 0.7597 0.7809 0.4343

0.4735 0.7597 1.0000 0.6978 0.4926

0.4334 0.7809 0.6978 1.0000 0.4289

0.6855 0.4343 0.4926 0.4289 1.0000];

Convert the correlations and standard deviations to a covariance matrix.

ExpCovariance = corr2cov(Sigmas, Correlations);

ExpCovariance =

1.0e-003 *

0.0904 0.0597 0.0686 0.0456 0.0709
0.0597 0.2033 0.1649 0.1232 0.0674
0.0686 0.1649 0.2319 0.1175 0.0816
0.0456 0.1232 0.1175 0.1224 0.0516
0.0709 0.0674 0.0816 0.0516 0.1183

Assume that there are 252 trading days in a calendar year, and
simulate two sample paths (realizations) of daily returns over a
two-year period. Since ExpReturn and ExpCovariance are expressed
daily, set RetIntervals = 1.

StartPrice = 100;

NumObs = 504; % two calendar years of daily returns

NumSim = 2;

RetIntervals = 1; % one trading day

NumAssets = 5;

To illustrate the distinction between methods, simulate two paths by
each method, starting with the same random number state.

randn('state',0);

RetExact = portsim(ExpReturn, ExpCovariance, NumObs, ...

RetIntervals, NumSim, 'Exact');

17-689

portsim

randn('state',0);

RetExpected = portsim(ExpReturn, ExpCovariance, NumObs, ...

RetIntervals, NumSim, 'Expected');

If you compare the mean and covariance of RetExact with the inputs
(ExpReturn and ExpCovariance), you will observe that they are almost
identical.

At this point, RetExact and RetExpected are both 504-by-5-by-2
arrays. Now assume an equally weighted portfolio formed from the
five assets and create arrays of portfolio returns in which each column
represents the portfolio return of the corresponding sample path of the
simulated returns of the five assets. The portfolio arrays PortRetExact
and PortRetExpected are 504-by-2 matrices.

Weights = ones(NumAssets, 1)/NumAssets;

PortRetExact = zeros(NumObs, NumSim);

PortRetExpected = zeros(NumObs, NumSim);

for i = 1:NumSim

PortRetExact(:,i) = RetExact(:,:,i) * Weights;

PortRetExpected(:,i) = RetExpected(:,:,i) * Weights;

end

Finally, convert the simulated portfolio returns to prices and plot the
data. In particular, note that since the Exact method matches expected
return and covariance, the terminal portfolio prices are virtually
identical for each sample path. This is not true for the Expected
simulation method.

Although this example examines portfolios, the same methods apply to
individual assets as well. Thus, Exact simulation is most appropriate
when unique paths are required to reach the same terminal prices.

PortExact = ret2tick(PortRetExact, ...
repmat(StartPrice,1,NumSim));
PortExpected = ret2tick(PortRetExpected, ...
repmat(StartPrice,1,NumSim));

17-690

portsim

subplot(2,1,1), plot(PortExact, '-r')
ylabel('Portfolio Prices')
title('Exact Method')
subplot(2,1,2), plot(PortExpected, '-b')
ylabel('Portfolio Prices')
title('Expected Method')

Example 2. Interaction Between ExpReturn, ExpCovariance and
RetIntervals

Recall that portsim simulates correlated asset returns over an interval
of length dt, given by the equation

dS
S

dt dz dt dt= + = + ,

17-691

portsim

where S is the asset price, μ is the expected rate of return, σ is the
volatility of the asset price, and ε represents a random drawing from a
standardized normal distribution.

The time increment dt is determined by the optional input
RetIntervals, either as an explicit input argument or as a unit
time increment by default. Regardless, the periodicity of ExpReturn,
ExpCovariance and RetIntervals must be consistent. For example,
if ExpReturn and ExpCovariance are annualized, then RetIntervals
must be in years. This point is often misunderstood.

To illustrate the interplay among ExpReturn, ExpCovariance, and
RetIntervals, consider a portfolio of five assets with the following
expected returns, standard deviations, and correlation matrix based on
daily asset returns.

ExpReturn = [0.0246 0.0189 0.0273 0.0141 0.0311]/100;

Sigmas = [0.9509 1.4259 1.5227 1.1062 1.0877]/100;

Correlations = [1.0000 0.4403 0.4735 0.4334 0.6855

0.4403 1.0000 0.7597 0.7809 0.4343

0.4735 0.7597 1.0000 0.6978 0.4926

0.4334 0.7809 0.6978 1.0000 0.4289

0.6855 0.4343 0.4926 0.4289 1.0000];

Convert the correlations and standard deviations to a covariance matrix
of daily returns.

ExpCovariance = corr2cov(Sigmas, Correlations);

Assume 252 trading days per calendar year, and simulate a single
sample path of daily returns over a four-year period. Since the
ExpReturn and ExpCovariance inputs are expressed daily, set
RetIntervals = 1.

StartPrice = 100;

NumObs = 1008; % four calendar years of daily returns

RetIntervals = 1; % one trading day

17-692

portsim

NumAssets = length(ExpReturn);

randn('state',0);

RetSeries1 = portsim(ExpReturn, ExpCovariance, NumObs, ...

RetIntervals, 1, 'Expected');

Now annualize the daily data, thereby changing the periodicity of
the data, by multiplying ExpReturn and ExpCovariance by 252 and
dividing RetIntervals by 252 (RetIntervals = 1/252 of a year).

Resetting the random number generator to its initial state, you can
reproduce the results.

randn('state',0);

RetSeries2 = portsim(ExpReturn*252, ExpCovariance*252, ...

NumObs, RetIntervals/252, 1, 'Expected');

Assume an equally weighted portfolio and compute portfolio returns
associated with each simulated return series.

Weights = ones(NumAssets, 1)/NumAssets;

PortRet1 = RetSeries2 * Weights;
PortRet2 = RetSeries2 * Weights;

Comparison of the data reveals that PortRet1 and PortRet2 are
identical.

Example 3. Univariate Geometric Brownian Motion

This example simulates a univariate geometric Brownian motion
process. It is based on an example found in Hull, Options, Futures,
and Other Derivatives, 5th Edition (see example 12.2 on page 236). In
addition to verifying Hull’s example, it also graphically illustrates the
lognormal property of terminal stock prices by a rather large Monte
Carlo simulation.

First, assume you own a stock with an initial price of $20, an annualized
expected return of 20% and volatility of 40%. Simulate the daily price

17-693

portsim

process for this stock over the course of one full calendar year (252
trading days).

StartPrice = 20;
ExpReturn = 0.2;
ExpCovariance = 0.4^2;
NumObs = 252;
NumSim = 10000;
RetIntervals = 1/252;

Note that RetIntervals is expressed in years, consistent with the fact
that ExpReturn and ExpCovariance are annualized. Also, note that
ExpCovariance is entered as a variance rather than the more familiar
standard deviation (volatility).

Now set the random number generator state, and simulate 10,000 trials
(realizations) of stock returns over a full calendar year of 252 trading
days.

randn('state',10);

RetSeries = squeeze(portsim(ExpReturn, ExpCovariance, NumObs, ...

RetIntervals, NumSim, 'Expected'));

The squeeze function reformats the output array of simulated returns
from a 252-by-1-by-10000 array to more convenient 252-by-10000
array. (Recall that portsim is fundamentally a multivariate simulation
engine).

In accordance with Hull’s equations 12.4 and 12.5 on page 236

E S S e

var S S e e

T
T

T
T T

() =

() = −()
0

0
2 2 2

1

convert the simulated return series to a price series and compute the
sample mean and the variance of the terminal stock prices.

StockPrices = ret2tick(RetSeries, repmat(StartPrice, 1, NumSim));

17-694

portsim

SampMean = mean(StockPrices(end,:))

SampMean =

24.4587

SampVar = var(StockPrices(end,:))

SampVar =

104.2016

Compare these values with the values you obtain by using Hull’s
equations.

ExpValue = StartPrice*exp(ExpReturn)

ExpValue =

24.4281

ExpVar = ...

StartPrice*StartPrice*exp(2*ExpReturn)*(exp((ExpCovariance)) - 1)

ExpVar =

103.5391

These results are very close to the results shown in Hull’s example 12.2.

Next, display the sample density function of the terminal stock price
after one calendar year. From the sample density function, the
lognormal distribution of terminal stock prices is apparent.

[count, BinCenter] = hist(StockPrices(end,:), 30);
figure
bar(BinCenter, count/sum(count), 1, 'r')
xlabel('Terminal Stock Price')

17-695

portsim

ylabel('Probability')
title('Lognormal Terminal Stock Prices')

References Hull, John, C., Options, Futures, and Other Derivatives, Upper Saddle
River, New Jersey: Prentice-Hall. 5th ed., 2003, ISBN 0-13-009056-5.

See Also ewstats | portopt | portstats | randn | ret2tick

17-696

portstats

Purpose Portfolio expected return and risk

Syntax [PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,
PortWts)

Arguments

ExpReturn 1-by-number of assets (NASSETS) vector
specifying the expected (mean) return of each
asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the
covariance of the asset returns.

PortWts (Optional) Number of portfolios (NPORTS)
by NASSETS matrix of weights allocated to
each asset. Each row represents a different
weighting combination. Default = 1/NASSETS
(equally weighted).

Description [PortRisk, PortReturn] = portstats(ExpReturn,
ExpCovariance, PortWts) computes the expected rate of return and
risk for a portfolio of assets.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each
portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each
portfolio.

Examples ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.0100 -0.0061 0.0042

-0.0061 0.0400 -0.0252

0.0042 -0.0252 0.0225];

17-697

portstats

PortWts=[0.4 0.2 0.4; 0.2 0.4 0.2];

[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,...

PortWts)

PortRisk =

0.0560

0.0550

PortReturn =

0.1400

0.1300

See Also frontcon

17-698

portvar

Purpose Variance for portfolio of assets

Syntax V = portvar(Asset, Weight)

Arguments

Asset M-by-N matrix of M asset returns for N securities.

Weight R-by-N matrix of R portfolio weights for N securities.
Each row of Weight constitutes a portfolio of
securities in Asset.

Description V = portvar(Asset, Weight) returns the portfolio variance as an
R-by-1vector (assuming Weight is a matrix of size R-by-N) with each row
representing a variance calculation for each row of Weight.

V = portvar(Asset) assigns each security an equal weight when
calculating the portfolio variance.

References Bodie, Kane, and Marcus, Investments, Chapter 7.

See Also frontcon | portrand | portror

17-699

portvrisk

Purpose Portfolio value at risk (VaR)

Syntax ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold,
PortValue)

Arguments

PortReturn Number of portfolios (NPORTS)-by-1 vector or
scalar of the expected return of each portfolio
over the period.

PortRisk NPORTS-by-1 vector or scalar of the standard
deviation of each portfolio over the period.

RiskThreshold (Optional) NPORTS-by-1 vector or scalar
specifying the loss probability. Default = 0.05
(5%).

PortValue (Optional) NPORTS-by-1 vector or scalar
specifying the total value of asset portfolio.
Default = 1.

Description ValueAtRisk = portvrisk(PortReturn, PortRisk,
RiskThreshold, PortValue) returns the maximum potential loss in
the value of a portfolio over one period of time, given the loss probability
level RiskThreshold.

ValueAtRisk is an NPORTS-by-1 vector of the estimated maximum
loss in the portfolio, predicted with a confidence probability of 1-
RiskThreshold. portvrisk calculates ValueAtRisk using a normal
distribution.

If PortValue is not given, ValueAtRisk is presented on a per-unit basis.
A value of 0 indicates no losses.

17-700

portvrisk

Examples This example computes ValueAtRisk on a per-unit basis.

PortReturn = 0.29/100;
PortRisk = 3.08/100;
RiskThreshold = [0.01;0.05;0.10];
PortValue = 1;
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)
ValueAtRisk =

0.0688
0.0478
0.0366

This example computes ValueAtRisk with actual values.

PortReturn = [0.29/100;0.30/100];
PortRisk = [3.08/100;3.15/100];
RiskThreshold = 0.10;
PortValue = [1000000000;500000000];
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)
ValueAtRisk =

1.0e+007 *
3.6572
1.8684

See Also frontcon | portopt

17-701

posvolidx

Purpose Positive volume index

Syntax pvi = posvolidx(closep, tvolume, initpvi)
pvi = posvolidx([closep tvolume], initpvi)
pvits = posvolidx(tsobj)
pvits = posvolidx(tsobj, initpvi, ParameterName, ParameterValue, ...)

Arguments

closep Closing price (vector).

tvolume Volume traded (vector).

initpvi (Optional) Initial value for positive volume index.
Default = 100.

tsobj Financial time series object.

Description pvi = posvolidx(closep, tvolume, initpvi) calculates the positive
volume index from a set of stock closing prices (closep) and volume
traded (tvolume) data. pvi is a vector representing the positive volume
index. If initpvi is specified, posvolidx uses that value instead of
the default (100).

pvi = posvolidx([closep tvolume], initpvi) accepts a two-column
matrix, the first column representing the closing prices (closep) and
the second representing the volume traded (tvolume). If initpvi is
specified, posvolidx uses that value instead of the default (100).

pvits = posvolidx(tsobj) calculates the positive volume index from
the financial time series object tsobj. The object must contain, at least,
the series Close and Volume. The pvits output is a financial time
series object with dates similar to tsobj and a data series named PVI.
The initial value for the positive volume index is arbitrarily set to 100.

pvits = posvolidx(tsobj, initpvi, ParameterName,
ParameterValue,...) accepts parameter name/parameter value pairs

17-702

posvolidx

as input. These pairs specify the name(s) for the required data series
if it is different from the expected default name(s). Valid parameter
names are

• CloseName: closing prices series name

• VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the positive volume index for Disney stock and plot the results:

load disney.mat
dis_PosVol = posvolidx(dis)
plot(dis_PosVol)
title('Positive Volume Index for Disney')

17-703

posvolidx

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 236 - 238.

See Also onbalvol | negvolidx

17-704

power

Purpose Financial time series power

Syntax newfts = tsobj .^ array
newfts = array .^tsobj
newfts = tsobj_1 .^ tsobj_2

Arguments

tsobj Financial time series object.

array Scalar value or array with the number of rows
equal to the number of dates in tsobj and the
number of columns equal to the number of data
series in tsobj.

tsobj_1, tsobj_2 Pair of financial time series objects.

Description newfts = tsobj .^ array raises all values in the data series of the
financial time series object tsobj element by element to the power
indicated by the array value. The results are stored in another financial
time series object newfts. The newfts object contains the same data
series names as tsobj.

newfts = array .^ tsobj raises the array values element by element
to the values contained in the data series of the financial time series
object tsobj. The results are stored in another financial time series
object newfts. The newfts object contains the same data series names
as tsobj.

newfts = tsobj_1 .^ tsobj_2 raises the values in the object tsobj_1
element by element to the values in the object tsobj_2. The data series
names, the dates, and the number of data points in both series must be
identical. newfts contains the same data series names as the original
time series objects.

See Also minus | plus | rdivide | times

17-705

prbyzero

Purpose Price bonds in portfolio by set of zero curves

Syntax BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates, Compounding)

Arguments

Bonds Coupon bond information used to compute prices. A
number of bonds (NUMBONDS)-by-6 matrix where each
row describes a bond. The first two columns
are required; the rest are optional but must be
added in order. All rows in Bonds must have the
same number of columns. Columns are
[Maturity CouponRate Face Period Basis EndMonthRule]
where:

Maturity Maturity date as a serial date
number or date string.

CouponRate Decimal number indicating the
annual percentage rate used to
determine the coupons payable
on a bond.

Face (Optional) Face or par value of
the bond. Default = 100.

Period (Optional) Coupons per year of
the bond. Allowed values are 0,
1, 2 (default), 3, 4, 6, and 12.

17-706

prbyzero

Basis (Optional) Day-count basis of the
instrument. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis
on page Glossary-1.

17-707

prbyzero

EndMonthRule (Optional) End-of-month rule.
This rule applies only when
Maturity is an end-of-month
date for a month having 30 or
fewer days. 0 = ignore rule,
meaning that a bond’s coupon
payment date is always the same
numerical day of the month. 1 =
set rule on (default), meaning
that a bond’s coupon payment
date is always the last actual day
of the month.

Settle Serial date number of the settlement date.

ZeroRates NUMDATES-by-NUMCURVES matrix of observed zero
rates, as decimal fractions. Each column represents
a rate curve. Each row represents an observation
date.

ZeroDates NUMDATES-by-1 column of dates for observed zeros

Compounding Scalar value representing the rate at which the input
zero rates were compounded when annualized. This
argument determines the formula for the discount
factors. Compounding values are: 1, 2, 3, 4, 6, 12.

Description BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates,
Compounding) computes the bond prices in a portfolio using a set of
zero curves.

BondPrices is a NUMBONDS-by-NUMCURVES matrix of clean bond prices.
Each column is derived from the corresponding zero curve in ZeroRates.

In addition, you can use the Fixed-Income Toolbox™ method
getZeroRates for an IRDataCurve object with a Dates property to
create a vector of dates and data acceptable for prbyzero. For more

17-708

prbyzero

information, see “Converting an IRDataCurve or IRFunctionCurve
Object”.

Examples This example uses zbtprice to compute a zero curve given a portfolio of
coupon bonds and their prices. It then reverses the process, using the
zero curve as input to prbyzero to compute the prices.

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
datenum('7/1/2000') 0.06 100 2 0 0;
datenum('7/1/2000') 0.09375 100 6 1 0;
datenum('6/30/2001') 0.05125 100 1 3 1;
datenum('4/15/2002') 0.07125 100 4 1 0;
datenum('1/15/2000') 0.065 100 2 0 0;
datenum('9/1/1999') 0.08 100 3 3 0;
datenum('4/30/2001') 0.05875 100 2 0 0;
datenum('11/15/1999') 0.07125 100 2 0 0;
datenum('6/30/2000') 0.07 100 2 3 1;
datenum('7/1/2001') 0.0525 100 2 3 0;
datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [99.375;
99.875;

105.75 ;
96.875;

103.625;
101.125;
103.125;
99.375;

101.0 ;
101.25 ;
96.375;

102.75];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve, on an actual/365 basis.

17-709

prbyzero

OutputCompounding = 2;

Execute zbtprice

[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle,...
OutputCompounding)

which returns the zero curve at the maturity dates.

ZeroRates =

0.0616
0.0609
0.0658
0.0590
0.0648
0.0655
0.0606
0.0601
0.0642
0.0621
0.0627

ZeroDates =

729907
730364
730439
730500
730667
730668
730971
731032
731033
731321
731336

17-710

prbyzero

Now execute prbyzero

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)

which returns

BondPrices =

99.38
98.80

106.83
96.88

103.62
101.13
103.12
99.36

101.00
101.25
96.37

102.74

In this example zbtprice and prbyzero do not exactly reverse each
other. Many of the bonds have the end-of-month rule off (EndMonthRule
= 0). The rule subtly affects the time factor computation. If you set
the rule on (EndMonthRule = 1) everywhere in the Bonds matrix, then
prbyzero returns the original prices, except when the two incompatible
prices fall on the same maturity date.

See Also tr2bonds | zbtprice

17-711

prcroc

Purpose Price rate of change

Syntax proc = prcroc(closep, nTimes)
procts = prcroc(tsobj, nTimes)
procts = prcroc(tsobj, nTimes, ParameterName, ParameterValue)

Arguments

closep Closing price

nTimes (Optional) Time difference. Default = 12.

tsobj Financial time series object

Description proc = prcroc(closep, nTimes) calculates the price rate of change
proc from the closing price closep. If nTimes time is specified, the price
rate of change is calculated between the current closing price and the
closing price nTimes ago.

procts = prcroc(tsobj, nTimes) calculates the price rate of change
procts from the financial time series object tsobj. tsobj must contain
a data series named Close. The output procts is a financial time series
object with similar dates as tsobj and a data series named PriceROC. If
nTimes is specified, the price rate of change is calculated between the
current closing price and the closing price nTimes ago.

procts = prcroc(tsobj, nTimes, ParameterName,
ParameterValue) specifies the name for the required data series when
it is different from the default name. The valid parameter name is

• CloseName: closing price series name

The parameter value is a string that represents the valid parameter
name.

Note, to compute a quantity over n periods, you must specify n+1 for
nTimes. If you specify nTimes = 0, the function returns your original
time series.

17-712

prcroc

Examples Compute the price rate of change for Disney stock and plot the results:

load disney.mat
dis_PriceRoc = prcroc(dis)
plot(dis_PriceRoc)
title('Price Rate of Change for Disney')

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 243 - 245.

See Also volroc

17-713

prdisc

Purpose Price of discounted security

Syntax Price = prdisc(Settle, Maturity, Face, Discount, Basis)

Arguments

Settle Enter as serial date number or date string.
Settle must be earlier than Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Bank discount rate of the security. Enter as decimal
fraction.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

17-714

prdisc

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description Price = prdisc(Settle, Maturity, Face, Discount, Basis)
returns the price of a security whose yield is quoted as a bank discount
rate (for example, U. S. Treasury bills).

Examples Using this data

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Discount = 0.087;
Basis = 2;

Price = prdisc(Settle, Maturity, Face, Discount, Basis)

returns

Price =

96.2783

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd
edition. Formula 2.

See Also acrudisc | bndprice | discrate | prmat | ylddisc

17-715

priceandvol

Purpose Price and volume chart

Syntax priceandvol(X)

Arguments

X M-by-6 matrix where the columns are date, open,
high, low, close, and volume.

Description priceandvol(X) plots the asset data displaying the open, high, low,
and closing prices on one axis and the volume on a second axis.

Examples If asset X is an M-by-6matrix for date, open, high, low, close, and volume:

X = [...

733299.00 41.93 42.15 41.83 41.99 15045445.00;...

733300.00 42.09 42.24 41.76 42.14 15346658.00;...

733303.00 42.00 42.20 41.78 41.93 9034397.00;...

733304.00 41.82 42.16 41.70 41.98 14486275.00;...

733305.00 41.94 42.19 41.70 41.75 16389872.00;...

733306.00 42.00 42.57 41.50 41.61 20475208.00;...

733307.00 41.93 42.35 41.74 42.29 14833200.00;...

733310.00 42.01 42.70 42.01 42.19 18945176.00;...

733311.00 42.18 42.72 41.73 41.82 25188101.00;...

733312.00 42.57 42.57 41.33 41.93 22689878.00;...

733313.00 41.86 42.35 41.71 41.81 21084723.00;...

733314.00 41.70 41.90 41.04 41.37 27963619.00;...

733317.00 40.98 41.49 40.82 41.17 20385033.00;...

733318.00 41.50 42.15 41.21 42.02 27783775.00]

then the price volume chart is

priceandvol(X)

17-716

priceandvol

which plots the asset data displaying the open, high, low, and closing
prices on one axis and the volume on a second axis.

See Also bolling | candle | highlow | kagi | linebreak | movavg | pointfig
| renko | volarea

17-717

prmat

Purpose Price with interest at maturity

Syntax [Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,
CouponRate, Yield, Basis)

Arguments

Settle Enter as serial date number or date string.
Settle must be earlier than Maturity.

Maturity Enter as serial date number or date string.

Issue Enter as serial date number or date string.

Face Redemption (par, face) value.

CouponRate Enter as decimal fraction.

Yield Annual yield. Enter as decimal fraction.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

17-718

prmat

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description [Price, AccruInterest] = prmat(Settle, Maturity, Issue,
Face, CouponRate, Yield, Basis) returns the price and accrued
interest of a security that pays interest at maturity. This function also
applies to zero-coupon bonds or pure discount securities by setting
CouponRate = 0.

Examples Using this data

Settle = '02/07/2002';

Maturity = '04/13/2002';

Issue = '10/11/2001';

Face = 100;

CouponRate = 0.0608;

Yield = 0.0608;

Basis = 1;

[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,...

CouponRate, Yield, Basis)

returns

Price =

99.9784

AccruInterest =

1.9591

17-719

prmat

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd
edition. Formula 4.

See Also acrubond | acrudisc | bndprice | prdisc | yldmat

17-720

prtbill

Purpose Price of Treasury bill

Syntax Price = prtbill(Settle, Maturity, Face, Discount)

Arguments

Settle Enter as serial date number or date string.
Settle must be earlier than Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Discount rate of the Treasury bill. Enter as decimal
fraction.

Description Price = prtbill(Settle, Maturity, Face, Discount) returns the
price for a Treasury bill.

Examples The settlement date of a Treasury bill is February 10, 2002, the
maturity date is August 6, 2002, the discount rate is 3.77%, and the par
value is $1000. Using this data

Price = prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)

returns

Price =
981.4642

References Bodie, Kane, and Marcus, Investments, pages 41-43.

See Also beytbill | yldtbill

17-721

pvfix

Purpose Present value with fixed periodic payments

Syntax PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)

Arguments

rate Periodic interest rate, as a decimal fraction.

NumPeriods Number of periods.

Payment Periodic payment.

ExtraPayment (Optional) Payment received other than
Payment in the last period. Default = 0.

Due (Optional) When payments are due or made: 0
= end of period (default), or 1 = beginning of
period.

Description PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment,
Due) returns the present value of a series of equal payments.

Examples $200 is paid monthly into a savings account earning 6%. The payments
are made at the end of the month for five years. To find the present
value of these payments

PresentVal = pvfix(0.06/12, 5*12, 200, 0, 0)

returns

PresentVal =

10345.11

See Also fvfix | fvvar | payper | pvvar

17-722

pvtrend

Purpose Price and Volume Trend (PVT)

Syntax pvt = pvtrend(closep, tvolume)
pvt = pvtrend([closep tvolume])
pvtts = pvtrend(tsobj)
pvtts = pvtrend(tsobj, ParameterName, ParameterValue, ...)

Arguments

closep Closing price.

tvolume Volume traded.

tsobj Financial time series object.

ParameterName Valid parameter names are:

• CloseName: closing prices series name

• VolumeName: volume traded series name

ParameterValue Parameter values are the strings that
represent the valid parameter names.

Description pvt = pvtrend(closep, tvolume) calculates the Price and Volume
Trend (PVT) from the stock closing price (closep) data and the volume
traded (tvolume) data.

pvt = pvtrend([closep tvolume]) accepts a two-column matrix in
which the first column contains the closing prices (closep) and the
second contains the volume traded (tvolume).

pvtts = pvtrend(tsobj) calculates the PVT from the stock data
contained in the financial time series object tsobj. The object tsobj
must contain the closing price series Close and the volume traded
series Volume. The output pvtts is a financial time series object with
dates similar to tsobj and a data series named PVT.

17-723

pvtrend

pvtts = pvtrend(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/ parameter value pairs as input. These pairs
specify the name(s) for the required data series if it is different from
the expected default name(s). Parameter values are the strings that
represent the valid parameter names.

Examples Compute the PVT for Disney stock and plot the results:

load disney.mat
dis_PVTrend = pvtrend(dis)
plot(dis_PVTrend)
title('Price and Volume Trend for Disney')

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 239 - 240.

17-724

pvvar

Purpose Present value of varying cash flow

Syntax PresentVal = pvvar(CashFlow, Rate, CFDates)

Arguments

CashFlow A vector of varying cash flows. Include the initial
investment as the initial cash flow value (a negative
number). If CashFlow is a matrix, each column is
treated as a separate cash-flow stream.

Rate Periodic interest rate. Enter as a decimal fraction. If
CashFlow is a matrix, a scalar Rate is allowed when
the same rate applies to all cash-flow streams in
CashFlow. When multiple cash-flow streams require
different discount rates, Rate must be a vector whose
length equals the number of columns in CashFlow.

CFDates (Optional) A vector of serial date numbers or date
strings on which the cash flows occur. Specify
CFDates when there are irregular (nonperiodic)
cash flows. The default assumes that CashFlow
contains regular (periodic) cash flows. If CashFlow
is a matrix, and all cash-flow streams share the
same dates, CFDates can be a vector whose length
matches the number of rows in CashFlow. When
different cash-flow streams have different payment
dates, specify CFDates as a matrix the same size as
CashFlow.

Description PresentVal = pvvar(CashFlow, Rate, CFDates) returns the net
present value of a varying cash flow. Present value is calculated at
the time the first cash flow occurs.

17-725

pvvar

Examples This cash flow represents the yearly income from an initial investment
of $10,000. The annual interest rate is 8%.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000

To calculate the net present value of this regular cash flow

PresentVal = pvvar([-10000 2000 1500 3000 3800 5000], 0.08)

returns

PresentVal =

1715.39

An investment of $10,000 returns this irregular cash flow. The original
investment and its date are included. The periodic interest rate is 9%.

Cash Flow Dates

($10000) January 12, 1987

$2500 February 14, 1988

$2000 March 3, 1988

$3000 June 14, 1988

$4000 December 1, 1988

To calculate the net present value of this irregular cash flow

CashFlow = [-10000, 2500, 2000, 3000, 4000];

17-726

pvvar

CFDates = ['01/12/1987'
'02/14/1988'
'03/03/1988'
'06/14/1988'
'12/01/1988'];

PresentVal = pvvar(CashFlow, 0.09, CFDates)

returns

PresentVal =

142.16

The net present value of the same investment under different discount
rates of 7%, 9%, and 11% is obtained in a single call:

PresentVal = pvvar(repmat(CashFlow,1,3), [.07 .09 .11], CFDates)

pv =

419.0136 142.1648 -122.1275

See Also fvfix | fvvar | irr | payuni | pvfix

17-727

pyld2zero

Purpose Zero curve given par yield curve

Syntax [ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle,
Compounding, Basis, InputCompounding)

Arguments

ParRates Column vector of annualized implied par
yield rates, as decimal fractions. (Par yields
= coupon rates.) In aggregate, the yield rates
in ParRates constitute an implied par yield
curve for the investment horizon represented
by CurveDates.

CurveDates Column vector of maturity dates (as serial date
numbers) that correspond to the par rates.

Settle Serial date number that is the common
settlement date for the par rates.

Compounding (Optional) Scalar value representing the
periodicity in which the output zero rates are
compounded when annualized. Allowed values
are:

1 Annual compounding

2 Semiannual compounding (default)

3 Compounding three times per year

4 Quarterly compounding

6 Bimonthly compounding

12 Monthly compounding

365 Daily compounding

17-728

pyld2zero

Basis (Optional) Day-count basis used to annualize
the zero rates.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

InputCompounding (Optional) Scalar value representing the
periodicity in which the input par rates were
compounded when annualized. The default is
the value for Compounding.

Description [ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates,
Settle, Compounding, Basis, InputCompounding) returns a zero
curve given a par yield curve and its maturity dates.

17-729

pyld2zero

Note pyld2zero uses zbtprice for computations.

ZeroRates Column vector of decimal fractions. In aggregate, the
rates in ZeroRates constitute a zero curve for the
investment horizon represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date
numbers) corresponding to the zero rates. This vector
is the same as the input vector CurveDates.

Examples Given

• A par yield curve over a set of maturity dates

• A settlement date

• Annual compounding for the input par rates and monthly
compounding for the output zero curve

compute a zero yield curve.

ParRates = [0.0479

0.0522

0.0540

0.0540

0.0536

0.0532

0.0532

0.0539

0.0558

0.0543];

CurveDates = [datenum('06-Nov-2000')

datenum('11-Dec-2000')

17-730

pyld2zero

datenum('15-Jan-2001')

datenum('05-Feb-2001')

datenum('04-Mar-2001')

datenum('02-Apr-2001')

datenum('30-Apr-2001')

datenum('25-Jun-2001')

datenum('04-Sep-2001')

datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 1;

Compounding = 12;

[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates,...

Settle, Compounding, [], InputCompounding)

ZeroRates =

0.0484

0.0529

0.0549

0.0550

0.0547

0.0544

0.0545

0.0551

0.0572

0.0557

CurveDates =

730796

730831

730866

730887

730914

730943

17-731

pyld2zero

730971

731027

731098

731167

For readability, ParRates and ZeroRates are shown only to the basis
point. However, MATLAB computes them at full precision. If you enter
ParRates as shown, ZeroRates may differ due to rounding.

See Also zero2pyld

How To • “Term Structure of Interest Rates” on page 2-36

17-732

rdivide

Purpose Financial time series division

Syntax newfts = tsobj_1 ./ tsobj_2
newfts = tsobj ./ array
newfts = array ./ tsobj

Arguments

tsobj_1, tsobj_2 Pair of financial time series objects.

array Scalar value or array with the number of rows
equal to the number of dates in tsobj and the
number of columns equal to the number of data
series in tsobj.

Description The rdivide method divides, element by element, the components of
one financial time series object by the components of the other. You
can also divide the whole object by an array or divide a financial time
series object into an array.

If an object is to be divided by another object, both objects must have
the same dates and data series names, although the order need not be
the same. The order of the data series, when an object is divided by
another object, follows the order of the first object.

newfts = tsobj_1 ./ tsobj_2 divides financial time series objects
element by element.

newfts = tsobj ./ array divides a financial time series object
element by element by an array.

newfts = array ./ tsobj divides an array element by element by a
financial time series object.

For financial time series objects, the rdivide operation is identical
to the mrdivide operation.

17-733

rdivide

See Also minus | mrdivide | plus | times

17-734

renko

Purpose Renko chart

Syntax renko(X)
renko(X, threshold)

Arguments

X M-by-2 matrix where the first column contains date
numbers and the second column is the asset price.

threshold (Optional) Specifies a threshold value for asset price.
By default, threshold is set to 1.

Description renko(X) plots asset price with respect to dates.

renko(X, threshold) plots the asset data, X, adding a new box
only when the price has changed but at least the value specified by
threshold.

Examples If asset X is an M-by-2 matrix of date numbers and asset price:

X = [...

733299.00 41.99;...
733300.00 42.14;...
733303.00 41.93;...
733304.00 41.98;...
733305.00 41.75;...
733306.00 41.61;...
733307.00 42.29;...
733310.00 42.19;...
733311.00 41.82;...
733312.00 41.93;...
733313.00 41.81;...
733314.00 41.37;...
733317.00 41.17;...

17-735

renko

733318.00 42.02]

then the Renko chart is

renko(X)

which plots the asset prices with respect to dates.

See Also bolling | candle | highlow | kagi | linebreak | movavg | pointfig
| priceandvol | volarea

17-736

resamplets

Purpose Downsample data

Syntax newfts = resamplets(oldfts, samplestep)

Description newfts = resamplets(oldfts, samplestep) downsamples the data
contained in the financial time series object oldfts every samplestep
periods. For example, to have the new financial time series object
contain every other data element from oldfts, set samplestep to 2.

newfts is a financial time series object containing the same data series
(names) as the input oldfts.

See Also filter

17-737

ret2tick

Purpose Convert return series to price series

Syntax [TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice,
RetIntervals, StartTime, Method)

Arguments

RetSeries Number of observations (NUMOBS) by number
of assets (NASSETS) time series array of
asset returns associated with the prices in
TickSeries. The ith return is quoted for the
period TickTimes(i) to TickTimes(i+1) and is
not normalized by the time increment between
successive price observations.

StartPrice (Optional) 1-by-NASSETS vector of initial asset
prices or a single scalar initial price applied to
all assets. Prices start at 1 if StartPrice is
not specified.

RetIntervals (Optional) Scalar or NUMOBS-by-1 vector of
interval times between observations. If this
argument is not specified, all intervals are
assumed to have length 1.

StartTime (Optional) Starting time for first observation,
applied to the price series of all assets. The
default is zero.

Method (Optional) Character string indicating the
method to convert asset returns to prices. Must
be 'Simple' (default) or 'Continuous'. If
Method is 'Simple', ret2tick uses simple
periodic returns. If Method is 'Continuous',
the function uses continuously compounded
returns. Case is ignored for Method.

17-738

ret2tick

Description [TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice,
RetIntervals, StartTime, Method) generates price values from the
starting prices of NASSETS investments and NUMOBS incremental return
observations.

TickSeries is a NUMOBS+1-by-NASSETS times series array of equity
prices. The first row contains the oldest observations and the last row
the most recent. Observations across a given row occur at the same
time for all columns. Each column is a price series of an individual
asset. If Method is unspecified or 'Simple', the prices are

TickSeries(i+1) = TickSeries(i)*[1 + RetSeries(i)]

If Method is 'Continuous', the prices are

TickSeries(i+1) = TickSeries(i)*exp[RetSeries(i)]

TickTimes is a NUMOBS+1 column vector of monotonically increasing
observation times associated with the prices in TickSeries. The initial
time is zero unless specified in StartTime, and sequential observation
times occur at unit increments unless specified in RetIntervals.

Examples Compute the price increase of two stocks over a year’s time based on
three incremental return observations.

RetSeries = [0.10 0.12

0.05 0.04

-0.05 0.05];

RetIntervals = [182

91

92];

StartTime = datenum('18-Dec-2000');

[TickSeries,TickTimes] = ret2tick(RetSeries,[],RetIntervals,...

StartTime)

17-739

ret2tick

TickSeries =

1.0000 1.0000

1.1000 1.1200

1.1550 1.1648

1.0973 1.2230

TickTimes =

730838

731020

731111

731203

datestr(TickTimes)

ans =

18-Dec-2000

18-Jun-2001

17-Sep-2001

18-Dec-2001

See Also portsim | tick2ret

17-740

ret2tick (fts)

Purpose Convert return series to price series for time series object

Syntax priceFts = ret2tick(returnFts)
priceFts = ret2tick(returnFts, 'PARAM1', VALUE1,
'PARAM2', VALUE2', ...)

Arguments

returnFts Financial time series object of returns.

'PARAM1' (Optional) StartPrice is a Numeric value and
is a scalar or 1-by-N vector of initial prices for
each asset. If StartPrice is unspecified or
empty, the initial price of all assets is 1.

'PARAM2' (Optional) StartTime is Date value for a scalar
date number or a single date string specifying
the starting time for the first observation. This
date is applied to the price series of all assets.

Note The first period price value of the
resulting price series will not be reported if
StartTime is not specified. The resulting price
series will be scaled based on the StartPrice,
even if StartTime is not supplied.

'PARAM3' (Optional) Method is a character string
indicating the method to convert asset returns
to prices. The value must be defined as
'Simple' (default) or 'Continuous'. If
Method is 'Simple', ret2tick uses simple
periodic returns. If Method is 'Continuous',
the function uses continuously compounded
returns. Case is ignored for Method.

17-741

ret2tick (fts)

Description priceFts = ret2tick(returnFts, 'PARAM1', VALUE1, 'PARAM2',
VALUE2', ...) generates a financial time series object of prices.

If Method is unspecified or 'Simple', the prices are

PriceSeries(i+1) = PriceSeries(i)*[1 + ReturnSeries(i)]

If Method is 'Continuous', the prices are

PriceSeries(i+1) = PriceSeries(i)*exp[ReturnSeries(i)]

Examples Compute the price series from the following return series:

RetSeries = [0.10 0.12
0.05 0.04

-0.05 0.05]

Use the following dates:

Dates = {'18-Jun-2001'; '17-Sep-2001'; '18-Dec-2001'}

where

ret = fints(Dates, RetSeries)
ret =
desc: (none)
freq: Unknown (0)

'dates: (3)' 'series1: (3)' 'series2: (3)'
'18-Jun-2001' [0.1000] [0.1200]
'17-Sep-2001' [0.0500] [0.0400]
'18-Dec-2001' [-0.0500] [0.0500]

PriceFtS is computed as:

PriceFts = ret2tick(ret, 'StartPrice', 100, 'StartTime', '18-Dec-2000')

17-742

ret2tick (fts)

PriceFts =

desc: (none)

freq: Unknown (0)

'dates: (4)' 'series1: (4)' 'series2: (4)'

'18-Dec-2000' [100] [100]

'18-Jun-2001' [110.0000] [112.0000]

'17-Sep-2001' [115.5000] [116.4800]

'18-Dec-2001' [109.7250] [122.3040]

See Also portsim | tick2ret

17-743

rmfield

Purpose Remove data series

Syntax fts = rmfield(tsobj, fieldname)

Arguments

tsobj Financial time series object.

fieldname String array containing the data series name to
remove a single series from the object. Cell array of
data series names to remove multiple data series
from the object at the same time.

Description fts = rmfield(tsobj, fieldname) removes the data series
fieldname and its contents from the financial time series object tsobj.

See Also chfield | extfield | fieldnames | getfield | isfield

17-744

rsindex

Purpose Relative Strength Index (RSI)

Syntax rsi = rsindex(closep, nperiods)
rsits = rsindex(tsobj, nperiods)
rsits = rsindex(tsobj, nperiods, ParameterName, ParameterValue)

Arguments

closep Vector of closing prices.

nperiods (Optional) Number of periods. Default = 14.

tsobj Financial time series object.

Description rsi = rsindex(closep, nperiods) calculates the Relative Strength
Index (RSI) from the closing price vector closep.

rsits = rsindex(tsobj, nperiods) calculates the RSI from the
closing price series in the financial time series object tsobj. The object
tsobj must contain at least the series Close, representing the closing
prices. The output rsits is a financial time series object whose dates
are the same as tsobj and whose data series name is RSI.

rsits = rsindex(tsobj, nperiods, ParameterName,
ParameterValue) accepts a parameter name/parameter value pair as
input. This pair specifies the name for the required data series if it is
different from the expected default name. The valid parameter name is

CloseName: closing prices series name

The parameter value is the string that represents the valid parameter
name.

1 The relative strength factor is calculated by dividing the average of
the gains by the average of the losses within a specified time period:
RS = (average gains)/(average losses).

17-745

rsindex

2 The first value of RSI, RISI(1), is set as NaN to preserve the
dimensions of CLOSEP.

Examples Compute the RSI for Disney stock and plot the results:

load disney.mat
dis_RSI = rsindex(dis)
plot(dis_RSI)
title('Relative Strength Index for Disney')

References Murphy, John J., Technical Analysis of the Futures Market, New York
Institute of Finance, 1986, pp. 295-302.

See Also negvolidx | posvolidx

17-746

second

Purpose Seconds of date or time

Syntax Seconds = second(Date)

Description Seconds = second(Date) returns the seconds given a serial date
number or a date string.

Examples Seconds = second(738647.558427893)

or

Seconds = second('06-May-2022, 13:24:08.17')

returns

Seconds =

8.1700

See Also datevec | hour | minute

17-747

selectreturn

Purpose Portfolio configurations from 3-D efficient frontier

Syntax PortConfigs = selectreturn(AllMean, All Covariance, Target)

Arguments

AllMean Number of curves (NCURVES) by 1 cell array
where each element is a 1-by-NASSETS (number
of assets) vector of the expected asset returns
used to generate each curve on the surface.

AllCovariance NCURVES-by-1 cell array where each element is
an NASSETS-by-NASSETS vector of the covariance
matrix used to generate each curve on the
surface.

Target Target return value for each curve in the
frontier.

Description PortConfigs = selectreturn(AllMean, All Covariance, Target)
returns the portfolio configurations for a target return given the average
return and covariance for a rolling efficient frontier.

PortConfigs is a NASSETS-by-NCURVES matrix of asset allocation weights
needed to obtain the target rate of return.

See Also frontier

17-748

Portfolio.setAssetList

Superclasses AbstractPortfolio

Purpose Set up list of identifiers for assets

Syntax obj = setAssetList(obj, varargin)

Description obj = setAssetList(obj, varargin) to set up a list of identifiers
for the assets.

Tips • Use dot notation to set up list of identifiers for assets:

obj = obj.setAssetList(varargin);

• To clear an AssetList, call this method with[] or{[]}.

Input
Arguments

obj

A portfolio object [Portfolio].

varargin

Asset identifiers. Either a comma-separated list of strings or a
vector cell array of strings. Each string is an asset identifier.

If an asset list is entered as an input, this method overwrites an
existing asset list in the object if one exists.

If no asset list is entered as an input, three actions can occur:

• If NumAssets is nonempty and AssetList is empty, AssetList
becomes a numbered list of assets with default names according
to the hidden property in defaultforAssetList (currently
'Asset').

• If NumAssets is nonempty and AssetList is nonempty, nothing
happens.

• If NumAssets is empty and AssetList is empty, the default
NumAssets =1 is set and a default asset list is created (currently
'Asset1').

17-749

Portfolio.setAssetList

For more information on setting up a list of asset identifiers, see
“Common Operations on the Portfolio Object” on page 4-30.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Note The underlying object has a number of public hidden
properties to format the asset list:

• defaultforAssetList — Default name for assets, currently
'Asset'. Change this name to create default asset names such
as 'ETF', 'Bond', and so on.

• sortAssetList— Reserved for future implementation.

• uppercaseAssetList — If true, make all asset identifiers
uppercase strings. Otherwise does nothing. Default is false.

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples To create a default list of asset names with three assets:

p = Portfolio('NumAssets',3);
p = p.setAssetList;
disp(p.AssetList);

'Asset1' 'Asset2' 'Asset3'

17-750

Portfolio.setAssetList

To create a list of asset names for three equities AGG, EEM, and VEU:

p = Portfolio;
p = p.setAssetList('AGG', 'EEM', 'VEU');
disp(p.AssetList);

'AGG' 'EEM' 'VEU'

See Also Portfolio |

Tutorials • “Common Operations on the Portfolio Object” on page 4-30

How To • “Setting Up a List of Asset Identifiers” on page 4-31

17-751

Portfolio.setAssetMoments

Purpose Set moments (mean and covariance) of asset returns

Syntax obj = setAssetMoments(obj, AssetMean)
obj = setAssetMoments(obj, AssetMean, AssetCovar, NumAssets)

Description obj = setAssetMoments(obj, AssetMean) to set the mean of asset
returns.

obj = setAssetMoments(obj, AssetMean, AssetCovar,
NumAssets) to set moments (mean and covariance) of the asset returns
with additional options for AssetCovar and NumAssets.

Tips • Use dot notation to set moments (mean and covariance) of the asset
returns:

obj = obj.setAssetMoments(obj, AssetMean, AssetCovar, NumAssets);

• To clear AssetMean and AssetCovar, use this method to set these
respective inputs to [].

Input
Arguments

obj

A portfolio object [Portfolio].

AssetMean

Mean of asset returns [vector].

Note If AssetMean is a scalar and the number of assets is known,
scalar expansion occurs. If the number of assets cannot be
determined, this method assumes that NumAssets = 1.

AssetCovar

(Optional) Covariance of asset returns [matrix].

17-752

Portfolio.setAssetMoments

Note AssetCovar must be a symmetric positive-semidefinite
matrix.

If AssetCovar is a scalar and the number of assets is known,
a diagonal matrix is formed with the scalar value along the
diagonals. If it is not possible to determine the number of assets,
this method assumes that NumAssets = 1.

If AssetCovar is a vector, a diagonal matrix is formed with the
vector along the diagonal.

NumAssets

(Optional) Number of assets [integer].

Note If NumAssets is not already set in the object, NumAssets
can be entered to resolve array expansions with AssetMean or
AssetCovar.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Set the asset moment properties, given the mean and covariance of
asset returns in the variables m and C:

17-753

Portfolio.setAssetMoments

m = [0.05; 0.1; 0.12; 0.18];
C = [0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225];

m = m/12;
C = C/12;

p = Portfolio;
p = p.setAssetMoments(m, C);
[assetmean, assetcovar] = p.getAssetMoments

assetmean =

0.0042
0.0083
0.0100
0.0150

assetcovar =

0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028

0 0.0010 0.0028 0.0102

See Also estimateAssetMoments | Portfolio | estimateFrontierByRisk

Tutorials • “Working with Asset Returns and Moments of Asset Returns” on
page 4-37

17-754

Portfolio.setBounds

Superclasses AbstractPortfolio

Purpose Set up bounds for portfolio weights

Syntax obj = setBounds(obj, LowerBound)
obj = setBounds(obj, LowerBound, UpperBound, NumAssets)

Description obj = setBounds(obj, LowerBound) to set up the lower bound for
portfolio weights.

obj = setBounds(obj, LowerBound, UpperBound, NumAssets) to set
up bounds for portfolio weights with additional options for UpperBound,
and NumAssets.

Given bound constraints LowerBound and UpperBound, every weight
in a portfolio Port must satisfy:

LowerBound <= Port <= UpperBound

Tips Use dot notation to set up the bounds for portfolio weights:

obj = obj.setBounds(LowerBound, UpperBound, NumAssets);

Input
Arguments

obj

A portfolio object [Portfolio].

LowerBound

Lower-bound weight for each asset [vector].

UpperBound

(Optional) Upper-bound weight each asset [vector].

NumAssets

(Optional) Number of assets in portfolio [scalar]. NumAssets
cannot be used to change the dimension of a portfolio object.

17-755

Portfolio.setBounds

Note If either LowerBound or UpperBound are input as empties with
[], the corresponding attributes in the portfolio object are cleared and
set to [].

If LowerBound or UpperBound are specified as scalars and NumAssets
exists or can be imputed, then they undergo scalar expansion. The
default value for NumAssets is 1.

If both LowerBound and UpperBound exist and they are not ordered
correctly, this method switches bounds if necessary.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Suppose you have a balanced fund with stocks that can range between
50% and 75% of your portfolio and bonds that can range between 25%
and 50% of your portfolio. The bound constraints for a balanced fund
can be set with:

lb = [0.5; 0.25];
ub = [0.75; 0.5];

p = Portfolio;
p = p.setBounds(lb, ub);
disp(p.NumAssets);

17-756

Portfolio.setBounds

disp(p.LowerBound);
disp(p.UpperBound);

2

0.5000
0.2500

0.7500
0.5000

See Also Portfolio | getBounds

Tutorials • “Bound Constraints” on page 4-7

How To • “Working with Bound Constraints” on page 4-56

17-757

Portfolio.setBudget

Superclasses AbstractPortfolio

Purpose Set up budget constraints

Syntax obj = setBudget(obj, LowerBudget)
obj = setBudget(obj, LowerBudget, UpperBudget)

Description obj = setBudget(obj, LowerBudget) to set up the lower budget
constraint.

obj = setBudget(obj, LowerBudget, UpperBudget) to set up budget
constraints with an additional option for UpperBudget.

Tips Use dot notation to set up the budget constraints:

obj = obj.setBudget(LowerBudget, UpperBudget);

Input
Arguments

obj

A portfolio object [Portfolio].

LowerBudget

Lower-bound for budget constraint [scalar].

UpperBudget

(Optional) Upper-bound for budget constraint [scalar].

17-758

Portfolio.setBudget

Note Given bounds for a budget constraints in either LowerBudget
or UpperBudget, budget constraints requires any portfolio in Port to
satisfy:

LowerBudget <= sum(Port) <= UpperBudget

One or both constraints may be specified. The usual budget constraint
for a fully-invested portfolio is to have LowerBudget = UpperBudget
= 1. However, if the portfolio has allocations in cash, the budget
constraints can be used to specify the cash constraints. For example,
if the portfolio can hold between 0% and 10% in cash, the budget
constraint would be set up with

obj = obj.setBudget(0.9, 1)

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Assume you have a fund that permits up to 10% leverage, which means
that your portfolio can be between 100% and 110% invested in risky
assets. Given a portfolio object p, set the budget constraint:

p = Portfolio;
p = p.setBudget(1, 1.1);

17-759

Portfolio.setBudget

disp(p.LowerBudget);
disp(p.UpperBudget);

1

1.1000

See Also Portfolio | getBudget

Tutorials • “Budget Constraints” on page 4-8

How To • “Working with Budget Constraints” on page 4-59

17-760

Portfolio.setCosts

Superclasses AbstractPortfolio

Purpose Set up proportional transaction costs

Syntax obj = setCosts(obj, BuyCost)
obj = setCosts(obj, BuyCost, SellCost, InitPort, NumAssets)

Description obj = setCosts(obj, BuyCost) to set up proportional transaction
costs to purchase assets.

obj = setCosts(obj, BuyCost, SellCost, InitPort, NumAssets)
to set up proportional transaction costs with additional options specified
for SellCost, InitPort, and NumAssets.

Given proportional transaction costs and an initial portfolio in the
variables BuyCost, SellCost, and InitPort, the transaction costs for
any portfolio Port reduce expected portfolio return by:

BuyCost' * max{ 0, Port - InitPort } + SellCost' * max{ 0, InitPort - Port }

Tips • Use dot notation to set up proportional transaction costs:

obj = obj.setCosts(BuyCost, SellCost, InitPort, NumAssets);

• If BuyCost or SellCost are input as empties with [], the
corresponding attributes in the portfolio object are cleared and set
to []. If InitPort is set to empty with [], it will only be cleared
and set to [] if BuyCost, SellCost, and Turnover are also empty.
Otherwise, it is an error.

Input
Arguments

obj

A portfolio object [Portfolio].

BuyCost

Proportional transaction cost to purchase each asset [vector].

17-761

Portfolio.setCosts

SellCost

Proportional transaction cost to sell each asset [vector].

InitPort

Initial or current portfolio weights [vector].

Note If no InitPort is specified, that value is assumed to be 0.

NumAssets

Number of assets in portfolio [scalar]. NumAssets cannot be used
to change the dimension of a portfolio object.

Note If BuyCost, SellCost, or InitPort are specified as scalars and
NumAssets exists or can be imputed, then these values undergo scalar
expansion. The default value for NumAssets is 1.

Transaction costs in BuyCost and SellCost are positive valued if they
introduce a cost to trade. In some cases, they can be negative valued,
which implies trade credits.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

17-762

Portfolio.setCosts

Examples Assume you have the same costs and initial portfolio as in the previous
example. Given a portfolio object p with an initial portfolio already set,
use setCosts to set up transaction costs:

bc = [0.00125; 0.00125; 0.00125; 0.00125; 0.00125];
sc = [0.00125; 0.007; 0.00125; 0.00125; 0.0024];
x0 = [0.4; 0.2; 0.2; 0.1; 0.1];

p = Portfolio('InitPort', x0);
p = p.setCosts(bc, sc);

disp(p.NumAssets);
disp(p.BuyCost);
disp(p.SellCost);
disp(p.InitPort);

5

0.0013
0.0013
0.0013
0.0013
0.0013

0.0013
0.0070
0.0013
0.0013
0.0024

0.4000
0.2000
0.2000
0.1000
0.1000

See Also setInitPort | getCosts | Portfolio |

17-763

Portfolio.setCosts

How To • “Working with Transaction Costs” on page 4-50

17-764

Portfolio.setDefaultConstraints

Superclasses AbstractPortfolio

Purpose Set up portfolio constraints with nonnegative weights that must sum
to 1

Syntax obj = setDefaultConstraints(obj)
obj = setDefaultConstraints(obj, NumAssets)

Description obj = setDefaultConstraints(obj) to set up the portfolio constraints
with nonnegative weights that must sum to 1.

obj = setDefaultConstraints(obj, NumAssets) to set up the
portfolio constraints with nonnegative weights that must sum to 1 with
an additional option for NumAssets.

A "default" portfolio set has LowerBound = 0 and LowerBudget =
UpperBudget = 1 such that a portfolio Port must satisfy sum(Port) =
1 with Port >= 0 .

Tips • Use dot notation to set up the default portfolio set:

obj = obj.setDefaultConstraints(NumAssets);

• This method does not modify any existing constraints in a portfolio
object other than the bound and budget constraints. If an UpperBound
constraint exists, it is cleared and set to [].

Input
Arguments

obj

A portfolio object [Portfolio].

NumAssets

(Optional) Number of assets in portfolio [scalar]. NumAssets
cannot be used to change the dimension of a portfolio object.

Default: 1

17-765

Portfolio.setDefaultConstraints

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Assume you have 20 assets, you can define the “default” portfolio set
as follows:

p = Portfolio('NumAssets', 20);
p = p.setDefaultConstraints;
disp(p);

disp(p);
Portfolio

Properties:
BuyCost: []

SellCost: []
RiskFreeRate: []

AssetMean: []
AssetCovar: []

Turnover: []
Name: []

NumAssets: 20
AssetList: []
InitPort: []

AInequality: []
bInequality: []

AEquality: []

17-766

Portfolio.setDefaultConstraints

bEquality: []
LowerBound: [20x1 double]
UpperBound: []

LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []

GroupA: []
GroupB: []

LowerRatio: []
UpperRatio: []

Methods, Superclasses

See Also setBounds | getBounds | setBudget | Portfolio

How To • “Setting Default Constraints for Portfolio Weights” on page 4-53

17-767

Portfolio.setEquality

Superclasses AbstractPortfolio

Purpose Set up linear equality constraints for portfolio weights

Syntax obj = setEquality(obj, AEquality, bEquality)

Description obj = setEquality(obj, AEquality, bEquality) to set up linear
equality constraints for portfolio weights.

Given linear equality constraint matrix AEquality and vector
bEquality, every weight in a portfolio Port must satisfy:

AEquality * Port = bEquality

Tips • Use dot notation to set up linear equality constraints for portfolio
weights:

obj = obj.setEquality(AEquality, bEquality);

• Linear equality constraints can be removed from a portfolio object by
entering [] for each property you want to remove.

Input
Arguments

obj

A portfolio object [Portfolio].

AEquality

Matrix to form linear equality constraints [matrix].

bEquality

Vector to form linear equality constraints [vector].

Note An error results if AEquality is empty and bEquality is
nonempty or if AEquality is nonempty and bEquality is empty.

17-768

Portfolio.setEquality

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Suppose you have a portfolio of five assets, and you want to ensure that
the first three assets are exactly 50% of your portfolio. Given a portfolio
object p, set the linear equality constraints with:

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setEquality(A, b);
disp(p.NumAssets);
disp(p.AEquality);
disp(p.bEquality);

5

1 1 1 0 0

0.5000

See Also addEquality | getEquality | Portfolio

Tutorials • “Linear Equality Constraints” on page 4-7

How To • “Working with Linear Equality Constraints” on page 4-67

17-769

Portfolio.setGroupRatio

Superclasses AbstractPortfolio

Purpose Set up group ratio constraints for portfolio weights

Syntax obj = setGroupRatio(obj, GroupA)
obj = setGroupRatio(obj, GroupA, GroupB, LowerRatio,
UpperRatio)

Description obj = setGroupRatio(obj, GroupA) to set up the group ratio
constraints for portfolio weights with lower bound on the ratio between
groups.

obj = setGroupRatio(obj, GroupA, GroupB, LowerRatio,
UpperRatio) to set up group ratio constraints for portfolio weights with
an additional option specified for UpperRatio.

Given base and comparison group matrices GroupA and GroupB and
LowerRatio or UpperRatio bounds, group ratio constraints require any
portfolio in Port to satisfy:

(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

Caution

This collection of constraints usually require that portfolio weights
be nonnegative and that the products GroupA * Port and GroupB *
Port are always nonnegative. Although negative portfolio weights and
non-Boolean group ratio matrices are supported, use with caution.

Tips • Use dot notation to set up group ratio constraints for portfolio weight:

obj = obj.setGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio);

• To remove group ratio constraints, enter empty arrays for the
corresponding arrays. To add to existing group ratio constraints,
use addGroupRatio.

17-770

Portfolio.setGroupRatio

Input
Arguments

obj

A portfolio object [Portfolio].

GroupA

Matrix that forms base groups for comparison [matrix].

GroupB

Matrix that forms comparison groups [matrix].

Note The group matrices GroupA and GroupB are usually
indicators of membership in groups, which means that their
elements are usually either 0 or 1. Because of this interpretation,
GroupA and GroupB matrices can be either logical or numerical
arrays.

LowerGroup

Lower-bound for ratio of GroupB groups to GroupA groups [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion
to be conformable with the group matrices.

UpperRatio

(Optional) Upper-bound for ratio of GroupB groups to GroupA
groups [vector].

Note If input is scalar, UpperRatio undergoes scalar expansion
to be conformable with the group matrices.

17-771

Portfolio.setGroupRatio

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Suppose you want to make sure that the ratio of financial to nonfinancial
companies in your portfolio never goes above 50%. Assume you have
12 assets with 6 financial companies (assets 1-6) and 6 nonfinanical
companies (assets 7-12). Group ratio constraints can be set with:

GA = [true true true false false false]; % financial companies

GB = [false false false true true true]; % non-financial companies

p = Portfolio;

p = p.setGroupRatio(GA, GB, [], 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1 1 1 0 0 0

0 0 0 1 1 1

0.5000

See Also addGroupRatio | getGroupRatio | Portfolio |

17-772

Portfolio.setGroupRatio

Tutorials • “Group Ratio Constraints” on page 4-10

How To • “Working with Group Ratio Constraints” on page 4-64

17-773

Portfolio.setGroups

Superclasses AbstractPortfolio

Purpose Set up group constraints for portfolio weights

Syntax obj = setGroups(obj, GroupMatrix, LowerGroup)
obj = setGroups(obj, GroupMatrix, LowerGroup, UpperGroup)

Description obj = setGroups(obj, GroupMatrix, LowerGroup) to set up group
constraints for portfolio weights subject to a lower bound on groups.

obj = setGroups(obj, GroupMatrix, LowerGroup, UpperGroup) to
set up group constraints for portfolio weights with an additional options
specified for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio
Port must satisfy:

LowerGroup <= GroupMatrix * Port <= UpperGroup

Tips • Use dot notation to set up group constraints for portfolio weights:

obj = obj.setGroups(GroupMatrix, LowerGroup, UpperGroup);

• To remove group constraints, enter empty arrays for the
corresponding arrays. To add to existing group constraints, use
addGroups.

Input
Arguments

obj

A portfolio object [Portfolio].

GroupMatrix

Group constraint matrix [matrix].

17-774

Portfolio.setGroups

Note The group matrix GroupMatrix is usually an indicator of
membership in groups, which means that its elements are usually
either 0 or 1. Because of this interpretation, GroupMatrix can be
either a logical or numerical matrix.

LowerGroup

Lower-bound for group constraints [vector].

Note If input is scalar, LowerGroup undergoes scalar expansion
to be conformable with GroupMatrix.

UpperGroup

Upper-bound for group constraints [vector].

Note If input is scalar, UpperGroup undergoes scalar expansion
to be conformable with GroupMatrix.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

17-775

Portfolio.setGroups

Examples Suppose you have a portfolio of five assets and you want to ensure that
the first three assets constitute no more than 30% of your portfolio.
Given a portfolio object p, set the group constraints with:

G = [true true true false false];
p = Portfolio;
p = p.setGroups(G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);

5

1 1 1 0 0

0.3000

See Also addGroups | Portfolio | getGroups

Tutorials • “Group Constraints” on page 4-9

How To • “Working with Group Constraints” on page 4-60

17-776

Portfolio.setInequality

Superclasses AbstractPortfolio

Purpose Set up linear inequality constraints for portfolio weights

Syntax obj = setInequality(obj, AInequality, bInequality)

Description obj = setInequality(obj, AInequality, bInequality) to set up
linear inequality constraints for portfolio weights.

Given a linear inequality constraint matrix AInequality and vector
bInequality, every weight in a portfolio Port must satisfy:

AInequality * Port <= bInequality

Tips • Use dot notation to set up linear inequality constraints for portfolio
weights:

obj = obj.setInequality(AInequality, bInequality);

• To remove inequality constraints enter empty arguments. To add to
existing inequality constraints, use addInequality.

Input
Arguments

obj

A portfolio object [Portfolio].

AEquality

Matrix to form linear inequality constraints [matrix].

bEquality

Vector to form linear inequality constraints [vector].

Note An error results if AInequality is empty and bInequality is
nonempty or if AInequality is nonempty and bInequality is empty.

17-777

Portfolio.setInequality

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Suppose you have a portfolio of five assets and you want to ensure that
the first three assets are no more than 50% of your portfolio. Given a
portfolio object p, set the linear inequality constraints with:

A = [1 1 1 0 0];
b = 0.5;
p = Portfolio;
p = p.setInequality(A, b);
disp(p.NumAssets);
disp(p.AInequality);
disp(p.bInequality);

5

1 1 1 0 0

0.5000

See Also addInequality | Portfolio | getInequality

Tutorials • “Linear Inequality Constraints” on page 4-6

How To • “Working with Linear Inequality Constraints” on page 4-69

17-778

Portfolio.setInitPort

Superclasses AbstractPortfolio

Purpose Set up initial or current portfolio

Syntax obj = setInitPort(obj, InitPort)
obj = setInitPort(obj, InitPort, NumAssets)

Description obj = setInitPort(obj, InitPort) to set up the initial or current
portfolio.

obj = setInitPort(obj, InitPort, NumAssets) to set up the initial
or current portfolio with an additional options specified for NumAssets.

Tips • Use dot notation to set up initial or current portfolio:

obj = obj.setInitPort(InitPort, NumAssets);

• To remove an initial portfolio, call this method with an empty
argument [] for InitPort.

Input
Arguments

obj

A portfolio object [Portfolio].

InitPort

Initial or current portfolio weights [vector].

Note If InitPort is specified as a scalar and NumAssets exists,
then InitPort undergoes scalar expansion.

NumAssets

(Optional) Number of assets in portfolio [scalar].

17-779

Portfolio.setInitPort

Note If it is not possible to obtain a value for NumAssets, it is
assumed that NumAssets is 1.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given an initial portfolio in x0, use setInitPort to set the InitPort
property:

p = Portfolio('NumAssets', 4, 'InitPort', 1/4);
x0 = [0.3; 0.2; 0.2; 0.0];
p = p.setInitPort(x0);
disp(p.InitPort);
disp(p.InitPort);
0.3000
0.2000
0.2000

0

To create an equally-weighted portfolio of four assets, use setInitPort:

p = p.setInitPort(1/4, 4);
disp(p.InitPort);
0.2500

17-780

Portfolio.setInitPort

0.2500
0.2500
0.2500

See Also setTurnover | setCosts | Portfolio

Tutorials • “Average Turnover Constraints” on page 4-10

How To • “Working with Average Turnover Constraints” on page 4-71

17-781

Portfolio.setOneWayTurnover

Purpose Set up one-way portfolio turnover constraints

Syntax obj = setOneWayTurnover(obj,BuyTurnover)
obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover,
InitPort,NumAssets)

Description obj = setOneWayTurnover(obj,BuyTurnover) sets up one-way
portfolio turnover constraints.

obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover,
InitPort,NumAssets) to set up the maximum portfolio turnover
constraint with additional options specified by SellTurnover,
InitPort, and NumAssets.

Given an initial portfolio in InitPort and either an upper bound
for portfolio turnover on purchases in BuyTurnover or sales in
SellTurnover, the one-way turnover constraints require any portfolio
in Port to satisfy:

1' * max{ 0, Port - InitPort } <= BuyTurnover
1' * max{ 0, InitPort - Port } <= SellTurnover

Note If Turnover = BuyTurnover = SellTurnover, the constraint is
not equivalent to:

1' * | Port - InitPort | <= Turnover

To set this constraint, use setTurnover.

Tips Use dot notation to set up the maximum portfolio turnover constraint:

obj = obj.setOneWayTurnover(BuyTurnover,SellTurnover,InitPort,NumAssets)

Input
Arguments

obj

Portfolio object [Portfolio].

17-782

Portfolio.setOneWayTurnover

BuyTurnover

Turnover constraint on purchases [scalar].

Note BuyTurnover must be nonnegative and finite.

SellTurnover

(Optional) Turnover constraint on sales [scalar].

Note SellTurnover must be nonnegative and finite.

InitPort

(Optional) Initial or current portfolio weights [vector].

Note InitPort must be a finite vector with NumAssets > 0
elements.

If no InitPort is specified, that value is assumed to be 0.

If InitPort is specified as a scalar and NumAssets exists, then
InitPort undergoes scalar expansion.

NumAssets

(Optional) Number of assets in the portfolio [scalar].

Note If it is impossible to obtain a value for NumAssets, it is
assumed that NumAssets is 1.

17-783

Portfolio.setOneWayTurnover

Output
Arguments

obj

Updated portfolio object [Portfolio].

Definitions One-Way Turnover Constraint

One-way turnover constraints ensure that estimated optimal portfolios
differ from an initial portfolio by no more than specified amounts
according to whether the differences are purchases or sales. The
constraints take the form

1 0 0T
Bx x max ,

1 0 0T
Sx x max ,

with

• x — The portfolio (n vector)

• x0 — Initial portfolio (n vector)

• τB— Upper-bound for turnover constraint on purchases (scalar)

• τS— Upper-bound for turnover constraint on sales (scalar)

where n is the number of assets in the universe.

To specify one-way turnover constraints, use the following properties
in the portfolio object: BuyTurnover for τB, SellTurnover for τS, and
InitPort for x0.

Note The average turnover constraint (which is the turnover constraint
that currently exists in the object) is not just the combination of the
one-way turnover constraints with the same value for the constraint.

17-784

Portfolio.setOneWayTurnover

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Set one-way turnover costs:

p = Portfolio('AssetMean',[0.1, 0.2, 0.15], 'AssetCovar',...

[0.005, -0.010, 0.004; -0.010, 0.040, -0.002; 0.004, -0.002, 0.023]);

p = p.setBudget(1, 1);

p = p.setOneWayTurnover(1.3, 0.3, 0); %130-30 portfolio

p.plotFrontier;

17-785

Portfolio.setOneWayTurnover

See Also setInitPort | Portfolio | setTurnover | getOneWayTurnover

Tutorials • “One-Way Turnover Constraints” on page 4-11

How To • “Working with One-Way Turnover Constraints” on page 4-74

17-786

Portfolio.setOptions

Superclasses AbstractPortfolio

Purpose Set hidden properties in portfolio object

Syntax obj = setOptions(obj)
obj = setOptions(obj, varargin)

Description obj = setOptions(obj) to set the hidden properties in a portfolio
object.

obj = setOptions(obj, varargin) to set the hidden properties in
a portfolio object with additional options specified by one or more
Name,Value pair arguments.

Warning

This method is currently nonfunctional and issues the following
warning message:

Warning: The method setOptions, which will enable modification of hidden properties,

is not supported yet

The only way to modify hidden properties in a portfolio object is by
direct assignment. An exception is the method setSolver, which
permits modification of hidden properties associated with the solvers
used by the portfolio object. In addition, the only way to get or display
hidden properties is by direct access.

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

See Also setSolver | |

17-787

Portfolio.setSolver

Superclasses AbstractPortfolio

Purpose Choose main solver and specify associated solver options for portfolio
optimization

Syntax obj = setSolver(obj, solverType)
obj = setSolver(obj, solverType, varargin)

Description obj = setSolver(obj, solverType) to choose solver for portfolio
optimization.

obj = setSolver(obj, solverType, varargin) to choose solver and
specify associated solver options with additional options specified by
one or more Name,Value pair arguments or an optimset struct.

After you specify a solver, the varargin argument accepts either
name-value pairs to set options or, for the case of solvers from
Optimization Toolbox software, a structure created by optimset.

Tips Use dot notation to choose the solver and specify associated solver
options:

obj = obj.setSolver(solverType, varargin);

Input
Arguments

obj

A portfolio object [Portfolio].

solverType

Solver to use for portfolio optimization [string]. The default
solver for the portfolio object is 'lcprog' with the control
variables 'maxiter', 'tiebreak', 'tolpiv'.

Default: 'lcprog'

Name-Value Pair Arguments or optimset Struct

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding

17-788

Portfolio.setSolver

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

varargin

Options to control the solver specified in solverType as
[name/value pairs or an optimset struct].

Note The default solver for the portfolio object is 'lcprog'.
The portfolio object can also use 'quadprog', which has
several different options that can be set with optimset.
Unlike Optimization Toolbox software which uses the
trust-region-reflective algorithm as the default algorithm
for quadprog, the portfolio optimization tools use the
interior-point-convex algorithm. For more information about
quadprog and quadratic programming algorithms and options,
see “Quadratic Programming Algorithms”.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples If you use quadprog as the solverType, the default is the
interior-point-convex version of quadprog:

p = p.setSolver('quadprog');

17-789

Portfolio.setSolver

display(p.solverType);
quadprog

You can switch back to lcprog with:

p = p.setSolver('lcprog');
display(p.solverType);
lcprog

See Also setOptions | optimset | quadprog |

Tutorials • “Choosing and Controlling the Solver” on page 4-93

17-790

Portfolio.setTurnover

Purpose Set up maximum portfolio turnover constraint

Syntax obj = setTurnover(obj, Turnover)
obj = setTurnover(obj, Turnover, InitPort, NumAssets)

Description obj = setTurnover(obj, Turnover) to set up the maximum portfolio
turnover constraint.

obj = setTurnover(obj, Turnover, InitPort, NumAssets) to set
up the maximum portfolio turnover constraint with additional options
specified by InitPort and NumAssets.

Given an upper bound for portfolio turnover in Turnover and an initial
portfolio in InitPort, the turnover constraint requires any portfolio in
Port to satisfy:

1' * | Port - InitPort | <= Turnover

Tips Use dot notation to set up the maximum portfolio turnover constraint:

obj = obj.setTurnover(Turnover, InitPort, NumAssets);

Input
Arguments

obj

A portfolio object [Portfolio].

Turnover

Portfolio turnover constraint [scalar].

Note Turnover must be nonnegative and finite.

InitPort

(Optional) Initial or current portfolio weights [vector].

17-791

Portfolio.setTurnover

Note InitPort must be a finite vector with NumAssets > 0
elements.

If no InitPort is specified, that value is assumed to be 0.

If InitPort is specified as a scalar and NumAssets exists, then
InitPort undergoes scalar expansion.

NumAssets

(Optional) Number of assets in portfolio [scalar].

Note If it is not possible to obtain a value for NumAssets, it is
assumed that NumAssets is 1.

Output
Arguments

obj

Updated portfolio object [Portfolio].

Attributes
Access public

Static false

Hidden false

To learn about attributes of methods, see Method Attributes in the
MATLAB Object-Oriented Programming documentation.

Examples Given a portfolio object p, to ensure that average turnover is no more
than 30% with an initial portfolio of 10 assets in a variable x0, use
setTurnover to set the turnover constraint:

x0 = [0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1];

p = Portfolio('InitPort', x0);

17-792

Portfolio.setTurnover

p = p.setTurnover(0.3);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

See Also setInitPort | Portfolio

Tutorials • “Average Turnover Constraints” on page 4-10

How To • “Working with Average Turnover Constraints” on page 4-71

17-793

setfield

Purpose Set content of specific field

Syntax newfts = setfield(tsobj, field, V)
newfts = setfield(tsobj, field, {dates}, V)

Description setfield treats the contents of fields in a time series object (tsobj) as
fields in a structure.

newfts = setfield(tsobj, field, V) sets the contents of the
specified field to the value V. This is equivalent to the syntax S.field
= V.

newfts = setfield(tsobj, field, {dates}, V) sets the contents of
the specified field for the specified dates. dates can be individual cells
of date strings or a cell of a date string range using the :: operator, for
example,
'03/01/99::03/31/99'. Dates can contain time-of-day information.

Examples Example 1. Set the closing value for all days to 3890.

load dji30short
format bank
myfts1 = setfield(myfts1, 'Close', 3890);

Example 2. Set values for specific times on specific days.

First create a financial time series containing time-of-day data.

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);

myfts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...

'My FINTS')

myfts =

17-794

setfield

desc: My FINTS

freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'

'01-Jan-2001' '11:00' [1]

' " ' '12:00' [2]

'02-Jan-2001' '11:00' [3]

' " ' '12:00' [4]

'03-Jan-2001' '11:00' [NaN]

' " ' '12:00' [6]

Now use setfield to replace the data in myfts with new data starting
at 12:00 on January 1, 2001 and ending at 11:00 on January 3, 2001.

S = setfield(myfts,'Data1',...

{'01-Jan-2001 12:00::03-Jan-2001 11:00'},(102:105)')

S =

desc: My FINTS

freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'

'01-Jan-2001' '11:00' [1.00]

' " ' '12:00' [102.00]

'02-Jan-2001' '11:00' [103.00]

' " ' '12:00' [104.00]

'03-Jan-2001' '11:00' [105.00]

' " ' '12:00' [6.00]

See Also chfield | fieldnames | getfield | isfield | rmfield

17-795

sharpe

Purpose Compute Sharpe ratio for one or more assets

Syntax sharpe(Asset)
sharpe(Asset, Cash)
Ratio = sharpe(Asset, Cash)

Arguments

Asset NUMSAMPLES-by-NUMSERIES matrix with
NUMSAMPLES observations of asset returns for
NUMSERIES asset return series.

Cash (Optional) Either a scalar return for a riskless
asset or a vector of asset returns to be a proxy
for a riskless asset. In either case, the return
periodicity must be the same as the periodicity
of Asset. For example, if Asset is monthly
data, then Cash must be monthly returns. If
no value is supplied, the default value for Cash
returns is 0.

Description Given NUMSERIES assets with NUMSAMPLES returns for each asset in
a NUMSAMPLES-by-NUMSERIES matrix Asset and given either a scalar
Cash asset return or a vector of Cash asset returns, the Sharpe ratio is
computed for each asset.

The output is Ratio, a 1-by-NUMSERIES row vector of Sharpe ratios for
each series in Asset. Any series in Asset with standard deviation of
returns equal to 0 will have a NaN value for its Sharpe ratio.

17-796

sharpe

Note If Cash is a vector, Asset and Cash need not have the same
number of returns but must have the same periodicity of returns.
The classic Sharpe ratio assumes that Cash is riskless. In reality, a
short-term cash rate is not necessarily riskless. NaN values in the data
are ignored.

Examples See “Sharpe Ratio Example” on page 5-6.

References William F. Sharpe, "Mutual Fund Performance," Journal of Business,
Vol. 39, No. 1, Part 2, January 1966, pp. 119-138.

See Also inforatio | portalpha

17-797

size

Purpose Number of dates and data series

Syntax szfts = size(tsobj, dim)
[numRows, numCols] = size(tsobj)

Arguments

tsobj Financial time series object.

dim (Optional) A scalar that specifies the following
dimension:

dim = 1 returns number of dates (rows).

dim = 2 returns number of data series (columns).

Description szfts = size(tsobj) returns the number of dates (rows) and the
number of data series (columns) in the financial time series object
tsobj. The result is returned in the vector szfts, whose first element
is the number of dates and second is the number of data series.

szfts = size(tsobj, dim) specifies the dimension you want to
extract.

numRows returns a scalar representing the number of dates (rows).

numCols returns a scalar representing the number of data series
(columns).

See Also length | size

17-798

smoothts

Purpose Smooth data

Syntax output = smoothts(input)
output = smoothts(input, 'b', wsize)
output = smoothts(input, 'g', wsize, stdev)
output = smoothts(input, 'e', n)

Arguments

input Financial time series object or a row-oriented matrix.
In a row-oriented matrix, each row represents an
individual set of observations.

'b', 'g', or
'e'

Smoothing method (essentially the type of filter
used). Can be Exponential (e), Gaussian (g), or Box
(b). Default = b.

wsize Window size (scalar). Default = 5.

stdev Scalar that represents the standard deviation of the
Gaussian window. Default = 0.65.

n For Exponential method, specifies window size or
exponential factor, depending upon value.

• n > 1 (window size) or period length

• n < 1 and > 0 (exponential factor: alpha)

• n = 1 (either window size or alpha)

If n is not supplied, the defaults are wsize = 5 and
alpha = 0.3333.

Description smoothts smooths the input data using the specified method.

output = smoothts(input) smooths the input data using the default
Box method with window size, wsize, of 5.

17-799

smoothts

output = smoothts(input, 'b', wsize) smooths the input data using
the Box (simple, linear) method. wsize specifies the width of the box
to be used.

output = smoothts(input, 'g', wsize, stdev) smooths the input
data using the Gaussian window method.

output = smoothts(input, 'e', n) smooths the input data using the
Exponential method. n can represent the window size (period length)
or alpha. If n > 1, n represents the window size. If 0 < n < 1, n
represents alpha, where

 =
+

2
1wsize

.

If input is a financial time series object, output is a financial time series
object identical to input except for contents. If input is a row-oriented
matrix, output is a row-oriented matrix of the same length.

See Also tsmovavg

17-800

sortfts

Purpose Sort financial time series

Syntax sfts = sortfts(tsobj)
sfts = sortfts(tsobj, flag)
sfts = sortfts(tsobj, seriesnames, flag)
[sfts, sidx] = sortfts(...)

Arguments

tsobj Financial time series object.

flag (Optional) Sort order:

flag = 1; increasing order (default)

flag = -1; decreasing order

seriesnames (Optional) String containing a data series name or
cell array containing a list of data series names.

Description sfts = sortfts(tsobj) sorts the financial time series object tsobj
in increasing order based only upon the 'dates' vector if tsobj does
not contain time-of-day information. If the object includes time-of-day
information, the sort is based upon a combination of the 'dates' and
'times' vectors. The 'times' vector cannot be sorted individually.

sfts = sortfts(tsobj, flag) sets the order of the sort. flag = 1:
increasing date and time order. flag = -1: decreasing date and time
order.

sfts = sortfts(tsobj, seriesnames, flag) sorts the financial
time series object tsobj based upon the data series name(s)
seriesnames. The seriesnames argument can be a single string
containing a data series name or a cell array containing a list of data
series names. If the optional flag is set to -1, the sort is in decreasing
order.

17-801

sortfts

[sfts, sidx] = sortfts(...) additionally returns the index of
the original object tsobj sorted based on 'dates' or specified data
series name(s).

See Also issorted | sort | sortrows

17-802

spctkd

Purpose Slow stochastics

Syntax [spctk, spctd] = spctkd(fastpctk, fastpctd)
[spctk, spctd] = spctkd([fastpctk fastpctd])
[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod)
[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)
skdts = spctkd(tsobj)
skdts = spctkd(tsobj, dperiods, dmamethod)
skdts = spctkd(tsobj, dperiods, dmamethod, ParameterName,
ParameterValue, ...)

Arguments

fastpctk Fast stochastic F%K (vector).

fastpctd Fast stochastic F%D (vector).

dperiods (Optional) %D periods. Default = 3.

dmamethod (Optional) %D moving average method. Default =
'e' (exponential).

tsobj Financial time series object.

Description [spctk, spctd] = spctkd(fastpctk, fastpctd) calculates the
slow stochastics S%K and S%D. spctk and spctd are column vectors
representing the respective slow stochastics. The inputs must be single
column-oriented vectors containing the fast stochastics F%K and F%D.

[spctk, spctd] = spctkd([fastpctk fastpctd]) accepts a
two-column matrix as input. The first column contains the fast
stochastic F%K values, and the second contains the fast stochastic F%D
values.

[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods,
dmamethod) calculates the slow stochastics, S%K and S%D, using
the value of dperiods to set the number of periods and dmamethod

17-803

spctkd

to indicate the moving average method. The inputs fastpctk and
fastpctk must contain the fast stochastics, F%K and F%D, in column
orientation. spctk and spctd are column vectors representing the
respective slow stochastics.

Valid moving average methods for %D are exponential ('e'), triangular
('t'), and modified ('m'). See tsmovavg for explanations of these
methods.

[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods,
dmamethod) accepts a two-column matrix rather than two separate
vectors. The first column contains the F%K values, and the second
contains the F%D values.

skdts = spctkd(tsobj) calculates the slow stochastics, S%K and
S%D. tsobj must contain the fast stochastics, F%K and F%D, in data
series named PercentK and PercentD. The skdts output is a financial
time series object with the same dates as tsobj. Within tsobj the two
series SlowPctK and SlowPctD represent the respective slow stochastics.

skdts = spctkd(tsobj, dperiods, dmamethod) lets you specify the
length and the method of the moving average used to calculate S%D
values.

skdts = spctkd(tsobj, dperiods, dmamethod, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value pairs
as input. These pairs specify the name(s) for the required data series
if it is different from the expected default name(s). Valid parameter
names are

• KName: F%K series name

• DName: F%D series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the slow stochastics for Disney stock and plot the results:

load disney.mat
dis_FastStoch = fpctkd(dis);

17-804

spctkd

dis_SlowStoch = spctkd(dis_FastStoch);
plot(dis_SlowStoch)
title('Slow Stochastics for Disney')

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 268 - 271.

See Also fpctkd | stochosc | tsmovavg

17-805

std

Purpose Standard deviation

Syntax tsstd = std(tsobj)
tsstd = std(tsobj, flag)

Arguments

tsobj Financial time series object.

flag (Optional) Normalization factor:

flag = 1 normalizes by n (number of observations).

flag = 0 normalizes by n-1.

Description tsstd = std(tsobj) computes the standard deviation of each data
series in the financial time series object tsobj and returns the results
in tsstd. The tsstd output is a structure with field name(s) identical
to the data series name(s).

tsstd = std(tsobj, flag) normalizes the data as indicated by flag.

See Also hist | mean

17-806

stochosc

Purpose Stochastic oscillator

Syntax stosc = stochosc(highp, lowp, closep)
stosc = stochosc([highp lowp closep])
stosc = stochosc(highp, lowp, closep, kperiods, dperiods, dmamethod)
stosc = stochosc([highp lowp closep], kperiods, dperiods, dmamethod)
stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod)
stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,
ParameterName, ParameterValue, ...)

Arguments

highp High price (vector).

lowp Low price (vector).

closep Closing price (vector).

kperiods (Optional) %K periods. Default = 10.

dperiods (Optional) %D periods. Default = 3.

damethod (Optional) %D moving average method. Default =
'e' (exponential).

tsobj Financial time series object.

Description stosc = stochosc(highp, lowp, closep) calculates the fast
stochastics F%K and F%D from the stock price data highp (high prices),
lowp (low prices), and closep (closing prices). stosc is a two-column
matrix whose first column is the F%K values and second is the F%D
values.

stosc = stochosc([highp lowp closep]) accepts a three-column
matrix of high (highp), low (lowp), and closing prices (closep), in that
order.

17-807

stochosc

stosc = stochosc(highp, lowp, closep, kperiods, dperiods,
dmamethod) calculates the fast stochastics F%K and F%D from the
stock price data highp (high prices), lowp (low prices), and closep
(closing prices). kperiods sets the %K period. dperiods sets the %D
period. damethod specifies the %D moving average method. Valid
moving average methods for %D are exponential ('e') and triangular
('t'). See tsmovavg for explanations of these methods.

stosc= stochosc([highp lowp closep], kperiods, dperiods,
dmamethod) accepts a three-column matrix of high (highp), low (lowp),
and closing prices (closep), in that order.

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod)
calculates the fast stochastics F%K and F%D from the stock price data
in the financial time series object tsobj. tsobj must minimally contain
the series High (high prices), Low (low prices), and Close (closing
prices). stoscts is a financial time series object with similar dates to
tsobj and two data series named SOK and SOD.

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,
ParameterName, ParameterValue, ...) accepts parameter
name/parameter value pairs as input. These pairs specify the name(s)
for the required data series if it is different from the expected default
name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the stochastic oscillator for Disney stock and plot the results:

load disney.mat
dis_StochOsc = stochosc(dis)
plot(dis_StochOsc)
title('Stochastic Oscillator for Disney')

17-808

stochosc

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 268 - 271.

See Also fpctkd | spctkd

17-809

subsasgn

Purpose Content assignment

Description subasgn assigns content to a component within a financial time series
object. subasgn supports integer indexing or date string indexing
into the time series object with values assigned to the designated
components. Serial date numbers cannot be used as indices. To use date
string indexing, enclose the date string(s) in a pair of single quotation
marks ' '.

You can use integer indexing on the object as in any other MATLAB
matrix. It will return the appropriate entry(ies) from the object.

You must specify the component to which you want to assign values. An
assigned value must be either a scalar or a column vector.

Examples Given a time series myfts with a default data series name of series1,

myfts.series1('07/01/98::07/03/98') = [1 2 3]';

assigns the values 1, 2, and 3 corresponding to the first three days of
July, 1998.

myfts('07/01/98::07/05/98')

ans =

desc: Data Assignment
freq: Daily (1)

'dates: (5)' 'series1: (5)'
'01-Jul-1998' [1]
'02-Jul-1998' [2]
'03-Jul-1998' [3]
'04-Jul-1998' [4561.2]
'05-Jul-1998' [5612.3]

When the financial time series object contains a time-of-day
specification, you can assign data to a specific time on a specific day. For

17-810

subsasgn

example, create a financial time series object called timeday containing
both dates and times:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);

timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

timeday =

desc: My first FINTS

freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'

'01-Jan-2001' '11:00' [1]

' " ' '12:00' [2]

'02-Jan-2001' '11:00' [3]

' " ' '12:00' [4]

'03-Jan-2001' '11:00' [5]

' " ' '12:00' [6]

Use integer indexing to assign the value 999 to the first item in the
object.

timeday(1) = 999

timeday =

desc: My first FINTS
freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [999]
' " ' '12:00' [2]
'02-Jan-2001' '11:00' [3]

17-811

subsasgn

' " ' '12:00' [4]
'03-Jan-2001' '11:00' [5]
' " ' '12:00' [6]

For value assignment using date strings, enclose the string in single
quotation marks. If a date has multiple times, designating only the
date and assigning a value results in every element of that date taking
on the assigned value. For example, to assign the value 0.5 to all
times-of-day on January 1, 2001, enter

timedata('01-Jan-2001') = 0.5

The result is

timedata =

desc: My first FINTS
freq: Daily (1)

'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [0.5000]
' " ' '12:00' [0.5000]
'02-Jan-2001' '11:00' [3]
' " ' '12:00' [4]
'03-Jan-2001' '11:00' [5]
' " ' '12:00' [6]

To access the individual components of the financial time series object,
use the structure syntax. For example, to assign a range of data to all
the data items in the series Data1, you can use

timedata.Data1 = (0: .1 : .5)'

timedata =

desc: My first FINTS
freq: Daily (1)

17-812

subsasgn

'dates: (6)' 'times: (6)' 'Data1: (6)'
'01-Jan-2001' '11:00' [0]
' " ' '12:00' [0.1000]
'02-Jan-2001' '11:00' [0.2000]
' " ' '12:00' [0.3000]
'03-Jan-2001' '11:00' [0.4000]
' " ' '12:00' [0.5000]

See Also datestr | subsref

17-813

subsref

Purpose Subscripted reference

Description subsref implements indexing for a financial time series object. Integer
indexing or date (and time) string indexing is allowed. Serial date
numbers cannot be used as indices.

To use date string indexing, enclose the date string(s) in a pair of single
quotation marks ' '.

You can use integer indexing on the object as in any other MATLAB
matrix. It returns the appropriate entry(ies) from the object.

Additionally, subsref lets you access the individual components of the
object using the structure syntax.

Examples Create a time series named myfts:

myfts = fints((datenum('07/01/98'):datenum('07/01/98')+4)',...

[1234.56; 2345.61; 3456.12; 4561.23; 5612.34], [], 'Daily',...

'Data Reference');

Extract the data for the single day July 1, 1998:

myfts('07/01/98')

ans =

desc: Data Reference
freq: Daily (1)

'dates: (1)' 'series1: (1)'
'01-Jul-1998' [1234.6]

Now, extract the data for the range of dates July 1, 1998, through July
5, 1998:

myfts('07/01/98::07/03/98')
ans =

desc: Data Reference

17-814

subsref

freq: Daily (1)
'dates: (3)' 'series1: (3)'
'01-Jul-1998' [1234.6]
'02-Jul-1998' [2345.6]
'03-Jul-1998' [3456.1]

You can use the MATLAB structure syntax to access the individual
components of a financial time series object. To get the description
field of myfts, enter

myfts.desc

at the command line, which returns

ans =
Data Reference

Similarly

myfts.series1

returns

ans =
desc: Data Reference
freq: Daily (1)
'dates: (5)' 'series1: (5)'
'01-Jul-1998' [1234.6]
'02-Jul-1998' [2345.6]
'03-Jul-1998' [3456.1]
'04-Jul-1998' [4561.2]
'05-Jul-1998' [5612.3]

The syntax for integer indexing is the same as for any other MATLAB
matrix. Create a new financial time series object containing both dates
and times:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

17-815

subsref

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);

anewfts = fints(dates_times,(1:6)',{'Data1'},1,'Another FinTs');

Use integer indexing to extract the second and third data items from
the object.

anewfts(2:3)

ans =

desc: Another FinTs

freq: Daily (1)

'dates: (2)' 'times: (2)' 'Data1: (2)'

'01-Jan-2001' '12:00' [2]

'02-Jan-2001' '11:00' [3]

For date or string enclose the indexing string in a pair of single
quotation marks.

If there is one date with multiple times, indexing with only the date
returns all the times for that specific date:

anewfts('01-Jan-2001')

ans =

desc: Another FinTs

freq: Daily (1)

'dates: (2)' 'times: (2)' 'Data1: (2)'

'01-Jan-2001' '11:00' [1]

' " ' '12:00' [2]

To specify one specific date and time, index with that date and time:

17-816

subsref

anewfts('01-Jan-2001 12:00')

ans =

desc: Another FinTs

freq: Daily (1)

'dates: (1)' 'times: (1)' 'Data1: (1)'

'01-Jan-2001' '12:00' [2]

To specify a range of dates and times, use the double colon (::) operator:

anewfts('01-Jan-2001 12:00::03-Jan-2001 11:00')

ans =

desc: Another FinTs

freq: Daily (1)

'dates: (4)' 'times: (4)' 'Data1: (4)'

'01-Jan-2001' '12:00' [2]

'02-Jan-2001' '11:00' [3]

' " ' '12:00' [4]

'03-Jan-2001' '11:00' [5]

To request all the dates, times, and data, use the :: operator without
specifying any specific date or time:

anewfts('::')

See Also datestr | fts2mat | subsasgn

17-817

targetreturn

Purpose Portfolio weight accuracy

Syntax return = targetreturn(Universe, Window, Offset, Weights)

Arguments

Universe Number of observations (NUMOBS) by number of assets
plus one (NASSETS + 1) array containing total return
data for a group of securities. Each row represents
an observation. Column 1 contains MATLAB serial
date numbers. The remaining columns contain the
total return data for each security.

Window Number of data periods used to calculate frontier.

Offset Increment in number of periods at which each
frontier is generated.

Weights Number of assets (NASSETS) by number of curves
(NCURVES) matrix of asset allocation weights needed
to obtain the target rate of return.

Description return = targetreturn(Universe, Window, Offset, Weights)
computes target return values for each window of data and given
portfolio weights. These values should match the input target return
used with selectreturn.

See Also frontier | portopt | selectreturn

17-818

taxedrr

Purpose After-tax rate of return

Syntax Return = taxedrr(PreTaxReturn, TaxRate)

Arguments

PreTaxReturn Nominal rate of return. Enter as a decimal
fraction.

TaxRate Tax rate. Enter as a decimal fraction.

Description Return = taxedrr(PreTaxReturn, TaxRate) calculates the after-tax
rate of return.

Examples An investment has a 12% nominal rate of return and is taxed at a 30%
rate. The after-tax rate of return is

Return = taxedrr(0.12, 0.30)

Return =
0.0840

or 8.4%

See Also effrr | irr | mirr | nomrr | xirr

17-819

tbl2bond

Purpose Treasury bond parameters given Treasury bill parameters

Syntax [TBondMatrix, Settle] = tbl2bond(TBillMatrix)

Arguments

TBillMatrix Treasury bill parameters. An n-by-5 matrix
where each row describes a Treasury bill. n
is the number of Treasury bills. Columns are
[Maturity DaysMaturity Bid Asked AskYield]
where:

Maturity Maturity date, as a serial date number. Use datenum
to convert date strings to serial date numbers.

DaysMaturity Days to maturity, as an integer. Days to maturity is
quoted on a skip-day basis; the actual number of days
from settlement to maturity is DaysMaturity + 1.

Bid Bid bank-discount rate: the percentage discount
from face value at which the bill could be bought,
annualized on a simple-interest basis. A decimal
fraction.

Asked Asked bank-discount rate, as a decimal fraction.

AskYield Asked yield: the bond-equivalent yield from holding
the bill to maturity, annualized on a simple-interest
basis and assuming a 365-day year. A decimal
fraction.

Description [TBondMatrix, Settle] = tbl2bond(TBillMatrix) restates U.S.
Treasury bill market parameters in U.S. Treasury bond form as
zero-coupon bonds. This function makes Treasury bills directly
comparable to Treasury bonds and notes.

17-820

tbl2bond

TBondMatrix Treasury bond parameters. An N-by-5 matrix
where each row describes an equivalent
Treasury (zero-coupon) bond. Columns are
[CouponRate Maturity Bid Asked AskYield]
where

CouponRate Coupon rate, which is always 0.

Maturity Maturity date, as a serial date number. This date is
the same as the Treasury bill Maturity date.

Bid Bid price based on $100 face value.

Asked Asked price based on $100 face value.

AskYield Asked yield to maturity: the effective return from
holding the bond to maturity, annualized on a
compound-interest basis.

Examples Given published Treasury bill market parameters for December 22,
1997

TBill = [datenum('jan 02 1998') 10 0.0526 0.0522 0.0530

datenum('feb 05 1998') 44 0.0537 0.0533 0.0544

datenum('mar 05 1998') 72 0.0529 0.0527 0.0540];

Execute the function.

TBond = tbl2bond(TBill)

TBond =

1.0e+005 *

0 7.2976 0.0010 0.0010 0.0000

0 7.2979 0.0010 0.0010 0.0000

0 7.2982 0.0010 0.0010 0.0000

17-821

tbl2bond

See Also tr2bonds

How To • “Term Structure of Interest Rates” on page 2-36

17-822

thirdwednesday

Purpose Find third Wednesday of month

Syntax [BeginDates, EndDates] = thirdwednesday(Month, Year)

Arguments

Month Month of delivery for Eurodollar futures.

Year Four-digit year of delivery for Eurodollar futures,
in sequence corresponding to a month in the Month
input argument.

Inputs can be scalars or n-by-1 vectors.

Description [BeginDates, EndDates] = thirdwednesday(Month, Year)
computes the beginning and end period date for a LIBOR contract (third
Wednesdays of delivery months).

BeginDates is the beginning of three-month period contract as specified
by Month and Year.

EndDates is the end of three-month period contract as specified by
Month and Year.

Notes
1. All dates are returned as serial date numbers. Convert to strings
using datestr.

2. The function returns duplicates if you supply identical months and
years.

3. The function supports dates from January 2000 to December 2099.

17-823

thirdwednesday

Examples Find the third Wednesday dates for swaps commencing in the month
of October in the years 2002, 2003, and 2004.

Months = [10; 10; 10];
Year = [2002; 2003; 2004];
[BeginDates, EndDates] = thirdwednesday(Months, Year);

datestr(BeginDates)

ans =

16-Oct-2002
15-Oct-2003
20-Oct-2004

datestr(EndDates)

ans =

16-Jan-2003
15-Jan-2004
20-Jan-2005

17-824

thirtytwo2dec

Purpose Thirty-second quotation to decimal

Syntax OutNumber = thirtytwo2dec(InNumber, InFraction)

Arguments

InNumber Scalar or vector of input numbers without fractional
component.

InFraction Scalar or vector of fractional portions of each element
in InNumber.

Description OutNumber = thirtytwo2dec(InNumber, InFraction) changes
the price quotation for a bond or bond future from a fraction with a
denominator of 32 to a decimal.

OutNumber represents the sum of InNumber and InFraction expressed
as a decimal.

Examples Two bonds are quoted as 101-25 and 102-31. Convert these prices to
decimal.

InNumber = [101; 102];
InFraction = [25; 31]

OutNumber = thirtytwo2dec(InNumber, InFraction)

OutNumber =

101.7813
102.9688

See Also dec2thirtytwo

17-825

tick2ret

Purpose Convert price series to return series

Syntax [RetSeries, RetIntervals] = tick2ret(TickSeries,
TickTimes, Method)

Arguments

TickSeries Number of observations (NUMOBS) by number of
assets (NASSETS) matrix of prices of equity assets.
Each column is a price series of an individual asset.
First row is oldest observation. Last row is most
recent. Observations across a given row occur at the
same time for all columns.

TickTimes (Optional) NUMOBS-by-1 increasing vector of
observation times associated with the prices in
TickSeries. Times are serial date numbers (day
units) or decimal numbers in arbitrary units (for
example, yearly). If TickTimes is empty or missing,
sequential observation times from 1, 2, ... NUMOBS
are assumed.

Method (Optional) Character string indicating the method to
convert prices to asset returns. Must be 'Simple'
(default) or 'Continuous'. If Method is 'Simple',
tick2ret computes simple periodic returns. If
Method is 'Continuous', returns are continuously
compounded. Case is ignored for Method.

Description [RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes,
Method) computes the asset returns realized between NUMOBS
observations of prices of NASSETS assets.

RetSeries is a (NUMOBS-1)-by-NASSETS time series array of asset returns
associated with the prices in TickSeries. The ith return is quoted for
the period TickTimes(i) to TickTimes(i+1) and is not normalized by

17-826

tick2ret

the time increment between successive price observations. If Method is
unspecified or 'Simple', the returns are:

RetSeries(i) = TickSeries(i+1)/TickSeries(i) - 1

If Method is 'Continuous', the returns are:

RetSeries(i) = log[TickSeries(i+1)/TickSeries(i)]

RetIntervals is a (NUMOBS-1)-by-1 column vector of interval times
between observations. If TickTimes is empty or unspecified, all
intervals are assumed to have length 1.

Examples Compute the periodic returns of two stocks observed in the first, second,
third, and fourth quarters.

TickSeries = [100 80

110 90

115 88

110 91];

TickTimes = [0

6

9

12];

[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)

RetSeries =

0.1000 0.1250

0.0455 -0.0222

-0.0435 0.0341

RetIntervals =

6

17-827

tick2ret

3

3

See Also ewstats | ret2tick

17-828

tick2ret (fts)

Purpose Convert price series to return series for time series object

Syntax returnFts = tick2ret(priceFts)
returnFts = tick2ret(priceFts, 'PARAM1', VALUE1,
'PARAM2', VALUE2', ...)

Arguments

priceFts Financial time series object of prices.

'PARAM1' (Optional) Method is a character string
indicating the method to convert asset returns
to prices. The value must be defined as
'Simple' (default) or 'Continuous'. If
Method is 'Simple', tick2ret uses simple
periodic returns. If Method is 'Continuous',
the function uses continuously compounded
returns. Case is ignored for Method.

Description returnFts = tick2ret(priceFts, 'PARAM1', VALUE1, 'PARAM2',
VALUE2', ...) generates a financial time series object of returns.

Note The i’th return is quoted for the period PriceSeries(i) to
PriceSeries(i+1) and is not normalized by the time increment between
successive price observations.

If Method is unspecified or 'Simple', the prices are

ReturnSeries(i) = PriceSeries(i+1)/PriceSeries(i)-1

If Method is 'Continuous', the prices are

17-829

tick2ret (fts)

ReturnSeries(i) = log[PriceSeries(i+1)/PriceSeries(i)]

Examples Compute the return series from the following price series:

PriceSeries = [100.0000 100.0000
110.0000 112.0000
115.5000 116.4800
109.7250 122.3040]

Use the following dates:

Dates = {'18-Dec-2000'
'18-Jun-2001'
'17-Sep-2001'
'18-Dec-2001'}

where

p = fints(Dates, PriceSeries)

returnFtS is computed as:

returnFts = tick2ret(p)

returnFts =

desc: (none)
freq: Unknown (0)

'dates: (3)' 'series1: (3)' 'series2: (3)'
'18-Jun-2001' [0.1000] [0.1200]
'17-Sep-2001' [0.0500] [0.0400]
'18-Dec-2001' [-0.0500] [0.0500]

See Also portsim | ret2tick

17-830

time2date

Purpose Dates from time and frequency

Syntax Dates = time2date(Settle, TFactors, Compounding, Basis,
EndMonthRule)

Arguments

Settle Settlement date. A vector of serial date
numbers or date strings.

TFactors A vector of time factors corresponding to the
compounding value. TFactors must be equal
to or greater than zero.

Compounding (Optional) Scalar value representing the rate
at which the input zero rates were compounded
when annualized. Default = 2. This argument
determines the formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example,T =
F is one year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the
number of days in the basis year and T is a
number of days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

17-831

time2date

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

17-832

time2date

Description Dates = time2date(Settle, TFactors, Compounding, Basis,
EndMonthRule) computes dates corresponding to the times occurring
beyond the settlement date.

The time2date function is the inverse of date2time.

Examples Show that date2time and time2date are the inverse of each other.
First compute the time factors using date2time.

Settle = '1-Sep-2002';

Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';

'31-Dec-2006']);

Compounding = 2;

Basis = 0;

EndMonthRule = 1;

TFactors = date2time(Settle, Dates, Compounding, Basis,...

EndMonthRule)

TFactors =

5.9945

6.9945

7.5738

8.6576

Now use the calculated TFactors in time2date and compare the
calculated dates with the original set.

Dates_calc = time2date(Settle, TFactors, Compounding, Basis,...

EndMonthRule)

Dates_calc =

732555

732736

732843

733042

17-833

time2date

datestr(Dates_calc)

ans =

31-Aug-2005

28-Feb-2006

15-Jun-2006

31-Dec-2006

See Also cftimes | date2time

17-834

times

Purpose Financial time series multiplication

Syntax newfts = tsobj_1 .* tsobj_2
newfts = tsobj .* array
newfts = array .* tsobj

Arguments

tsobj_1, tsobj_2 Pair of financial time series objects.

array A scalar value or array with the number of
rows equal to the number of dates in tsobj and
the number of columns equal to the number of
data series in tsobj.

Description The timesmethod multiplies element by element the components of one
financial time series object by the components of the other. You can also
multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have
the same dates and data series names, although the order need not be
the same. The order of the data series, when an object is multiplied by
another object, follows the order of the first object.

newfts = tsobj_1 .* tsobj_2 multiplies financial time series objects
element by element.

newfts = tsobj .* array multiplies a financial time series object
element by element by an array.

newfts = array .* tsobj newfts = array / tsobj multiplies an
array element by element by a financial time series object.

For financial time series objects, the times operation is identical to
the mtimes operation.

See Also minus | mtimes | plus | rdivide

17-835

toannual

Purpose Convert to annual

Syntax newfts = toannual(oldfts)
newfts = toannual(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object.

Description newfts = toannual(oldfts) converts a financial time series of any
frequency to one of an annual frequency. The default end-of-year is the
last business day of the December.

Note If oldfts contains time-of-day information, newfts displays the
time-of-day as '00:00' for those days that did not previously exist in
oldfts.

Empty ([]) passed as inputs for parameter pair values for toannual
will trigger the use of the defaults.

newfts = toannual(oldfts, 'ParameterName', ParameterValue,
...) accepts parameter name/parameter value pairs as input, as
specified in the following table.

Parameter
Name

Parameter
Value Description

CalcMethod CumSum Returns the cumulative sum of the values
within each year. Data for missing dates
are given the value 0.

Exact Returns the exact value at the end-of-year
date. No data manipulation occurs.

17-836

toannual

Parameter
Name

Parameter
Value Description

Nearest (Default) Returns the values located at
the end-of-year dates. If there is missing
data, Nearest returns the nearest data
point preceding the end-of-year date.

SimpAvg Returns an averaged annual value that
only takes into account dates with data
(nonNaN) within each year.

v21x This mode is compatible with previous
versions of this function (Version 2.1.x
and earlier). It returns an averaged
end-of-year value using a previous
toannual algorithm. This algorithm
takes into account all dates and data. For
dates that do not contain any data, the
data is assumed to be 0.

Note If you set CalcMethod to v21x, settings for all of the following
parameter name/parameter value pairs are not supported.

BusDays 0 Returns a financial time series that
ranges from (or between) the first date to
the last date in oldfts (includes NYSE
nonbusiness days and holidays).

17-837

toannual

Parameter
Name

Parameter
Value Description

1 (Default) Generates a monthly financial
time series that ranges from the first
date to the last date in oldfts (excludes
NYSE nonbusiness days and holidays
and weekends based on AltHolidays and
Weekend). If an end-of-month date falls
on a nonbusiness day or NYSE holiday,
returns the last business day of the
month.

NYSE market closures, holidays, and
weekends are observed if AltHolidays
and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all annual dates
between the start and end dates of
oldfts. Some dates may be disregarded
if BusDays = 1.

Note The default is to create a time
series with every date at the specified
periodicity, which is with DateFilter
= Absolute. If you use DateFilter =
Relative, the endpoint effects do not
apply since only your data defines which
dates will appear in the output time
series object.

Relative Returns only the annual dates that
exist in oldfts. Some dates may be
disregarded if BusDays = 1.

17-838

toannual

Parameter
Name

Parameter
Value Description

ED 0 Annual period ends on the last day or last
business day of the month.

1 - 31 Specifies a particular annual day. Months
that do not contain the specified day
return the last day (or last business day)
of the month (for example, ED = 31 does
not exist for February.)

EM 1 - 12 (Default) The annual period ends on the
last day (or last business day) of the
specified month All subsequent annual
dates are calculated from this month.
Default annual month is December (12).

EndPtTol [Begin,
End]

Denotes the minimum number of days
that constitute an odd annual period at
the endpoints of the time series (before
the first time series date and after the
last end-of-year date).
Begin and End must be -1 or any positive
integer greater than or equal to 0.
A single value input for 'EndPtTol' is
the same as specifying that single value
for Begin and End.
-1 Exclude odd annual period dates and
data from calculations.
0 (Default) Include odd annual period
dates and data in calculations.
n Number of days (any positive integer)
that constitute an odd annual period. If
there are insufficient days for a complete
year, the endpoint data is ignored.

17-839

toannual

Parameter
Name

Parameter
Value Description

The following diagram is a general depiction of the factors involved in
the determination of endpoints for this function.

TimeSpec First Returns only the observation that occurs
at the first (earliest) time for a specific
date.

Last (Default) Returns only the observation
that occurs at the last (latest) time for a
specific date.

AltHolidays Vector of dates specifying an alternate set
of market closure dates.

-1 Excludes all holidays.

Weekend Vector of length 7 containing 0’s and 1’s.
The value 1 indicates a weekend day. The
first element of this vector corresponds
to Sunday. For example, when Saturday
and Sunday are weekend days (default)
then Weekend = [1 0 0 0 0 0 1].

See Also convertto | todaily | tomonthly | toquarterly | tosemi | toweekly

17-840

todaily

Purpose Convert to daily

Syntax newfts = todaily(oldfts)
newfts = todaily(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object

Description newfts = todaily(oldfts) converts a financial time series of any
frequency to a daily frequency.

Note If oldfts contains time-of-day information, newfts displays the
time-of-day as '00:00' for those days that did not previously exist in
oldfts.

Empty ([]) passed as inputs for parameter pair values for todaily
will trigger the use of the defaults.

newfts = todaily(oldfts, 'ParameterName', ParameterValue,
...) accepts parameter name/parameter value pairs as input, as
specified in the following table.

17-841

todaily

Parameter
Name

Parameter
Value Description

CalcMethod Exact Returns the value located at specific
dates/times. No data manipulation
occurs.

v21x This mode is compatible with previous
versions of this function (Version 2.1.x
and earlier). It returns a five-day
business week that starts on Monday and
ends on Friday.

Note If you set CalcMethod to v21x, settings for all of the following
parameter name/parameter value pairs are not supported.

BusDays 0 Generates a financial time series that
ranges from (or between) the first date to
the last date in oldfts (includes NYSE
nonbusiness days and holidays).

1 (Default) Generates a daily financial
time series that ranges from the first
date to the last date in oldfts (excludes
NYSE nonbusiness days and holidays
and weekends based on AltHolidays and
Weekend).

NYSE market closures, holidays, and
weekends are observed if AltHolidays
and Weekend are not supplied or empty
([]).

17-842

todaily

Parameter
Name

Parameter
Value Description

DateFilter Absolute (Default) Displays all daily dates between
the start and end dates of oldfts. Some
dates may be disregarded if BusDays = 1.

Note The default is to create a time
series with every date at the specified
periodicity, which is with DateFilter
= Absolute. If you use DateFilter =
Relative, the endpoint effects do not
apply since only your data defines which
dates will appear in the output time
series object.

Relative Displays only dates that exist in oldfts.
Some dates may be disregarded if
BusDays = 1.

TimeSpec First Returns only the observation that occurs
at the first (earliest) time for a specific
date.

Last (Default) Returns only the observation
that occurs at the last (latest) time for a
specific date.

AltHolidays Vector of dates specifying an alternate set
of market closure dates.

-1 Excludes all holidays.

Weekend Vector of length 7 containing 0’s and 1’s.
The value 1 indicates a weekend day. The
first element of this vector corresponds
to Sunday. For example, when Saturday
and Sunday are weekend days (default)
then Weekend = [1 0 0 0 0 0 1].

17-843

todaily

See Also convertto | toannual | tomonthly | toquarterly | tosemi |
toweekly

17-844

today

Purpose Current date

Syntax Datenum = today

Description Datenum = today returns the current date as a serial date number.

Examples Datenum = today

returns

Datenum =

730695

on July 28, 2000.

See Also datenum | datestr | now

17-845

todecimal

Purpose Fractional to decimal conversion

Syntax usddec = todecimal(quote, fracpart)

Description usddec = todecimal(quote, fracpart) returns the decimal
equivalent, usddec, of a security whose price is normally quoted as a
whole number and a fraction (quote). fracpart indicates the fractional
base (denominator) with which the security is normally quoted (default
= 32).

Examples In the Wall Street Journal, bond prices are quoted in fractional form
based on a denominator of 32. For example, if you see the quoted price
is 100:05 it means 100 5/32. To find the equivalent decimal value, enter

usddec = todecimal(100.05)

usddec =
100.1563

usddec = todecimal(97.04, 16)

usddec =
97.2500

Note The convention of using . (period) as a substitute for : (colon)
in the input is adopted from Excel software.

See Also toquoted

17-846

tomonthly

Purpose Convert to monthly

Syntax newfts = tomonthly(oldfts)
newfts = tomonthly(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object.

Description newfts = tomonthly(oldfts) converts a financial time series of any
frequency to a monthly frequency. The default end-of-month day is
the last business day of the month.

Note If oldfts contains time-of-day information, newfts displays the
time-of-day as 00:00 for those days that did not previously exist in
oldfts.

Empty ([]) passed as inputs for parameter pair values for tomonthly
will trigger the use of the defaults.

newfts = tomonthly(oldfts, 'ParameterName', ParameterValue,
...) accepts parameter name/parameter value pairs as input, as
specified in the following table.

17-847

tomonthly

Parameter
Name

Parameter
Value Description

CalcMethod CumSum Returns the cumulative sum of the values
within each month. Data for missing
dates are given the value 0.

Exact Returns the exact value at the
end-of-month date. No data manipulation
occurs.

Nearest (Default) Returns the values located at
the end-of-month date. If there is missing
data, ’Nearest’ returns the nearest data
point preceding the end-of-month date.

SimpAvg Returns an averaged monthly value that
only takes into account dates with data
(nonNaN) within each month.

v21x This mode is compatible with previous
versions of this function (Version 2.1.x
and earlier). It returns an averaged
end-of-month value using a previous
tomonthly algorithm. This algorithm
takes into account all dates and data. For
dates that do not contain any data, the
data is assumed to be 0.

Note If you set CalcMethod to v21x, settings for all of
the following parameter name/parameter value pairs
are not supported.

BusDays 0 Generates a monthly financial time
series that ranges from the first date to
the last date in oldfts (includes NYSE
nonbusiness days and holidays).

17-848

tomonthly

Parameter
Name

Parameter
Value Description

1 (Default) Generates a monthly financial
time series that ranges from the first
date to the last date in oldfts (excludes
NYSE nonbusiness days and holidays
and weekends based on AltHolidays and
Weekend). If an end-of-month date falls
on a nonbusiness day or NYSE holiday,
returns the last business day of the
month.

NYSE market closures, holidays, and
weekends are observed if AltHolidays
and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all monthly dates
between the start and end dates of
oldfts. Some dates may be disregarded
if BusDays = 1.

Note The default is to create a time
series with every date at the specified
periodicity, which is with DateFilter
= Absolute. If you use DateFilter =
Relative, the endpoint effects do not
apply since only your data defines which
dates will appear in the output time
series object.

Relative Returns only monthly dates that exist in
oldfts. Some dates may be disregarded
if BusDays = 1.

17-849

tomonthly

Parameter
Name

Parameter
Value Description

ED 0 (Default) The end-of-month date is the
last day (or last business day) of the
month.

1 - 31 Returns values on the specified
end-of-month day. Months that do not
contain the specified end-of-month day
return the last day of the month instead
(for example, ED = 31 does not exist for
February).
If end-of-month falls on a NYSE
non-business day or holiday, the previous
business day is returned if BusDays = 1.

EndPtTol [Begin,
End]

Denotes the minimum number of days
that constitute an odd month at the end
points of the time series (before the first
whole period and after the last whole
period).
Begin and End must be -1 or any positive
integer greater than or equal to 0.
A single value input for EndPtTol is the
same as specifying that single value for
Begin and End.
-1 Do not include odd month dates and
data in calculations.
0 (Default) Include all odd month dates
and data in calculations.
n Number of days that constitute an odd
month. If the minimum number of days
is not met, the odd month dates and data
are ignored.

17-850

tomonthly

Parameter
Name

Parameter
Value Description

The following diagram is a general depiction of the factors involved in
the determination of end points for this function.

TimeSpec First Returns only the observation that occurs
at the first (earliest) time for a specific
date.

Last (Default) Returns only the observation
that occurs at the last (latest) time for a
specific date.

AltHolidays Vector of dates specifying an alternate set
of market closure dates.

-1 Excludes all holidays.

Weekend Vector of length 7 containing 0’s and 1’s.
The value 1 indicates a weekend day. The
first element of this vector corresponds
to Sunday. For example, when Saturday
and Sunday are weekend days (default)
then Weekend = [1 0 0 0 0 0 1].

See Also convertto | toannual | todaily | toquarterly | tosemi | toweekly

17-851

toquarterly

Purpose Convert to quarterly

Syntax newfts = toquarterly(oldfts)
newfts = toquarterly(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object

Description newfts = toquarterly(oldfts) converts a financial time series of
any frequency to a quarterly frequency. The default quarterly days are
the last business day of March, June, September, and December.

Note If oldfts contains time-of-day information, newfts displays the
time-of-day as 00:00 for those days that did not previously exist in
oldfts.

Empty ([]) passed as inputs for parameter pair values for toquarterly
will trigger the use of the defaults.

newfts = toquarterly(oldfts, 'ParameterName',
ParameterValue, ...) accepts parameter name/parameter value
pairs as input, as specified in the following table.

17-852

toquarterly

Parameter
Name

Parameter
Value Description

CalcMethod CumSum Returns the cumulative sum of the values
between each quarter. Data for missing
dates are given the value 0.

Exact Returns the exact value at the
end-of-quarter date. No data
manipulation occurs.

Nearest (Default) Returns the values located
at the end-of-quarter date. If there
is missing data, Nearest returns
the nearest data point preceding the
end-of-quarter date.

SimpAvg Returns an averaged quarterly value that
only takes into account dates with data
(nonNaN) within each quarter.

v21x This mode is compatible with previous
versions of this function (Version 2.1.x
and earlier). It returns an averaged
end-of-quarter value using a previous
toquarterly algorithm. This algorithm
takes into account all dates and data. For
dates that do not contain any data, the
data is assumed to be 0.

Note If you set CalcMethod to v21x, settings for all of
the following parameter name/parameter value pairs
are not supported.

17-853

toquarterly

Parameter
Name

Parameter
Value Description

BusDays 0 Generates a financial time series that
ranges from (or between) the first date to
the last date in oldfts (includes NYSE
nonbusiness days and holidays).

1 (Default) Generates a financial time
series that ranges from the first date
to the last date in oldfts (excludes
NYSE nonbusiness days and holidays
and weekends based on AltHolidays
and Weekend). If an end-of-quarter date
falls on a nonbusiness day or NYSE
holiday, returns the last business day of
the quarter.

NYSE market closures, holidays, and
weekends are observed if AltHolidays
and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all quarterly dates
between the start and end dates of
oldfts. Some dates may be disregarded
if BusDays = 1.

Note The default is to create a time
series with every date at the specified
periodicity, which is with DateFilter
= Absolute. If you use DateFilter =
Relative, the endpoint effects do not
apply since only your data defines which
dates will appear in the output time
series object.

17-854

toquarterly

Parameter
Name

Parameter
Value Description

Relative Returns only quarterly dates that exist in
oldfts. Some dates may be disregarded
if BusDays = 1.

ED 0 (Default) The end-of-quarter date is the
last day (or last business day) of the
quarter.

1 - 31 Specifies a particular end-of-quarter day.
Months that do not contain the specified
end-of-quarter day return the last day of
the quarter instead (for example, ED = 31
does not exist for February).

EM 1 - 12 Last month of the first quarter.
All subsequent quarterly dates are
based on this month. The default
end-of-first-quarter month is March (3).

EndPtTol [Begin,
End]

Denotes the minimum number of days
that constitute a odd quarter at the
endpoints of the time series (before the
first whole period and after the last whole
period).
Begin and End must be -1 or any positive
integer greater than or equal to 0.
A single value input for EndPtTol is the
same as specifying that single value for
Begin and End.
-1 Do not include odd quarter dates and
data in calculations.
0 (Default) Include all odd quarter dates
and data in calculations.
n Number of days (any positive integer)
that constitute an odd quarter. If there
are insufficient days for a complete

17-855

toquarterly

Parameter
Name

Parameter
Value Description

quarter, the odd quarter dates and data
are ignored.

The following diagram is a general depiction of the factors involved in
the determination of endpoints for this function.

TimeSpec First Returns only the observation that occurs
at the first (earliest) time for a specific
date.

Last (Default) Returns only the observation
that occurs at the last (latest) time for a
specific date.

AltHolidays Vector of dates specifying an alternate set
of market closure dates.

-1 Excludes all holidays.

Weekend Vector of length 7 containing 0’s and 1’s.
The value 1 indicates a weekend day. The
first element of this vector corresponds
to Sunday. For example, when Saturday
and Sunday are weekend days (default)
then Weekend = [1 0 0 0 0 0 1].

17-856

toquarterly

See Also convertto | toannual | todaily | tomonthly | tosemi | toweekly

17-857

toquoted

Purpose Decimal to fractional conversion

Syntax quote = toquoted(usddec, fracpart)

Description quote = toquoted(usddec, fracpart) returns the fractional
equivalent, quote, of the decimal figure, usddec, based on the fractional
base (denominator), fracpart. The fractional bases are the ones used
for quoting equity prices in the United States (denominator 2, 4, 8, 16,
or 32). If fracpart is not entered, the denominator 32 is assumed.

Examples A United States equity price in decimal form is 101.625. To convert this
to fractional form in eighths of a dollar:

quote = toquoted(101.625, 8)

quote =
101.05

The answer is interpreted as 101 5/8.

Note The convention of using . (period) as a substitute for : (colon)
in the output is adopted from Excel software.

See Also todecimal

17-858

tosemi

Purpose Convert to semiannual

Syntax newfts = tosemi(oldfts)
newfts = tosemi(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object.

Description newfts = tosemi(oldfts) converts a financial time series of any
frequency to a semiannual frequency. The default semiannual days are
the last business day of June and December.

Note If oldfts contains time-of-day information, newfts displays the
time-of-day as 00:00 for those days that did not previously exist in
oldfts.

Empty ([]) passed as inputs for parameter pair values for tosemi
will trigger the use of the defaults.

newfts = tosemi(oldfts, 'ParameterName', ParameterValue,
...) accepts parameter name/parameter value pairs as input, as
specified in the following table.

17-859

tosemi

Parameter
Name

Parameter
Value Description

CalcMethod CumSum Returns the cumulative sum of the values
within each semiannual period. Data for
missing dates are given the value 0.

Exact Returns the exact value at the
end-of-period date. No data manipulation
occurs.

Nearest (Default) Returns the values located at
the end-of-period date. If there is missing
data, Nearest returns the nearest data
point preceding the end-of-period date.

SimpAvg Returns an averaged semiannual value
that only takes into account dates with
data (nonNaN) within each semiannual
period.

v21x This mode is compatible with previous
versions of this function (Version 2.1.x
and earlier). It returns an averaged
end-of-period value using a previous
tosemi algorithm. This algorithm takes
into account all dates and data. For dates
that do not contain any data, the data is
assumed to be 0.

Note If you set CalcMethod to v21x, settings for all of
the following parameter name/parameter value pairs
are not supported.

17-860

tosemi

Parameter
Name

Parameter
Value Description

BusDays 0 Generates a financial time series that
ranges from (or between) the first date to
the last date in oldfts (includes NYSE
nonbusiness days and holidays).

1 (Default) Generates a financial time
series that ranges from the first date
to the last date in oldfts (excludes
NYSE nonbusiness days and holidays
and weekends based on AltHolidays and
Weekend). If an end-of-quarter date falls
on a nonbusiness day or NYSE holiday,
returns the last business day of the
quarter.

NYSE market closures, holidays, and
weekends are observed if AltHolidays
and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all semiannual dates
between the start and end dates of
oldfts. Some dates may be disregarded
if BusDays = 1.

Note The default is to create a time
series with every date at the specified
periodicity, which is with DateFilter
= Absolute. If you use DateFilter =
Relative, the endpoint effects do not
apply since only your data defines which
dates will appear in the output time
series object.

17-861

tosemi

Parameter
Name

Parameter
Value Description

Relative Returns only semiannual dates that
exist in oldfts. Some dates may be
disregarded if BusDays = 1.

ED 0 (Default) The end-of-period date is the
last day (or last business day) of the
semiannual period.

1 - 31 Specifies a particular end-of-period day.
Months that do not contain the specified
end-of-period day return the last day
of the semiannual period instead (for
example, ED = 31 does not exist for
February).

EM 1 - 12 End month of the first semiannual period.
All subsequent period dates are based
on this month. The default end of period
months are June (6) and December (12).

EndPtTol [Begin,
End]

Denotes the minimum number of days
that constitute an odd semiannual period
at the endpoints of the time series (before
the first whole period and after the last
whole period).
Begin and End must be -1 or any positive
integer greater than or equal to 0.
A single value input for EndPtTol is the
same as specifying that single value for
Begin and End.
-1 Do not include odd period dates and
data in calculations.
0 (Default) Include all odd period dates
and data in calculations.
n Number of days (any positive integer)
that constitute an odd period. If there

17-862

tosemi

Parameter
Name

Parameter
Value Description

are insufficient days for a complete
semiannual period, the odd period dates
and data are ignored.

The following diagram is a general depiction of the factors involved in
the determination of endpoints for this function.

TimeSpec First Returns only the observation that occurs
at the first (earliest) time for a specific
date.

Last (Default) Returns only the observation
that occurs at the last (latest) time for a
specific date.

AltHolidays Vector of dates specifying an alternate set
of market closure dates.

-1 Excludes all holidays.

Weekend Vector of length 7 containing 0’s and 1’s.
The value 1 indicates a weekend day. The
first element of this vector corresponds
to Sunday. For example, when Saturday
and Sunday are weekend days (default)
then Weekend = [1 0 0 0 0 0 1].

17-863

tosemi

See Also convertto | toannual | todaily | tomonthly | toquarterly |
toweekly

17-864

totalreturnprice

Purpose Total return price time series

Syntax Return = totalreturnprice(Price, Action, Dividend)

Arguments

Price Number of observations (NUMOBS)-by-2 matrix of
price data. Column 1 contains MATLAB serial date
numbers. Column 2 contains price values.

Action NUMOBS-by-2 matrix of price data. Column 1 contains
MATLAB serial date numbers. Column 2 contains
split ratios.

Dividend NUMOBS-by-2 matrix of price data. Column 1 contains
MATLAB serial date numbers. Column 2 contains
dividend payouts.

The number of observations (NUMOBS) for the three input arguments
will differ from each other.

Description Return = totalreturnprice(Price, Action, Dividend) generates
a total return price time series given price data, action or split data,
and dividend data.

Return is NUMOBS-by-2 array of price data, where NUMOBS reflects the
number of observations of price data. Column 1 contains MATLAB
serial date numbers. Column 2 contains total return price values.

See Also periodicreturns

17-865

toweekly

Purpose Convert to weekly

Syntax newfts = toweekly(oldfts)
newfts = toweekly(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object.

Description newfts = toweekly(oldfts) converts a financial time series of any
frequency to a weekly frequency. The default weekly days are Fridays
or the last business day of the week.

Note If oldfts contains time-of-day information, newfts displays the
time-of-day as 00:00 for those days that did not previously exist in
oldfts.

Empty ([]) passed as inputs for parameter pair values for toweekly
will trigger the use of the defaults.

newfts = toweekly(oldfts, 'ParameterName', ParameterValue,
...) accepts parameter name/parameter value pairs as input, as
specified in the following table.

17-866

toweekly

Parameter
Name

Parameter
Value Description

CalcMethod CumSum Returns the cumulative sum of the values
within each week. Data for missing dates
are given the value 0.

Exact Returns the exact value at the
end-of-week dates. No data manipulation
occurs.

Nearest (Default) Returns the values located at
the end-of-week dates. If there is missing
data, Nearest returns the nearest data
point preceding the end-of-week date.

SimpAvg Returns an averaged weekly value that
only takes into account dates with data
(nonNaN) within each week.

v21x This mode is compatible with previous
versions of this function (Version 2.1.x
and earlier). It returns an averaged
end-of-weekly value using a previous
toquarterly algorithm. This algorithm
takes into account all dates and data. For
dates that do not contain any data, the
data is assumed to be 0.

Note If you set CalcMethod to v21x, settings for all of
the following parameter name/parameter value pairs
are not supported.

BusDays 0 Generates a financial time series that
ranges from (or between) the first date to
the last date in oldfts (includes NYSE
nonbusiness days and holidays).

17-867

toweekly

Parameter
Name

Parameter
Value Description

1 (Default) Generates a financial time
series that ranges from the first date
to the last date in oldfts (excludes
NYSE nonbusiness days and holidays
and weekends based on AltHolidays
and Weekend). If an end-of-quarter date
falls on a nonbusiness day or NYSE
holiday, returns the last business day of
the quarter.

NYSE market closures, holidays, and
weekends are observed if AltHolidays
and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all weekly dates
between the start and end dates of
oldfts. Some dates may be disregarded
if BusDays = 1.

Note The default is to create a time
series with every date at the specified
periodicity, which is with DateFilter
= Absolute. If you use DateFilter =
Relative, the endpoint effects do not
apply since only your data defines which
dates will appear in the output time
series object.

Relative Returns only end-of-week dates that
exist in oldfts. Some dates may be
disregarded if BusDays = 1.

17-868

toweekly

Parameter
Name

Parameter
Value Description

EndPtTol [Begin,
End]

Denotes the minimum number of days
that constitute a odd week at the
endpoints of the time series (before the
first whole period and after the last whole
period).
Begin and End must be -1 or any positive
integer greater than or equal to 0.
A single value input for EndPtTol is the
same as specifying that single value for
Begin and End.
-1 Do not include odd week dates and
data in calculations.
0 (Default) Include all odd week dates
and data in calculations.
n Number of days (any positive integer)
that constitute an odd week. If there are
insufficient days for a complete week, the
odd week dates and data are ignored.

The following diagram is a general depiction of the factors involved in
the determination of endpoints for this function.

17-869

toweekly

Parameter
Name

Parameter
Value Description

EOW 0 - 6 Specifies the end-of-week day:

• 0 Friday (default)

• 1 Saturday

• 2 Sunday

• 3 Monday

• 4 Tuesday

• 5 Wednesday

• 6 Thursday

TimeSpec First Returns only the observation that occurs
at the first (earliest) time for a specific
date.

Last (Default) Returns only the observation
that occurs at the last (latest) time for a
specific date.

AltHolidays Vector of dates specifying an alternate set
of market closure dates.

-1 Excludes all holidays.

Weekend Vector of length 7 containing 0’s and 1’s.
The value 1 indicates a weekend day. The
first element of this vector corresponds
to Sunday. For example, when Saturday
and Sunday are weekend days (default)
then Weekend = [1 0 0 0 0 0 1].

See Also convertto | toannual | todaily | tomonthly | toquarterly | tosemi

17-870

tr2bonds

Purpose Term-structure parameters given Treasury bond parameters

Syntax [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle)

Arguments

TreasuryMatrix Treasury bond parameters. An n-by-5
matrix, where each row describes
a Treasury bond. Columns are
[CouponRate Maturity Bid Asked AskYield]
where:

CouponRate Coupon rate, as a decimal fraction.

Maturity Maturity date, as a serial date number. Use
datenum to convert date strings to serial date
numbers.

Bid Bid price based on $100 face value.

Asked Asked price based on $100 face value.

AskYield Asked yield to maturity, as a decimal fraction.

Settle (Optional) Date string or serial date number of
the settlement date for the analysis.

Description [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle)
returns term-structure parameters (bond information, prices, and
yields) sorted by ascending maturity date, given Treasury bond
parameters. The formats of the output matrix and vectors meet
requirements for input to the zbtprice and zbtyield zero-curve
bootstrapping functions.

17-871

tr2bonds

Bonds Coupon bond information. An n-by-6 matrix
where each row describes a bond. Columns are
[Maturity CouponRate Face Period Basis
EndMonthRule] where:

Maturity Maturity date of the bond, as a serial date
number. Use datestr to convert serial date
numbers to date strings.

CouponRate Coupon rate of the bond, as a decimal fraction.

Face Redemption or face value of the bond, always
100.

Period Coupons per year of the bond, always 2.

Basis Day-count basis of the bond, possible values
include:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365
For more information, see basis on page
Glossary-1.

EndMonthRule End-of-month flag, always 1, meaning that a
bond’s coupon payment date is always the last
day of the month.

17-872

tr2bonds

Prices Prices. Column vector containing the price of
each bond in bonds, respectively. The number
of rows (n) matches the number of rows in
bonds.

Yields Yields. Column vector containing the yield to
maturity of each bond in bonds, respectively.
The number of rows (n) matches the number of
rows in bonds. If Settle is input, Yields is
computed as a semiannual yield to maturity.
If Settle is not input, the quoted input yields
will be used.

Examples Given published Treasury bond market parameters for December 22,
1997

Matrix =[0.0650 datenum('15-apr-1999') 101.03125 101.09375 0.0564

0.05125 datenum('17-dec-1998') 99.4375 99.5 0.0563

0.0625 datenum('30-jul-1998') 100.3125 100.375 0.0560

0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];

Execute the function.

[Bonds, Prices, Yields] = tr2bonds(Matrix)

Bonds =

729840 0.06125 100 2 0 1
729966 0.0625 100 2 0 1
730106 0.05125 100 2 0 1
730225 0.065 100 2 0 1

Prices =

100.1563
100.3750

17-873

tr2bonds

99.5000
101.0938

Yields =

0.0546
0.056
0.0563
0.0564

(Example output has been formatted for readability.)

See Also tbl2bond | zbtprice | zbtyield

How To • “Term Structure of Interest Rates” on page 2-36

17-874

transprob

Purpose Estimation of transition probabilities from credit ratings data

Syntax [transMat, sampleTotals, idTotals] = transprob(data)
[transMat, sampleTotals, idTotals] = transprob(data,
Name, Value)

Description [transMat, sampleTotals, idTotals] = transprob(data)
constructs a transition matrix from historical data of credit ratings.

[transMat, sampleTotals, idTotals] = transprob(data, Name,
Value) constructs a transition matrix from historical data of credit
ratings with additional options specified by one or more Name, Value
pair arguments.

Input
Arguments

data

Using transprob to estimate transition probabilities given credit
ratings historical data (i.e. credit migration data), the data input can
be either of the following:

• A preprocessed data structure obtained using transprobprep. This
data structure contains the fields'idStart', 'numericDates',
'numericRatings', and 'ratingsLabels'.

or

• An nRecords-by-3 cell array containing the historical credit ratings
data of the form:

'00010283' '10-Nov-1984' 'CCC'
'00010283' '12-May-1986' 'B'
'00010283' '29-Jun-1988' 'CCC'
'00010283' '12-Dec-1991' 'D'
'00013326' '09-Feb-1985' 'A'
'00013326' '24-Feb-1994' 'AA'
'00013326' '10-Nov-2000' 'BBB'
'00014413' '23-Dec-1982' 'B'

17-875

transprob

where each row contains an ID (column 1), a date (column 2), and
a credit rating (column 3). Column 3 is the rating assigned to
the corresponding ID on the corresponding date. All information
corresponding to the same ID must be stored in contiguous rows.
Sorting this information by date is not required, but recommended
for efficiency. IDs, dates and ratings are usually stored in string
format, but they can also be entered in numeric format.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

algorithm

Estimation algorithm, in string format. Valid values are duration or
cohort.

Default: duration

endDate

End date of the estimation time window, in string or numeric format.

Default: Latest date in data

labels

Cell array of size nRatings-by-1, or 1-by-nRatings, containing the
credit-rating scale. It must be consistent with the ratings labels used in
the third column of data.

Default: {'AAA','AA','A','BBB','BB','B','CCC','D'}

snapsPerYear

17-876

transprob

Integer indicating the number of credit-rating snapshots per year to be
considered for the estimation. Valid values are 1, 2, 3, 4, 6, 12. This
parameter is only used with the cohort algorithm.

Default: 1 — One snapshot per year

startDate

Start date of the estimation time window, in string or numeric format.

Default: Earliest date in data

transInterval

Length of the transition interval, in years.

Default: 1— One year transition probabilities

Output
Arguments

transMat

Matrix of transition probabilities in percent. The size of the transition
matrix is nRatings-by-nRatings.

sampleTotals

Structure with fields:

• totalsVec — A vector of size 1-by-nRatings.

• totalsMat— A matrix of size nRatings-by-nRatings.

• algorithm— A string with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total
transitions observed out of rating i into ratingj (all the diagonal
elements are zero). The total time spent on rating i is stored in
totalsVec(i). For example, if there are three rating categories,
Investment Grade (IG), Speculative Grade (SG) and Default (D), and
the following information:

Total time spent IG SG D

17-877

transprob

in rating: 4859.09 1503.36 1162.05

Transitions IG SG D
out of (row) IG 0 89 7
into (column): SG 202 0 32

D 0 0 0

Then

totals.totalsVec = [4859.09 1503.36 1162.05]
totals.totalsMat = [0 89 7

202 0 32
0 0 0]

totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total
transitions observed from rating i to rating j, and totalsVec(i) is the
initial count in rating i. For example, given the following information:

Initial count IG SG D
in rating: 4808 1572 1145

Transitions IG SG D
from (row) IG 4721 80 7
to (column): SG 193 1347 32

D 0 0 1145

Then

totals.totalsVec = [4808 1572 1145]
totals.totalsMat = [4721 80 7

193 1347 32
0 0 1145

totals.algorithm = 'cohort'

idTotals

Struct array of size nIDs-by-1, where nIDs is the number of distinct IDs
in column 1 of data when this is a cell array or, equivalently, equal to

17-878

transprob

the length of the idStart field minus 1 when data is a preprocessed
data structure. For each ID in the sample, idTotals contains one
structure with the following fields:

• totalsVec— A sparse vector of size 1-by-nRatings.

• totalsMat— A sparse matrix of size nRatings-by-nRatings.

• algorithm— A string with values 'duration' or 'cohort'.

These fields contain the same information described for the output
sampleTotals, but at an ID level. For example, for 'duration',
idTotals(k).totalsVec contains the total time that the k-th company
spent on each rating.

Definitions Cohort Estimation

The cohort algorithm estimates the transition probabilities based on
a sequence of snapshots of credit ratings at regularly spaced points
in time. If the credit rating of a company changes twice between two
snapshot dates, the intermediate rating is overlooked and only the
initial and final ratings influence the estimates.

Duration Estimation

Unlike the cohort method, the duration algorithm estimates the
transition probabilities based on the full credit ratings history, looking
at the exact dates on which the credit rating migrations occur. There is
no concept of snapshots in this method, and all credit rating migrations
influence the estimates, even when a company’s rating changes twice
within a short time.

Examples Using historical credit rating input data from Data_TransProb.mat
display the first ten rows and compute the transition matrix:

load Data_TransProb

data(1:10,:)

% Estimate transition probabilities with default settings

transMat = transprob(data)

17-879

transprob

ans =

'00010283' '10-Nov-1984' 'CCC'

'00010283' '12-May-1986' 'B'

'00010283' '29-Jun-1988' 'CCC'

'00010283' '12-Dec-1991' 'D'

'00013326' '09-Feb-1985' 'A'

'00013326' '24-Feb-1994' 'AA'

'00013326' '10-Nov-2000' 'BBB'

'00014413' '23-Dec-1982' 'B'

'00014413' '20-Apr-1988' 'BB'

'00014413' '16-Jan-1998' 'B'

transMat =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

Using historical credit rating input data from Data_TransProb.mat,
compute the transition matrix using the cohort algorithm:

load Data_TransProb

%Estimate transition probabilities with 'cohort' algorithm

transMatCoh = transprob(data,'algorithm','cohort')

transMatCoh =

93.1345 5.9335 0.7456 0.1553 0.0311 0 0 0

17-880

transprob

1.7359 92.9198 4.5446 0.6046 0.1560 0 0 0.0390

0.1268 2.9716 91.9913 4.3124 0.4711 0.0544 0 0.0725

0.0210 0.3785 5.0683 89.7792 4.0379 0.4627 0.0421 0.2103

0.0221 0.1105 0.6851 6.2320 88.3757 3.6464 0.2873 0.6409

0 0 0.0761 0.7230 7.9909 86.1872 2.7397 2.2831

0 0 0 0.3094 1.8561 4.5630 80.8971 12.3743

0 0 0 0 0 0 0 100.0000

Using historical credit rating data with ratings investment grade ('IG'),
speculative grade ('SG'), and default ('D'), from Data_TransProb.mat
display the first ten rows and compute the transition matrix:

load Data_TransProb
dataIGSG(1:10,:)
transMatIGSG = transprob(dataIGSG,'labels',{'IG','SG','D'})

ans =

'00011253' '04-Apr-1983' 'IG'
'00012751' '17-Feb-1985' 'SG'
'00012751' '19-May-1986' 'D'
'00014690' '17-Jan-1983' 'IG'
'00012144' '21-Nov-1984' 'IG'
'00012144' '25-Mar-1992' 'SG'
'00012144' '07-May-1994' 'IG'
'00012144' '23-Jan-2000' 'SG'
'00012144' '20-Aug-2001' 'IG'
'00012937' '07-Feb-1984' 'IG'

transMatIGSG =

98.6719 1.2020 0.1261
3.5781 93.3318 3.0901

0 0 100.0000

17-881

transprob

Using historical credit rating data with numeric ratings for
investment grade (1), speculative grade (2), and default (3), from
Data_TransProb.mat display the first ten rows and compute the
transition matrix:

load Data_TransProb

dataIGSGnum(1:10,:)

transMatIGSGnum = transprob(dataIGSGnum,'labels',{1,2,3})

ans =

'00011253' '04-Apr-1983' [1]

'00012751' '17-Feb-1985' [2]

'00012751' '19-May-1986' [3]

'00014690' '17-Jan-1983' [1]

'00012144' '21-Nov-1984' [1]

'00012144' '25-Mar-1992' [2]

'00012144' '07-May-1994' [1]

'00012144' '23-Jan-2000' [2]

'00012144' '20-Aug-2001' [1]

'00012937' '07-Feb-1984' [1]

transMatIGSGnum =

98.6719 1.2020 0.1261

3.5781 93.3318 3.0901

0 0 100.0000

Algorithms Cohort Estimation

The algorithm first determines a sequence t0,...,tK of snapshot dates.
The elapsed time, in years, between two consecutive snapshot dates tk-1
and tk is equal to 1 / ns, where ns is the number of snapshots per year.
These K +1 dates determine K transition periods.

17-882

transprob

The algorithm computes Ni
n , the number of transition periods in which

obligor n starts at rating i. These are added up over all obligors to get
Ni, the number of obligors in the sample that start a period at rating i.
The number periods in which obligor n starts at rating i and ends at

rating j, or migrates from i to j, denoted by Nij
n
, is also computed. These

are also added up to get Nij , the total number of migrations from i to j
in the sample.

The estimate of the transition probability from i to j in one period,

denoted by Pij , is given by:

P
N
Nij

ij

i
=

These probabilities are arranged in a one-period transition matrix P0,
where the i,j entry in P0 is Pij.

If the number of snapshots per year ns is 4 (quarterly snapshots), the
probabilities in P0 are 3-month (or 0.25-year) transition probabilities.
You may, however, be interested in 1-year or 2-year transition
probabilities. The latter time interval is called the transition interval,
Δt , and it is used to convert P0 into the final transition matrix, P,
according to the formula:

P Pns t= 0

For example, if ns = 4 and Δt = 2, P contains the 2-year transition
probabilities estimated from quarterly snapshots.

17-883

transprob

Note For the cohort algorithm, optional output arguments idTotals
and sampleTotals from transprob contain the following information:

• idTotals(n).totalsVec = ()Ni
n i∀

• idTotals(n).totalsMat = (),Ni j
n ij∀

• idTotals(n).algoritm = 'cohort'

• sampleTotals.totalsVec = ()Ni i∀

• sampleTotals.totalsMat = (),Ni j ij∀

• sampleTotals.algoritm = 'cohort'

For efficiency, the vectors and matrices in idTotals are stored as
sparse arrays.

Duration Estimation

The algorithm computes Ti
n , the total time that obligor n spends in

rating i within the estimation time window. These quantities are

added up over all obligors to get Ti , the total time spent in rating i,
collectively, by all obligors in the sample. The algorithm also computes

Tij
n
, the number times that obligor n migrates from rating i to rating j,

with i not equal to j, within the estimation time window. And it also

adds them up to get Tij , the total number of migrations, by all obligors
in the sample, from the rating i to j, with i not equal to j.

To estimate the transition probabilities, the duration algorithm first
needs to compute a generator matrix Λ . Each off-diagonal entry of this
matrix is an estimate of the transition rate out of rating i into rating j,
and is given by:

17-884

transprob

ij
ij

i

T

T
i j= ≠,

The diagonal entries are computed as:

 ii
j i

ij= −
≠

∑

With the generator matrix and the transition interval Δt (e.g., Δt = 2
corresponds to 2-year transition probabilities), the transition matrix is

obtained as P t= exp()Δ Λ , where exp denotes matrix exponentiation
(expm in MATLAB).

Note For the duration algorithm, optional output arguments idTotals
and sampleTotals from transprob contain the following information:

• idTotals(n).totalsVec = ()Ti
n i∀

• idTotals(n).totalsMat = (),Ti j
n ij∀

• idTotals(n).algoritm = 'duration'

• sampleTotals.totalsVec = ()Ti i∀

• sampleTotals.totalsMat = (),Ti j ij∀

• sampleTotals.algoritm = 'duration'

For efficiency, the vectors and matrices in idTotals are stored as
sparse arrays.

References Hanson, S., T. Schuermann, "Confidence Intervals for Probabilities of
Default," Journal of Banking & Finance, Elsevier, vol. 30(8), pages
2281-2301, August 2006.

17-885

transprob

Löffler, G., P. N. Posch, Credit Risk Modeling Using Excel and VBA,
West Sussex, England: Wiley Finance, 2007.

Schuermann, T., "Credit Migration Matrices," in E. Melnick, B. Everitt
(eds.), Encyclopedia of Quantitative Risk Analysis and Assessment,
Wiley, 2008.

See Also | transprobbytotals | transprobprep

How To • “Estimation of Transition Probabilities” on page 6-3

17-886

transprobbytotals

Purpose Estimate transition probabilities using totals structure input

Syntax [transMat,sampleTotals] = transprobbytotals(totals)
[transMat,sampleTotals] = transprobbytotals(totals,
Name,Value)

Description [transMat,sampleTotals] = transprobbytotals(totals) estimates
transition probabilities using a totals structure input.

[transMat,sampleTotals] =
transprobbytotals(totals,Name,Value) estimates transition
probabilities using a totals structure input with additional options
specified by one or more Name,Value pair arguments.

transprobbytotals is useful for removing outlier information,
obtaining bootstrapped confidence intervals, or computing transition
probability estimates for different periodicity parameters (1-year
transitions, 2-year transitions, etc.) in an efficient manner.

Input
Arguments

totals

This can be:

• totalsVec— A sparse vector of size 1-by-nRatings1.

• totalsMat— A sparse matrix of size nRatings1-by-nRatings2 with
nRatings1 ≤ nRatings2.

• algorithm— A string with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total
transitions observed out of rating i into rating j (all the diagonal
elements are 0). The total time spent on rating i is stored in
totalsVec(i). For example, you have three rating categories,
Investment Grade (IG), Speculative Grade (SG) and Default (D), and
the following information:

Total time spent IG SG D
in rating: 4859.09 1503.36 1162.05

17-887

transprobbytotals

Transitions IG SG D
out of (row) IG 0 89 7
into (column): SG 202 0 32

D 0 0 0

Then:

totals.totalsVec = [4859.09 1503.36 1162.05]
totals.totalsMat = [0 89 7

202 0 32
0 0 0]

totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total
transitions observed from rating i to rating j, and totalsVec(i) is the
initial count in rating i. For example, given the following information:

Initial count IG SG D
in rating: 4808 1572 1145

Transitions IG SG D
from (row) IG 4721 80 7
to (column): SG 193 1347 32

D 0 0 1145

Then:

totals.totalsVec = [4808 1572 1145]
totals.totalsMat = [4721 80 7

193 1347 32
0 0 1145

totals.algorithm = 'cohort'

Common totals structures are the optional output arguments from
transprob:

• sampleTotals — A single structure summarizing the totals
information for the whole dataset.

17-888

transprobbytotals

• idTotals—A struct array with the totals information at the ID level.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

snapsPerYear

Integer indicating the number of credit-rating snapshots per year to
be considered for the estimation. Values are 1, 2, 3, 4, 6, or 12. This
argument is only used with the cohort algorithm.

Default: 1 — One snapshot per year

transInterval

Length of the transition interval, in years.

Default: 1— One-year transition probabilities

Output
Arguments

transMat

Matrix of transition probabilities in percent. The size of the transition
matrix is nRatings1-by-nRatings2.

sampleTotals

Structure with fields:

• totalsVec — A vector of size 1-by-nRatings1.

• totalsMat — A matrix of size nRatings1-by-nRatings2 with
nRatings1 ≤ nRatings2.

• algorithm— A string with values 'duration' or 'cohort'.

If totals is a struct array, sampleTotals contains the aggregated
information. That is, sampleTotals.totalsVec is the sum of

17-889

transprobbytotals

totals(k).totalsVec over all k, and similarly for totalsMat. When
totals is itself a single structure, sampleTotals and totals are the
same.

Definitions Cohort Estimation

The cohort algorithm estimates the transition probabilities based on
a sequence of snapshots of credit ratings at regularly spaced points
in time. If the credit rating of a company changes twice between two
snapshot dates, the intermediate rating is overlooked and only the
initial and final ratings influence the estimates. For more information,
see “Algorithms” on page 17-882.

Duration Estimation

Unlike the cohort algorithm, the duration algorithm estimates the
transition probabilities based on the full credit ratings history, looking
at the exact dates on which the credit rating migrations occur. There is
no concept of snapshots in this method, and all credit rating migrations
influence the estimates, even when a company’s rating changes twice
within a short time. For more information, see “Algorithms” on page
17-882.

Examples Use historical credit rating input data from Data_TransProb.mat and
transprob to generate input for transprobbytotals:

load Data_TransProb

% Call TRANSPROB with three output arguments

[transMat, sampleTotals, idTotals] = transprob(data);

transMat

transMat =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

17-890

transprobbytotals

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

% Suppose companies 4 and 27 are outliers; remove them from the

% pre-processed 'idTotals' struct array and estimate the new

% transition probabilities

idTotals([4 27]) = [];

[transMat1, sampleTotals1] = transprobbytotals(idTotals);

transMat1

transMat1 =

93.1172 5.8427 0.8231 0.1763 0.0377 0.0012 0.0001 0.0017

1.6213 93.1501 4.3584 0.6614 0.1631 0.0055 0.0004 0.0397

0.1239 2.9027 92.2297 4.0628 0.5367 0.0661 0.0028 0.0753

0.0236 0.2313 5.0070 90.1825 3.7986 0.4734 0.0642 0.2193

0.0216 0.1134 0.6357 5.7959 88.9866 3.4497 0.2920 0.7050

0.0010 0.0062 0.1081 0.8697 7.3367 86.7217 2.5171 2.4395

0.0002 0.0011 0.0120 0.2591 1.4340 4.3034 81.3027 12.6875

0 0 0 0 0 0 0 100.0000

% Get 1-year, 2-year, ..., 5-year default probabilities, without the

% outlier information (i.e., using sampleTotals1)

DefProb = zeros(7,5);

for t = 1:5

transMatTemp = transprobbytotals(sampleTotals1,'transInterval',t);

DefProb(:,t) = transMatTemp(1:7,8);

end

DefProb

DefProb =

0.0017 0.0070 0.0159 0.0285 0.0450

0.0397 0.0828 0.1299 0.1813 0.2377

17-891

transprobbytotals

0.0753 0.1606 0.2567 0.3640 0.4831

0.2193 0.4675 0.7430 1.0445 1.3700

0.7050 1.4668 2.2759 3.1232 4.0000

2.4395 4.9282 7.4071 9.8351 12.1847

12.6875 23.1184 31.7177 38.8282 44.7266

References Hanson, S., T. Schuermann, "Confidence Intervals for Probabilities of
Default," Journal of Banking & Finance, Elsevier, vol. 30(8), pages
2281–2301, August 2006.

Löffler, G., P. N. Posch, Credit Risk Modeling Using Excel and VBA,
West Sussex, England: Wiley Finance, 2007.

Schuermann, T., "Credit Migration Matrices," in E. Melnick, B. Everitt
(eds.), Encyclopedia of Quantitative Risk Analysis and Assessment,
Wiley, 2008.

See Also | transprob | transprobgrouptotals

How To • “Estimation of Transition Probabilities” on page 6-3

17-892

transprobfromthresholds

Purpose Convert from credit quality thresholds to transition probabilities

Syntax trans = transprobfromthresholds(thresh)

Description trans = transprobfromthresholds(thresh) transforms credit
quality thresholds into transition probabilities.

Input
Arguments

thresh

M-by-N matrix of credit quality thresholds. In each row, the first element
must be Inf and the entries must satisfy the following monotonicity
condition:

thresh(i,j) >= thresh(i,j+1), for 1<=j<N

The M-by-N input thresh and the M-by-N output trans are related as
follows. The thresholds thresh(i,j) are critical values of a standard
normal distribution z, such that:

trans(i,N) = P[z < thresh(i,N)],

trans(i,j) = P[z < thresh(i,j)] - P[z < thresh(i,j+1)], for 1<=j<N

Any given row in the output matrix TRANS determines a probability
distribution over a discrete set of N ratings 'R1',...,'RN', so that for
any row i TRANS(i,j) is the probability of migrating into 'Rj'. TRANS
can be a standard transition matrix, with M ≤ N, in which case row i
contains the transition probabilities for issuers with rating 'Ri'. But
TRANS does not have to be a standard transition matrix. TRANS can
contain individual transition probabilities for a set of M-specific issuers,
with M > N.

For example, suppose there are only N=3 ratings, 'High', 'Low', and
'Default', with these credit quality thresholds:

High Low Default
High Inf -2.0814 -3.1214
Low Inf 2.4044 -1.7530

17-893

transprobfromthresholds

The matrix of transition probabilities is then:

High Low Default
High 98.13 1.78 0.09
Low 0.81 95.21 3.98

This means the probability of default for 'High' is equivalent to
drawing a standard normal random number smaller than −3.1214, or
0.09%. The probability that a 'High' will end up the period with a
rating of 'Low' or lower is equivalent to drawing a standard normal
random number smaller than −2.0814, or 1.87%. From here, the
probability of ending with a 'Low' rating is:

P[z<-2.0814] - P[z<-3.1214] = 1.87% - 0.09% = 1.78%

And the probability of ending with a 'High' rating is:

100%-1.87% = 98.13%

where 100% is the same as:

P[z<Inf]

Output
Arguments

trans

M-by-N matrix with transition probabilities, in percent.

Examples Use historical credit rating input data from Data_TransProb.mat:

% Load input data from file Data_TransProb.mat.

load Data_TransProb

% Estimate transition probabilities with default settings

transMat = transprob(data)

transMat =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

17-894

transprobfromthresholds

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

% Get credit quality thresholds

thresh = transprobtothresholds(transMat)

thresh =

Inf -1.4846 -2.3115 -2.8523 -3.3480 -4.0083 -4.1276 -4.1413

Inf 2.1403 -1.6228 -2.3788 -2.8655 -3.3166 -3.3523 -3.3554

Inf 3.0264 1.8773 -1.6690 -2.4673 -2.9800 -3.1631 -3.1736

Inf 3.4963 2.8009 1.6201 -1.6897 -2.4291 -2.7663 -2.8490

Inf 3.5195 2.9999 2.4225 1.5089 -1.7010 -2.3275 -2.4547

Inf 4.2696 3.8015 3.0477 2.3320 1.3838 -1.6491 -1.9703

Inf 4.6241 4.2097 3.6472 2.7803 2.1199 1.5556 -1.1399

Inf Inf Inf Inf Inf Inf Inf Inf

% Recover transition probabilities

trans = transprobfromthresholds(thresh)

trans =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

17-895

transprobfromthresholds

References Gupton, G. M., C. C. Finger, and M. Bhatia, CreditMetrics, Technical
Document, RiskMetrics Group, Inc., 2007.

See Also | transprob | transprobbytotals | transprobtothresholds

How To • “Credit Quality Thresholds” on page 6-26

17-896

transprobgrouptotals

Purpose Aggregate credit ratings information into fewer rating categories

Syntax totalsGrouped = transprobgrouptotals(totals,groupingEdges)

Description totalsGrouped = transprobgrouptotals(totals,groupingEdges)
aggregates the credit ratings information stored in the totals input
into fewer ratings categories, which are defined by the groupingEdges
argument.

Input
Arguments

totals

Structure, or a struct array of length nTotals, with fields:

• totalsVeC — A vector of size 1-by-nRatings1.

• totalsMat — A matrix of size nRatings1-by-nRatings2, with
nRatings1 ≤ nRatings2.

• algorithm — A string with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total
transitions observed out of rating i into rating j (all the diagonal
elements are 0). The total time spent on rating i is stored in
totalsVec(i). For example, if there are three rating categories,
Investment Grade (IG), Speculative Grade (SG) and Default (D), and
the following information:

Total time spent IG SG D
in rating: 4859.09 1503.36 1162.05

Transitions IG SG D
out of (row) IG 0 89 7
into (column): SG 202 0 32

D 0 0 0

Then:

totals.totalsVec = [4859.09 1503.36 1162.05]
totals.totalsMat = [0 89 7

202 0 32

17-897

transprobgrouptotals

0 0 0]
totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total
transitions observed from rating i to rating j, and totalsVec(i) is the
initial count in rating i. For example, given the following information:

Initial count IG SG D
in rating: 4808 1572 1145

Transitions IG SG D
from (row) IG 4721 80 7
to (column): SG 193 1347 32

D 0 0 1145

Then:

totals.totalsVec = [4808 1572 1145]
totals.totalsMat = [4721 80 7

193 1347 32
0 0 1145]

totals.algorithm = 'cohort'

Note Common totals structures are the optional output arguments
from transprob:

• sampleTotals — A single structure summarizing the totals
information for the whole dataset.

• idTotals—A struct array with the totals information at the ID level.
For more information, see “Algorithms” on page 17-882.

groupingEdges

Numeric array with increasing, positive integers to indicate how to
group credit ratings into categories.

17-898

transprobgrouptotals

This table illustrates how to group a list of whole ratings into
investment grade (IG) and speculative grade (SG) categories. Eight
ratings are in the original list. Ratings 1 to 4 are IG, ratings 5 to 7 are
SG, and rating 8 is a category of its own. In this example, the array of
grouping edges is [4 7 8].

Original ratings: 'AAA' 'AA' 'A' 'BBB' | 'BB' 'B' 'CCC' | 'D'

| |

Relative ordering: (1) (2) (3) (4) | (5) (6) (7) | (8)

| |

Grouped ratings: 'IG' | 'SG' | 'D'

| |

Grouping edges: (4) | (7) | (8)

In general, if groupingEdges has K elements edge1 < edge2 < ...
<edgeK, ratings 1 to edge1 (inclusive) are grouped in the first category,
ratings edge1+1 to edge2 in the second category, and so forth.

Regarding the last element, edgeK:

• If nRatings1 equals nRatings2, then edgeK must equal nRatings1.
This leads to K groups, and nRatingsGrouped1 = nRatingsGrouped2
= K.

• If nRatings1 < nRatings2, then either:

- edgeK equals nRatings1, in which case ratings
edgeK+1,...,nRatings2 will be treated as categories of
their own. This results in K+(nRatings2-edgeK) groups, with
nRatingsGrouped1 = K and nRatingsGrouped2 = K + (nRatings2
– edgeK); or

- edgeK equals nRatings2, in which case there must be a jth edge
element, edgej, such that edgej equals nRatings1. This leads to K
groups, and nRatingsGrouped1 = j and nRatingsGrouped2 = K.

Output
Arguments

totalsGrouped

Structure, or a struct array of length nTotals, with fields:

• totalsVec— A vector of size 1-by-nRatingsGrouped1.

17-899

transprobgrouptotals

• totalsMat — A matrix of size
nRatingsGrouped1-by-nRatingsGrouped2.

• algorithm— A string, 'duration' or 'cohort'.
nRatingsGrouped1 and nRatingsGrouped2 are defined in the
description of groupingEdges. Each structure contains aggregated
information by categories, based on the information provided in the
corresponding structure in totals, according to the grouping of ratings
defined by groupingEdges and consistent with the algorithm choice.

Following the examples in the description of the totals input, suppose
IG and SG are grouped into a single ND (Not-Defaulted) category, using
the edges[2 3]. For the 'cohort' algorithm, the output is:

totalsGrouped.totalsVec = [6380 1145]
totalsGrouped.totalsMat = [6341 39

0 1145]
totalsGrouped.algorithm = 'cohort'

and for the 'duration' algorithm:

totalsGrouped.totalsVec = [6362.45 1162.05]
totalsGrouped.totalsMat = [0 39

0 0]
totalsGrouped.algorithm = 'duration'

Definitions Cohort Estimation

The cohort algorithm estimates the transition probabilities based on
a sequence of snapshots of credit ratings at regularly spaced points
in time. If the credit rating of a company changes twice between two
snapshot dates, the intermediate rating is overlooked and only the
initial and final ratings influence the estimates. For more information,
see “Algorithms” on page 17-882.

Duration Estimation

Unlike the cohort algorithm , the duration algorithm estimates the
transition probabilities based on the full credit ratings history, looking
at the exact dates on which the credit rating migrations occur. There is

17-900

transprobgrouptotals

no concept of snapshots in this method, and all credit rating migrations
influence the estimates, even when a company’s rating changes twice
within a short time. For more information, see “Algorithms” on page
17-882.

Examples Use historical credit rating input data from Data_TransProb.mat:

% Load input data from file Data_TransProb.mat

load Data_TransProb

% Call TRANSPROB with two output arguments

[transMat, sampleTotals] = transprob(data);

transMat

transMat =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

% Group into investment grade (ratings 1-4) and speculative grade

% (ratings 5-7); default is the last rating (number 8)

edges = [4 7 8];

sampleTotalsGrp = transprobgrouptotals(sampleTotals,edges);

% Transition matrix at investment grade / speculative grade level

transMatIGSG = transprobbytotals(sampleTotalsGrp)

transMatIGSG =

98.5336 1.3608 0.1056

3.9155 92.9692 3.1153

17-901

transprobgrouptotals

0 0 100.0000

% Get 1-year, 2-year, ..., 5-year default probabilities at investment

% grade / speculative grade level

DefProb = zeros(2,5);

for t = 1:5

transMatTemp = transprobbytotals(sampleTotalsGrp,'transInterval',t);

DefProb(:,t) = transMatTemp(1:2,3);

end

DefProb

DefProb =

0.1056 0.2521 0.4359 0.6537 0.9027

3.1153 6.0157 8.7179 11.2373 13.5881

References Hanson, S., T. Schuermann, "Confidence Intervals for Probabilities of
Default," Journal of Banking & Finance, Elsevier, vol. 30(8), pages
2281–2301, August 2006.

Löffler, G., P. N. Posch, Credit Risk Modeling Using Excel and VBA,
West Sussex, England: Wiley Finance, 2007.

Schuermann, T., "Credit Migration Matrices," in E. Melnick, B. Everitt
(eds.), Encyclopedia of Quantitative Risk Analysis and Assessment,
Wiley, 2008.

See Also | transprob | transprobbytotals

How To • “Estimation of Transition Probabilities” on page 6-3

17-902

transprobprep

Purpose Preprocess credit ratings data to estimate transition probabilities

Syntax [prepData] = transprobprep(data)
[prepData] = transprobprep(data, Name,Value)

Description [prepData] = transprobprep(data) preprocesses credit ratings
historical data (i.e., credit migration data) for the subsequent estimation
of transition probabilities.

[prepData] = transprobprep(data, Name,Value) preprocesses
credit ratings historical data (i.e., credit migration data) for the
subsequent estimation of transition probabilities with additional
options specified by one or more Name,Value pair arguments.

Input
Arguments

data

Historical input data for credit ratings. Cell array of size nRecords-by-3
containing the credit ratings. Each row contains an ID (column
1), a date (column 2), and a credit rating (column 3). The assigned
credit rating corresponds to the associated ID on the associated date.
All information corresponding to the same ID must be stored in
contiguous rows. Sorting this information by date is not required but
is recommended. IDs, dates, and ratings are usually stored in string
format, but they can also be entered in numeric format. Here is an
example with all of the information in string format:

'00010283' '10-Nov-1984' 'CCC'
'00010283' '12-May-1986' 'B'
'00010283' '29-Jun-1988' 'CCC'
'00010283' '12-Dec-1991' 'D'
'00013326' '09-Feb-1985' 'A'
'00013326' '24-Feb-1994' 'AA'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

17-903

transprobprep

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

labels

Cell array of size nRatings-by-1, or 1-by-nRatings, containing the
credit-rating scale. It must be consistent with the ratings labels used in
the third column of data.

Default: {'AAA','AA','A','BBB','BB','B','CCC','D'}

Output
Arguments

prepData

Structure with the following fields:

• idStart— Array of size (nIDs+1)-by-1, where nIDs is the number of
distinct IDs in column 1 of data. This array summarizes where the
credit ratings information corresponding to each company starts and
ends. The dates and ratings corresponding to company j in data are
stored from row idStart(j) to row idStart(j+1)−1 of numericDates
and numericRatings.

• numericDates— Array of size nRecords-by-1, containing the dates in
column 2 of data, in numeric format.

• numericRatings — Array of size nRecords-by-1, containing the
ratings in column 3 of data, mapped into numeric format.

• ratingsLabels — Cell array of size1-by-nRatings, containing the
credit rating scale.

Examples Load input data from Data_TransProb.mat and display the first 10
rows. Here, the inputs are provided in string format.

load Data_TransProb

data(1:10,:)

ans =

'00010283' '10-Nov-1984' 'CCC'

17-904

transprobprep

'00010283' '12-May-1986' 'B'

'00010283' '29-Jun-1988' 'CCC'

'00010283' '12-Dec-1991' 'D'

'00013326' '09-Feb-1985' 'A'

'00013326' '24-Feb-1994' 'AA'

'00013326' '10-Nov-2000' 'BBB'

'00014413' '23-Dec-1982' 'B'

'00014413' '20-Apr-1988' 'BB'

'00014413' '16-Jan-1998' 'B'

% Preprocess credit ratings data

prepData = transprobprep(data)

prepData =

idStart: [1506x1 double]

numericDates: [4315x1 double]

numericRatings: [4315x1 double]

ratingsLabels: {'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC' 'D'}

% Estimate transition probabilities with default settings

transMat = transprob(prepData)

transMat =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

% Estimate transition probabilities with 'cohort' algorithm

transMatCoh = transprob(prepData,'algorithm','cohort')

17-905

transprobprep

transMatCoh =

93.1345 5.9335 0.7456 0.1553 0.0311 0 0 0

1.7359 92.9198 4.5446 0.6046 0.1560 0 0 0.0390

0.1268 2.9716 91.9913 4.3124 0.4711 0.0544 0 0.0725

0.0210 0.3785 5.0683 89.7792 4.0379 0.4627 0.0421 0.2103

0.0221 0.1105 0.6851 6.2320 88.3757 3.6464 0.2873 0.6409

0 0 0.0761 0.7230 7.9909 86.1872 2.7397 2.2831

0 0 0 0.3094 1.8561 4.5630 80.8971 12.3743

0 0 0 0 0 0 0 100.0000

See Also | transprobbytotals | transprob

How To • “Estimation of Transition Probabilities” on page 6-3

17-906

transprobtothresholds

Purpose Convert from transition probabilities to credit quality thresholds

Syntax thresh = transprobtothresholds(trans)

Description thresh = transprobtothresholds(trans) transforms transition
probabilities into credit quality thresholds.

Input
Arguments

trans

M-by-N matrix with transition probabilities, in percent. Entries cannot
be negative and cannot exceed 100, and all rows must add up to 100.

Any given row in the M-by-N input matrix trans determines a
probability distribution over a discrete set of N ratings. If the ratings
are 'R1',...,'RN', then for any row i trans(i,j) is the probability of
migrating into 'Rj'. If trans is a standard transition matrix, then
M N and row i contains the transition probabilities for issuers with
rating 'Ri'. But trans does not have to be a standard transition
matrix. trans can contain individual transition probabilities for a set
of M-specific issuers, with M > N.

The credit quality thresholds thresh(i,j) are critical values of a standard
normal distribution z, such that:

trans(i,N) = P[z < thresh(i,N)],

trans(i,j) = P[z < thresh(i,j)] - P[z < thresh(i,j+1)], for 1<=j<N

This implies that thresh(i,1) = Inf, for all i. For example, suppose
there are only N=3 ratings, 'High', 'Low', and 'Default', with the
following transition probabilities:

High Low Default
High 98.13 1.78 0.09
Low 0.81 95.21 3.98

The matrix of credit quality thresholds is:

High Low Default

17-907

transprobtothresholds

High Inf -2.0814 -3.1214
Low Inf 2.4044 -1.7530

This means the probability of default for 'High' is equivalent to
drawing a standard normal random number smaller than −3.1214, or
0.09%. The probability that a 'High' will end up the period with a
rating of 'Low' or lower is equivalent to drawing a standard normal
random number smaller than −2.0814, or 1.87%. From here, the
probability of ending with a 'Low' rating is:

P[z<-2.0814] - P[z<-3.1214] = 1.87% - 0.09% = 1.78%

And the probability of ending with a 'High' rating is:

100%-1.87% = 98.13%

where 100% is the same as:

P[z<Inf]

Output
Arguments

thresh

M-by-N matrix of credit quality thresholds.

Examples Use historical credit rating input data from Data_TransProb.mat:

% Load input data from file Data_TransProb.mat.

load Data_TransProb

% Estimate transition probabilities with default settings

transMat = transprob(data)

transMat =

93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017

1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396

0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753

0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193

17-908

transprobtothresholds

0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050

0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399

0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167

0 0 0 0 0 0 0 100.0000

% Get credit quality thresholds

thresh = transprobtothresholds(transMat)

thresh =

Inf -1.4846 -2.3115 -2.8523 -3.3480 -4.0083 -4.1276 -4.1413

Inf 2.1403 -1.6228 -2.3788 -2.8655 -3.3166 -3.3523 -3.3554

Inf 3.0264 1.8773 -1.6690 -2.4673 -2.9800 -3.1631 -3.1736

Inf 3.4963 2.8009 1.6201 -1.6897 -2.4291 -2.7663 -2.8490

Inf 3.5195 2.9999 2.4225 1.5089 -1.7010 -2.3275 -2.4547

Inf 4.2696 3.8015 3.0477 2.3320 1.3838 -1.6491 -1.9703

Inf 4.6241 4.2097 3.6472 2.7803 2.1199 1.5556 -1.1399

Inf Inf Inf Inf Inf Inf Inf Inf

References Gupton, G. M., C. C. Finger, and M. Bhatia, CreditMetrics, Technical
Document, RiskMetrics Group, Inc., 2007.

See Also | transprob | transprobbytotals | transprobfromthresholds

How To • “Credit Quality Thresholds” on page 6-26

17-909

tsaccel

Purpose Acceleration between times

Syntax acc = tsaccel(data, nTimes, datatype)
accts = tsaccel(tsobj, nTimes, datatype)

Arguments

data Data series.

nTimes (Optional) Number of times. Default = 12.

datatype (Optional) Indicates whether data contains the data
itself or the momentum of the data:

0 = Data contains the data itself (default).

1 = Data contains the momentum of the data.

tsobj Name of an existing financial time series object.

Description Acceleration is the difference of two momentums separated by some
number of periods.

acc = tsaccel(data, nTimes, datatype) calculates the acceleration
of a data series, essentially the difference of the current momentum
with the momentum some number of periods ago. If nTimes is specified,
tsaccel calculates the acceleration of a data series data with time
distance of nTimes times.

accts = tsaccel(tsobj, nTimes, datatype) calculates the
acceleration of the data series in the financial time series object tsobj,
essentially the difference of the current momentum with the momentum
some number of periods ago. Each data series in tsobj is treated
individually. accts is a financial time series object with similar dates
and data series names as tsobj.

17-910

tsaccel

Note, to compute a quantity over n periods, you must specify n+1 for
nTimes. If you specify nTimes = 0, the function returns your original
time series.

Examples Compute the acceleration for Disney stock and plot the results:

load disney.mat
dis = rmfield(dis,'VOLUME') % remove VOLUME field
dis_Accel = tsaccel(dis);
plot(dis_Accel)
title('Acceleration for Disney')

References Kaufman, P. J., The New Commodity Trading Systems and Methods,
New York: John Wiley & Sons, 1987.

17-911

tsaccel

See Also tsmom

17-912

tsmom

Purpose Momentum between times

Syntax mom = tsmom(data, nTimes)
momts = tsmom(tsobj, nTimes)

Arguments

data Data series. Column-oriented vector or matrix.

nTimes (Optional) Number of times. Default = 12.

tsobj Financial time series object.

Description Momentum is the difference between two prices (data points) separated
by a number of times.

mom = tsmom(data, nTimes) calculates the momentum of a data
series data. If nTimes is specified, tsmom uses that value instead of
the default 12.

momts = tsmom(tsobj, nTimes) calculates the momentum of all data
series in the financial time series object tsobj. Each data series in
tsobj is treated individually. momts is a financial time series object
with similar dates and data series names as tsobj. If nTimes is
specified, tsmom uses that value instead of the default 12.

Note, to compute a quantity over n periods, you must specify n+1 for
nTimes. If you specify nTimes = 0, the function returns your original
time series.

Examples Compute the momentum for Disney stock and plot the results:

load disney.mat
dis = rmfield(dis,'VOLUME') % remove VOLUME field
dis_Mom = tsmom(dis);
plot(dis_Mom)
title('Momentum for Disney')

17-913

tsmom

See Also tsaccel

17-914

tsmovavg

Purpose Moving average

Syntax output = tsmovavg(tsobj, 's', lag) (Simple)
output = tsmovavg(vector, 's', lag, dim)
output = tsmovavg(tsobj, 'e', timeperiod) (Exponential)
output = tsmovavg(vector, 'e', timeperiod, dim)
output = tsmovavg(tsobj, 't', numperiod) (Triangular)
output = tsmovavg(vector, 't', numperiod, dim)
output = tsmovavg(tsobj, 'w', weights) (Weighted)
output = tsmovavg(vector, 'w', weights, dim)
output = tsmovavg(tsobj, 'm', numperiod) (Modified)
output = tsmovavg(vector, 'm', numperiod, dim)

Arguments

tsobj Financial time series object.

lag Number of previous data points.

vector Row vector or row-oriented matrix. Each row is a
set of observations.

dim (Optional) Specifies dimension when input is a
vector or matrix. Default = 2 (row-oriented matrix:
each row is a variable, and each column is an
observation). If dim = 1, input is assumed to be
a column vector or column-oriented matrix (each
column is a variable and each row an observation).
output is identical in format to input.

timeperiod Length of time period.

numperiod Number of periods considered.

weights Weights for each element in the window.

17-915

tsmovavg

Description output = tsmovavg(tsobj, 's', lag) and
output = tsmovavg(vector, 's', lag, dim) compute the simple
moving average. lag indicates the number of previous data points used
with the current data point when calculating the moving average.

output = tsmovavg(tsobj, 'e', timeperiod) and
output = tsmovavg(vector, 'e', timeperiod, dim) compute the
exponential weighted moving average. The exponential moving average
is a weighted moving average, where timeperiod specifies the time
period. Exponential moving averages reduce the lag by applying more
weight to recent prices. For example, a 10-period exponential moving
average weights the most recent price by 18.18%. (2/(timeperiod +
1)).

output = tsmovavg(tsobj, 't', numperiod) and
output = tsmovavg(vector, 't', numperiod, dim) compute
the triangular moving average. The triangular moving average
double-smooths the data. tsmovavg calculates the first simple moving
average with window width of ceil(numperiod + 1)/2. Then it
calculates a second simple moving average on the first moving average
with the same window size.

output = tsmovavg(tsobj, 'w', weights) and
output = tsmovavg(vector, 'w', weights, dim) calculate the
weighted moving average by supplying weights for each element in the
moving window. The length of the weight vector determines the size
of the window. If larger weight factors are used for more recent prices
and smaller factors for previous prices, the trend is more responsive to
recent changes.

output = tsmovavg(tsobj, 'm', numperiod) and
output = tsmovavg(vector, 'm', numperiod, dim) calculate the
modified moving average. The modified moving average is similar to
the simple moving average. Consider the argument numperiod to be the
lag of the simple moving average. The first modified moving average
is calculated like a simple moving average. Subsequent values are
calculated by adding the new price and subtracting the last average
from the resulting sum.

17-916

tsmovavg

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 184-192.

See Also mean | peravg

17-917

typprice

Purpose Typical price

Syntax tprc = typprice(highp, lowp, closep)
tprc = typprice([highp lowp closep])
tprcts = typprice(tsobj)
tprcts = typprice(tsobj, ParameterName, ParameterValue, ...)

Arguments

highp High price (vector).

lowp Low price (vector).

closep Closing price (vector).

tsobj Financial time series object.

Description tprc = typprice(highp, lowp, closep) calculates the typical
prices tprc from the high (highp), low (lowp), and closing (closep)
prices. The typical price is the average of the high, low, and closing
prices for each period.

tprc = typprice([highp lowp closep]) accepts a three-column
matrix as the input rather than two individual vectors. The columns of
the matrix represent the high, low, and closing prices, in that order.

tprcts = typprice(tsobj) calculates the typical prices from the
stock data contained in the financial time series object tsobj. The
object must contain, at least, the High, Low, and Close data series. The
typical price is the average of the closing price plus the high and low
prices. tprcts is a financial time series object of the same dates as
tsobj containing the data series TypPrice.

tprcts = typprice(tsobj, ParameterName, ParameterValue,
...) accepts parameter name/parameter value pairs as input. These
pairs specify the name(s) for the required data series if it is different
from the expected default name(s). Valid parameter names are

17-918

typprice

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the typical price for Disney stock and plot the results:

load disney.mat
dis_Typ = typprice(dis);
plot(dis_Typ)
title('Typical Price for Disney')

17-919

typprice

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 291 - 292.

See Also medprice | wclose

17-920

ugarch

Purpose Univariate GARCH(P,Q) parameter estimation with Gaussian
innovations

Syntax [Kappa, Alpha, Beta] = ugarch(U, P, Q)

Arguments

U Single column vector of random disturbances, that is, the
residuals or innovations (εt), of an econometric model
representing a mean-zero, discrete-time stochastic process.
The innovations time series U is assumed to follow a
GARCH(P,Q) process.

Note The latest value of residuals is the last element of
vector U.

P Nonnegative, scalar integer representing a model order
of the GARCH process. P is the number of lags of the
conditional variance. P can be zero; when P = 0, a
GARCH(0,Q) process is actually an ARCH(Q) process.

Q Positive, scalar integer representing a model order of the
GARCH process. Q is the number of lags of the squared
innovations.

Description [Kappa, Alpha, Beta] = ugarch(U, P, Q) computes estimated
univariate GARCH(P,Q) parameters with Gaussian innovations.

Kappa is the estimated scalar constant term ([[KAPPA]]) of the GARCH
process.

Alpha is a P-by-1 vector of estimated coefficients, where P is the number
of lags of the conditional variance included in the GARCH process.

Beta is a Q-by-1 vector of estimated coefficients, where Q is the number
of lags of the squared innovations included in the GARCH process.

17-921

ugarch

The time-conditional variance, t
2 , of a GARCH(P,Q) process is modeled

as

 t i t i
i

P

j t j
j

Q
K2 2

1

2

1

= + +−
=

−
=

∑ ∑ ,

where α represents the argument Alpha, β represents Beta, and
the GARCH(P, Q) coefficients {Κ, α, β} are subject to the following
constraints.

i
i

P

j
j

Q

i

j

K
i P
j Q

= =
∑ ∑+ <

>
≥ =
≥ =

1 1

1

0
0 1 2
0 1 2

, , ,
, , , .

Note that U is a vector of residuals or innovations (εt) of an econometric
model, representing a mean-zero, discrete-time stochastic process.

Although t
2 is generated using the equation above, εt and t

2 are
related as

 t t t= ,

where t{ } is an independent, identically distributed (iid) sequence ~
N(0,1).

17-922

ugarch

Note ugarch corresponds generally to the Econometrics Toolbox
function garchfit. The Econometrics Toolbox software provides a
comprehensive and integrated computing environment for the analysis
of volatility in time series. For information, see the Econometrics
Toolbox User’s Guide documentation or the financial products Web page
at http://www.mathworks.com/products/finprod/.

Examples See ugarchsim for an example of a GARCH(P,Q) process.

References James D. Hamilton, Time Series Analysis, Princeton University Press,
1994

See Also ugarchpred | ugarchsim | garchfit

17-923

http://www.mathworks.com/products/finprod/

ugarchllf

Purpose Log-likelihood objective function of univariate GARCH(P,Q) processes
with Gaussian innovations

Syntax LogLikelihood = ugarchllf(Parameters, U, P, Q)

Arguments

Parameters (1 + P + Q)-by-1 column vector of GARCH(P,Q)
process parameters. The first element is the scalar
constant term [[KAPPA]] of the GARCH process; the
next P elements are coefficients associated with the
P lags of the conditional variance terms; the next Q
elements are coefficients associated with the Q lags
of the squared innovations terms.

U Single column vector of random disturbances, that
is, the residuals or innovations (εt), of an econometric
model representing a mean-zero, discrete-time
stochastic process. The innovations time series U is
assumed to follow a GARCH(P,Q) process.

Note The latest value of residuals is the last
element of vector U.

P Nonnegative, scalar integer representing a model
order of the GARCH process. P is the number of lags
of the conditional variance. P can be zero; when P =
0, a GARCH(0,Q) process is actually an ARCH(Q)
process.

Q Positive, scalar integer representing a model order
of the GARCH process. Q is the number of lags of
the squared innovations.

17-924

ugarchllf

Description LogLikelihood = ugarchllf(Parameters, U, P, Q) computes the
log-likelihood objective function of univariate GARCH(P,Q) processes
with Gaussian innovations.

LogLikelihood is a scalar value of the GARCH(P,Q) log-likelihood
objective function given the input arguments. This function is meant
to be optimized via the fmincon function of the Optimization Toolbox
software.

fmincon is a minimization routine. To maximize the log-likelihood
function, the LogLikelihood output parameter is actually the negative
of what is formally presented in most time series or econometrics
references.

The time-conditional variance, t
2 , of a GARCH(P,Q) process is modeled

as

 t i t i
i

P

j t j
j

Q
K2 2

1

2

1

= + +−
=

−
=

∑ ∑ ,

where α represents the argument Alpha, and β represents Beta.

U is a vector of residuals or innovations (εt) representing a mean-zero,

discrete time stochastic process. Although t
2 is generated via the

equation above, εt and t
2 are related as

 t t t= ,

where t{ } is an independent, identically distributed (iid) sequence ~
N(0,1).

Since ugarchllf is really just a helper function, no argument checking
is performed. This function is not meant to be called directly from the
command line.

17-925

ugarchllf

Note The Econometrics Toolbox software provides a comprehensive
and integrated computing environment for the analysis of volatility
in time series. For information, see the Econometrics Toolbox
User’s Guide documentation or the financial products Web page at
http://www.mathworks.com/products/finprod/.

See Also ugarch | ugarchpred | ugarchsim

17-926

http://www.mathworks.com/products/finprod/

ugarchpred

Purpose Forecast conditional variance of univariate GARCH(P,Q) processes

Syntax [VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta,
NumPeriods)

Arguments

U Single column vector of random disturbances, that
is, the residuals or innovations (εt), of an econometric
model representing a mean-zero, discrete-time
stochastic process. The innovations time series U is
assumed to follow a GARCH(P,Q) process.

Note The latest value of residuals is the last
element of vector U.

Kappa Scalar constant term [[KAPPA]] of the GARCH
process.

Alpha P-by-1 vector of coefficients, where P is the number
of lags of the conditional variance included in the
GARCH process. Alpha can be an empty matrix,
in which case P is assumed 0; when P = 0, a
GARCH(0,Q) process is actually an ARCH(Q)
process.

Beta Q-by-1 vector of coefficients, where Q is the number
of lags of the squared innovations included in the
GARCH process.

NumPeriods Positive, scalar integer representing the forecast
horizon of interest, expressed in periods compatible
with the sampling frequency of the input innovations
column vector U.

17-927

ugarchpred

Description [VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta,
NumPeriods) forecasts the conditional variance of univariate
GARCH(P,Q) processes.

VarianceForecast is a number of periods (NUMPERIODS)-by-1 vector of
the minimum mean-square error forecast of the conditional variance
of the innovations time series vector U (that is, εt). The first element
contains the 1-period-ahead forecast, the second element contains the
2-period-ahead forecast, and so on. Thus, if a forecast horizon greater
than 1 is specified (NUMPERIODS > 1), the forecasts of all intermediate
horizons are returned as well. In this case, the last element contains
the variance forecast of the specified horizon, NumPeriods from the
most recent observation in U.

H is a vector of the conditional variances (σt
2) corresponding to the

innovations vector U. It is inferred from the innovations U, and is
a reconstruction of the “past” conditional variances, whereas the
VarianceForecast output represents the projection of conditional
variances into the “future.” This sequence is based on setting pre-sample
values of σt

2 to the unconditional variance of the {εt} process. H is a single
column vector of the same length as the input innovations vector U.

The time-conditional variance, t
2 , of a GARCH(P,Q) process is modeled

as

 t i t i
i

P

j t j
j

Q
K2 2

1

2

1

= + +−
=

−
=

∑ ∑ ,

where α represents the argument Alpha, β represents Beta, and
the GARCH(P,Q) coefficients {Κ, α, β} are subject to the following
constraints.

17-928

ugarchpred

i
i

P

j
j

Q

i

j

K
i P
j Q

= =
∑ ∑+ <

>
≥ =
≥ =

1 1

1

0
0 1 2
0 1 2

, , ,
, , , .

Note that U is a vector of residuals or innovations (εt) of an econometric
model, representing a mean-zero, discrete-time stochastic process.

Although t
2 is generated using the equation above, εt and t

2 are
related as

 t t t= ,

where t{ } is an independent, identically distributed (iid) sequence ~
N(0,1).

Note ugarchpred corresponds generally to the Econometrics Toolbox
function garchpred. The Econometrics Toolbox software provides a
comprehensive and integrated computing environment for the analysis
of volatility in time series. For information, see the Econometrics
Toolbox User’s Guide documentation or the financial products Web page
at http://www.mathworks.com/products/finprod/.

Examples See ugarchsim for an example of forecasting the conditional variance of
a univariate GARCH(P,Q) process.

See Also ugarch | ugarchsim | garchpred

17-929

http://www.mathworks.com/products/finprod/

ugarchsim

Purpose Simulate univariate GARCH(P,Q) process with Gaussian innovations

Syntax [U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples)

Arguments

Kappa Scalar constant term [[KAPPA]] of the GARCH
process.

Alpha P-by-1 vector of coefficients, where P is the number
of lags of the conditional variance included in the
GARCH process. Alpha can be an empty matrix,
in which case P is assumed 0; when P = 0, a
GARCH(0,Q) process is actually an ARCH(Q)
process.

Beta Q-by-1 vector of coefficients, where Q is the number
of lags of the squared innovations included in the
GARCH process.

NumSamples Positive, scalar integer indicating the number
of samples of the innovations U and conditional
variance H (see below) to simulate.

Description [U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples) simulates
a univariate GARCH(P,Q) process with Gaussian innovations.

U is a number of samples (NUMSAMPLES)-by-1 vector of innovations
(εt), representing a mean-zero, discrete-time stochastic process. The
innovations time series U is designed to follow the GARCH(P,Q) process
specified by the inputs Kappa, Alpha, and Beta.

H is a NUMSAMPLES-by-1 vector of the conditional variances (t
2)

corresponding to the innovations vector U. Note that U and H are the
same length, and form a “matching” pair of vectors. As shown in

17-930

ugarchsim

the following equation, t
2 (that is, H(t)) represents the time series

inferred from the innovations time series {εt} (that is, U).

The time-conditional variance, t
2 , of a GARCH(P,Q) process is modeled

as

 t i t i
i

P

j t j
j

Q
K2 2

1

2

1

= + +−
=

−
=

∑ ∑ ,

where α represents the argument Alpha, β represents Beta, and
the GARCH(P,Q) coefficients {Κ, α, β} are subject to the following
constraints.

i
i

P

j
j

Q

i

j

K
i P
j Q

= =
∑ ∑+ <

>
≥ =
≥ =

1 1

1

0
0 1 2
0 1 2

, , ,
, , , .

Note that U is a vector of residuals or innovations (εt) of an econometric
model, representing a mean-zero, discrete-time stochastic process.

Although t
2 is generated using the equation above, εt and t

2 are
related as

 t t t= ,

where t{ } is an independent, identically distributed (iid) sequence ~
N(0,1).

The output vectors U and H are designed to be steady-state sequences in
which transients have arbitrarily small effect. The (arbitrary) metric
used by ugarchsim strips the first N samples of U and H such that the

17-931

ugarchsim

sum of the GARCH coefficients, excluding Kappa, raised to the Nth
power, does not exceed 0.01.

0.01 = (sum(Alpha) + sum(Beta))^N

Thus

N = log(0.01)/log((sum(Alpha) + sum(Beta)))

Note ugarchsim corresponds generally to the Econometrics Toolbox
function garchsim. The Econometrics Toolbox software provides a
comprehensive and integrated computing environment for the analysis
of volatility in time series. For information see the Econometrics
Toolbox User’s Guide documentation or the financial products Web page
at http://www.mathworks.com/products/finprod/.

Examples This example simulates a GARCH(P,Q) process with P = 2 and Q = 1.

% Set the random number generator seed for reproducability.

randn('seed', 10)

% Set the simulation parameters of GARCH(P,Q) = GARCH(2,1) process.

Kappa = 0.25; %a positive scalar.

Alpha = [0.2 0.1]'; %a column vector of nonnegative numbers (P = 2).

Beta = 0.4; % Q = 1.

NumSamples = 500; % number of samples to simulate.

% Now simulate the process.

[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples);

% Estimate the process parameters.

17-932

http://www.mathworks.com/products/finprod/

ugarchsim

P = 2; % Model order P (P = length of Alpha).

Q = 1; % Model order Q (Q = length of Beta).

[k, a, b] = ugarch(U , P , Q);

disp(' ')

disp(' Estimated Coefficients:')

disp(' -----------------------')

disp([k; a; b])

disp(' ')

% Forecast the conditional variance using the estimated

%coefficients.

NumPeriods = 10; % Forecast out to 10 periods.

[VarianceForecast, H1] = ugarchpred(U, k, a, b, NumPeriods);

disp(' Variance Forecasts:')

disp(' ------------------')

disp(VarianceForecast)

disp(' ')

When the above code is executed, the screen output looks like the
display shown.

%%%

Diagnostic Information

Number of variables: 4

Functions

Objective: ugarchllf

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

Constraints

Nonlinear constraints: do not exist

Number of linear inequality constraints: 1

Number of linear equality constraints: 0

Number of lower bound constraints: 4

17-933

ugarchsim

Number of upper bound constraints: 0

Algorithm selected

medium-scale

%%%

End diagnostic information

max Directional

Iter F-count f(x) constraint Step-size derivative Procedure

1 5 699.185 -0.125 1 -2.97e+006

2 22 658.224 -0.1249 0.000488 -64.6

3 28 610.181 0 1 -49.4

4 35 590.888 0 0.5 -38.9

5 42 583.961 -0.03317 0.5 -29.8

6 49 583.224 -0.02756 0.5 -31.8

7 57 582.947 -0.02067 0.25 -7.28

8 63 578.182 0 1 -2.43

9 71 578.138 -0.09145 0.25 -0.55

10 77 577.898 -0.04452 1 -0.148

11 84 577.882 -0.06128 0.5 -0.0488

12 90 577.859 -0.07117 1 -0.000758

13 96 577.858 -0.07033 1 -0.000305 Hessian modified

14 102 577.858 -0.07042 1 -3.32e-005 Hessian modified

15 108 577.858 -0.0707 1 -1.29e-006 Hessian modified

16 114 577.858 -0.07077 1 -1.29e-007 Hessian modified

17 120 577.858 -0.07081 1 -1.97e-007 Hessian modified

Optimization Converged Successfully

Magnitude of directional derivative in search direction

less than 2*options.TolFun and maximum constraint violation

is less than options.TolCon

No Active Constraints

Estimated Coefficients:

0.2520

0.0708

0.1623

17-934

ugarchsim

0.4000

Variance Forecasts:

1.3243

0.9594

0.9186

0.8402

0.7966

0.7634

0.7407

0.7246

0.7133

0.7054

References James D. Hamilton, Time Series Analysis, Princeton University Press,
1994

See Also ugarch | ugarchpred | garchsim

17-935

uicalendar

Purpose Graphical calendar

Syntax uicalendar('PARAM1', VALUE1, 'PARAM2', VALUE2', ...)

Arguments

'BusDays' Values are:

• 0 — (Default) Standard calendar without
nonbusiness day indicators.

• 1 — Marks NYSE nonbusiness days in red.

'BusDaySelect' Values are:

• 0 — Only allow selection of business days.
Nonbusiness days are determined from the
following parameters:

- 'BusDays'

- 'Holiday'

- 'Weekend'

• 1 — (Default) Allows selections of business
and nonbusiness days.

'DateBoxColor' [date R G B] : Sets the color of the date squares
to the specified [R G B] color.

'DateStrColor' [date R G B] : Sets the color of the numeric date
number in the date square to the specified [R G
B] color.

17-936

uicalendar

'DestinationUI' Values are:

• H— Scalar or vector of the destination object’s
handles. The default UI property that is
populated with the date(s) is ’string’.

• {H, {Prop}} — Cell array of handles and the
destination object’s UI properties. H must be
a scalar or vector and Prop must be a single
property string or a cell array of property
strings.

'Holiday' Sets the specified holiday dates into the calendar.
The corresponding date string of the holiday will
appear Red. The Date(s) must be a scalar or
vector of datenums.

'InitDate' Values are:

• Datenum — Numeric date value specifying
the initial start date when the calendar is
initialized. The default date is TODAY.

• Datestr — Date string value specifying
the initial start date when the calendar is
initialized. Datestr must include a Year,
Month, and Day (for example, 01-Jan-2006).

'InputDateFormat'Format — Sets the format of initial start date,
InitDate. See 'help datestr' for date format
values.

'OutputDateFormat'Format — Sets the format of output date string.
See 'help datestr' for date format values.

17-937

uicalendar

'OutputDateStyle'Values are:

• 0 — (Default) Returns a single date string or
a cell array (row) of date string. For example,
{'01-Jan-2001, 02-Jan-2001, ...'}.

• 1 — Returns a single date string or a cell
(column) array of date strings. For example,
{'01-Jan-2001; 02-Jan-2001; ...'}.

• 2— Returns a string representation of a row
vector of datenums. For example, '[732758,
732759, 732760, 732761]'.

• 3 — Returns a string representation of a
column vector of datenums. For example,
'[732758; 732759; 732760; 732761]'.

'SelectionType' Values are:

• 0— (Default) Allows multiple date selections.

• 1— Allows only a single date selection.

'Weekend' DayOfWeek— Sets the specified days of the week
as weekend days. Weekend days are marked in
red. DayOfWeek can be a vector containing the
following numeric values:

• 1 — Sunday

• 2 — Monday

• 3 — Tuesday

• 4 — Wednesday

• 5 — Thursday

• 6 — Friday

• 7 — Saturday

Also this value can be a vector of length 7
containing 0’s and 1’s. The value 1 indicates a

17-938

uicalendar

weekend day. The first element of this vector
corresponds to Sunday. For example, when
Saturday and Sunday are weekend days then
WEEKEND = [1 0 0 0 0 0 1].

'WindowStyle' Values are:

• Normal— (Default) Standard figure properties.

• Modal— Modal figures remain stacked above
all normal figures and the MATLAB Command
Window.

Description uicalendar('PARAM1', VALUE1, 'PARAM2', VALUE2', ...) supports
a customizable graphical calendar that interfaces with uicontrols.
uicalendar populates uicontrols with user-selected dates.

Examples Create a uicontrol:

textH1 = uicontrol('style', 'edit', 'position', [10 10 100 20]);

Call UICalendar:

uicalendar('DestinationUI', {textH1, 'string'})

Select a date and click 'OK'.

17-939

uicalendar

For more information on using uicalendar with an application, see
“Example of Using UICalendar with an Application” on page 13-5.

See Also holidays

17-940

uminus

Purpose Unary minus of financial time series object

Syntax uminus

Description uminus implements unary minus for a financial time series object.

See Also uplus

17-941

uplus

Purpose Unary plus of financial time series object

Syntax uplus

Description uplus implements unary plus for a financial time series object.

See Also uminus

17-942

var

Purpose Variance

Syntax y = var(X)
y = var(X, 1)
y = var(X, W)
y = var(X, W, DIM)

Arguments

X Financial times series object.

W Weight vector used in calculating variance.

DIM Dimension of X used in calculating variance.

Description var supports financial time series objects based on the MATLAB var
function. See var in the MATLAB documentation.

y = var(X), if X is a financial time series object and returns the
variance of each series.

var normalizes y by N – 1 if N > 1, where N is the sample size. This is
an unbiased estimator of the variance of the population from which X
is drawn, as long as X consists of independent, identically distributed
samples. For N = 1, y is normalized by N.

y = var(X, 1) normalizes by N and produces the second moment of the
sample about its mean. var(X, 0) is the same as var(X).

y = var(X, W) computes the variance using the weight vector W. The
length of W must equal the length of the dimension over which var
operates, and its elements must be nonnegative. var normalizes W to
sum to 1. Use a value of 0 for W to use the default normalization by N
– 1, or use a value of 1 to use N.

y = var(X, W, DIM) takes the variance along the dimension DIM of X.

17-943

var

Examples The variance is the square of the standard deviation. Consider if

f = fints((today:today+1)', [4 -2 1; 9 5 7])

then

var(f, 0, 1)

is

[12.5 24.5 18.0]

and

var(f, 0, 2)

is

[9.0; 4.0]

See Also corrcoef | cov | mean | std

17-944

vertcat

Purpose Concatenate financial time series objects vertically

Description vertcat implements vertical concatenation of financial time series
objects. vertcat essentially adds data points to a time series object.
Objects to be vertically concatenated must not have any duplicate dates
and/or times or any overlapping dates and/or times. The description
fields are concatenated as well. They are separated by ||.

Examples Create two financial time series objects with daily frequencies:

myfts = fints((today:today+4)', (1:5)', 'DataSeries', 'd');

yourfts = fints((today+5:today+9)', (11:15)', 'DataSeries', 'd');

Use vertcat to concatenate them vertically:

newfts1 = [myfts; yourfts]

newfts1 =

desc: ||
freq: Daily (1)

'dates: (10)' 'DataSeries: (10)'
'11-Dec-2001' [1]
'12-Dec-2001' [2]
'13-Dec-2001' [3]
'14-Dec-2001' [4]
'15-Dec-2001' [5]
'16-Dec-2001' [11]
'17-Dec-2001' [12]
'18-Dec-2001' [13]
'19-Dec-2001' [14]
'20-Dec-2001' [15]

Create two financial time series objects with different frequencies:

myfts = fints((today:today+4)', (1:5)', 'DataSeries', 'd');

17-945

vertcat

hisfts = fints((today+5:7:today+34)', (11:15)', 'DataSeries',...

'w');

Concatenate these two objects vertically:

newfts2 = [myfts; hisfts]

newfts2 =

desc: ||
freq: Unknown (0)

'dates: (10)' 'DataSeries: (10)'
'11-Dec-2001' [1]
'12-Dec-2001' [2]
'13-Dec-2001' [3]
'14-Dec-2001' [4]
'15-Dec-2001' [5]
'16-Dec-2001' [11]
'23-Dec-2001' [12]
'30-Dec-2001' [13]
'06-Jan-2002' [14]
'13-Jan-2002' [15]

If all frequency indicators are the same, the new object has the same
frequency indicator. However, if one of the concatenated objects has a
different freq from the other(s), the frequency of the resulting object is
set to Unknown (0). In these examples, newfts1 has Daily frequency,
while newfts2 has Unknown (0) frequency.

See Also horzcat

17-946

volarea

Purpose Price and volume chart

Syntax volarea(X)

Arguments

X M-by-3 matrix where the first column contains date
numbers, the second column is the asset price, and
the third column is the volume.

Description volarea(X) plots asset date, price, and volume on a single axis.

Examples If asset X is an M-by-3 matrix of date numbers, asset price, and volume:

X = [...

733299.00 41.99 15045445.00;...
733300.00 42.14 15346658.00;...
733303.00 41.93 9034397.00;...
733304.00 41.98 14486275.00;...
733305.00 41.75 16389872.00;...
733306.00 41.61 20475208.00;...
733307.00 42.29 14833200.00;...
733310.00 42.19 18945176.00;...
733311.00 41.82 25188101.00;...
733312.00 41.93 22689878.00;...
733313.00 41.81 21084723.00;...
733314.00 41.37 27963619.00;...
733317.00 41.17 20385033.00;...
733318.00 42.02 27783775.00]

then the price volume chart is

volarea(X)

which plots the asset prices with respect to date and volume as follows.

17-947

volarea

See Also bolling | candle | highlow | kagi | linebreak | movavg | pointfig
| priceandvol | renko

17-948

volroc

Purpose Volume rate of change

Syntax vroc = volroc(tvolume nTimes)
vrocts = volroc(tsobj, nTimes)
vrocts = volroc(tsobj, nTimes, ParameterName, ParameterValue)

Arguments

tvolume Volume traded.

nTimes (Optional) Time difference. Default = 12.

tsobj Financial time series object.

Description vroc = volroc(tvolume nTimes) calculates the volume rate of
change, vroc, from the volume traded data tvolume. If nTimes is
specified, the volume rate of change is calculated between the current
volume and the volume nTimes ago.

vrocts = volroc(tsobj, nTimes) calculates the volume rate of
change, vrocts, from the financial time series object tsobj. The vrocts
output is a financial time series object with similar dates as tsobj and
a data series named VolumeROC. If nTimes is specified, the volume rate
of change is calculated between the current volume and the volume
nTimes ago.

vrocts = volroc(tsobj, nTimes, ParameterName,
ParameterValue) specifies the name for the required data series when
it is different from the default name. The valid parameter name is

• VolumeName: volume traded series name

The parameter value is a string that represents the valid parameter
name.

Note, to compute a quantity over n periods, you must specify n+1 for
nTimes. If you specify nTimes = 0, the function returns your original
time series.

17-949

volroc

Examples Compute the volume rate of change for Disney stock and plot the results:

load disney.mat
dis_VolRoc = volroc(dis)
plot(dis_VolRoc)
title('Volume Rate of Change for Disney')

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 310 - 311.

See Also prcroc

17-950

wclose

Purpose Weighted close

Syntax wcls = wclose(highp, lowp, closep)
wcls = wclose([highp lowp closep])
wclsts = wclose(tsobj)
wclsts = wclose(tsobj, ParameterName, ParameterValue, ...)

Arguments

highp High price (vector).

lowp Low price (vector).

closep Closing price (vector).

tsobj Financial time series object.

Description The weighted close price is the average of twice the closing price plus
the high and low prices.

wcls = wclose(highp, lowp, closep) calculates the weighted close
prices wcls based on the high (highp), low (lowp), and closing (closep)
prices per period.

wcls = wclose([highp lowp closep]) accepts a three-column
matrix consisting of the high, low, and closing prices, in that order.

wclsts = wclose(tsobj) computes the weighted close prices for a set
of stock price data contained in the financial time series object tsobj.
The object must contain the high, low, and closing prices needed for
this function. The function assumes that the series are named High,
Low, and Close. All three are required. wclsts is a financial time
series object of the same dates as tsobj and contains the data series
named WClose.

wclsts = wclose(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs

17-951

wclose

specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the weighted closing prices for Disney stock and plot the
results:

load disney.mat
dis_Wclose = wclose(dis)
plot(dis_Wclose)
title('Weighted Closing Prices for Disney')

17-952

wclose

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 312 - 313.

See Also medprice | typprice

17-953

weekday

Purpose Day of week

Syntax [N, S] = weekday(D)
[N, S] = weekday(D, form)
[N, S] = weekday(D, locale)
[N, S] = weekday(D, form, locale)

Description [N, S] = weekday(D) returns the day of the week in numeric (N) and
string (S) form for a given serial date number or date string D. Input
argument D can represent more than one date in an array of serial date
numbers or a cell array of date strings.

[N, S] = weekday(D, form) returns the day of the week in numeric
(N) and string (S) form, where the content of S depends on the form
argument. If form is ’long’, then S contains the full name of the
weekday (for example, Tuesday). If form is ’short’, then S contains an
abbreviated name (for example, Tues) from this table.

The days of the week are assigned these numbers and abbreviations.

N S (short) S (long)

1 Sun Sunday

2 Mon Monday

3 Tue Tuesday

4 Wed Wednesday

5 Thu Thursday

6 Fri Friday

7 Sat Saturday

[N, S] = weekday(D, locale) returns the day of the week in numeric
(N) and string (S) form, where the format of the output depends on the
locale argument. If locale is ’local’, then weekday uses local format
for its output. If locale is ’en_US’, then weekday uses US English.

17-954

weekday

[N, S] = weekday(D, form, locale) returns the day of the week
using the formats described above for form and locale.

Examples Either

[n, s] = weekday(728647)

or

[n, s] = weekday('19-Dec-1994')

returns n = 2 and s = Mon.

See Also datenum | datestr | datevec | day

17-955

weeknum

Purpose Week in a year

Syntax [N]= weeknum(D)
[N] = weeknum(D, W, E)

Arguments

D Serial date number or a date string.

W (Optional) A numeric representation of the day a week
begins. The week start values and their corresponding day
are:

• 1 (default) — Sunday

• 2 — Monday

• 3 — Tuesday

• 4 — Wednesday

• 5 — Thursday

• 6 — Friday

• 7 — Saturday

E (Optional) Indicates if the week of the year display is in
the European standard. The European standard considers
first week of year to be first week longer than 3 days, offset
by the given week’s start day. Set to 1 to use the European
standard. The default setting is 0.

Description [N]= weeknum(D) returns the week of the year given D, a serial date
number or a date string.

[N] = weeknum(D, W, E) returns the week of the year given D, a serial
date number or a date string, W, a numeric representation of the day
a week begins, and when E is set to 1, the week of the year is in the
European standard.

17-956

weeknum

The weeknum function considers the week containing January 1 to be
the first week of the year.

Examples You can determine the week of the year using a serial date number

N = weeknum(728647)

N =

52

or a date string

N = weeknum('19-Dec-1994')
N =

52

The first week of the year must have at least 4 days in it. For example,
January 8, 2004 was a Thursday.

weeknum('08-jan-2004')
ans =

2

You can use weeknum with datenum:

weeknum(datenum('01-Jan-2004'):datenum('08-Jan-2004'))

ans =

1 1 1 2 2 2 2 2

The default start day of the week is Sunday. Every day after, and
including the first Sunday of the year (04-Jan-2004), returns 2 denoting
the second week. In this case, the first of week of the year started
before January 1, 2004.

17-957

weeknum

You can also use weeknum with datenum and specify a W value of 5 to
indicate that the weeks start on Thursday:

weeknum(datenum('01-Jan-2004'):datenum('08-Jan-2004'),5)

ans =

1 1 1 1 1 1 1 2

The first week of the year that has 4 or more days, based on the
specified start day, is considered week one (even if this isn’t the first
week in the calendar). Any day falling in (or before) this week is given a
week number of 1.

See Also datenum | datestr | datevec | day

17-958

weights2holdings

Purpose Portfolio values and weights into holdings

Syntax Holdings = weights2holdings(Values, Weights, Prices)

Arguments

Values Scalar or number of portfolios (NPORTS) vector
containing portfolio values.

Weights NPORTS by number of assets (NASSETS) matrix with
portfolio weights. The weights sum to the value
of a Budget constraint, which is usually 1. (See
holdings2weights for information about budget
constraints.)

Prices NASSETS vector of prices.

Description Holdings = weights2holdings(Values, Weights, Prices)
converts portfolio values and weights into portfolio holdings.

Holdings is a NPORTS-by-NASSETS matrix containing the holdings of
NPORTS portfolios that contain NASSETS assets.

Note This function does not create round-lot positions. Holdings are
floating-point values.

See Also holdings2weights

17-959

willad

Purpose Williams Accumulation/Distribution line

Syntax wadl = willad(highp, lowp, closep)
wadl = willad([highp lowp closep])
wadlts = willad(tsobj)
wadlts = willad(tsobj, ParameterName, ParameterValue, ...)

Arguments

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

tsobj Time series object

Description wadl = willad(highp, lowp, closep) computes the Williams
Accumulation/Distribution line for a set of stock price data. The prices
needed for this function are the high (highp), low (lowp), and closing
(closep) prices. All three are required.

wadl = willad([highp lowp closep]) accepts a three-column
matrix of prices as input. The first column contains the high prices, the
second contains the low prices, and the third contains the closing prices.

wadlts = willad(tsobj) computes the Williams
Accumulation/Distribution line for a set of stock price data
contained in the financial time series object tsobj. The object must
contain the high, low, and closing prices needed for this function. The
function assumes that the series are named High, Low, and Close. All
three are required. wadlts is a financial time series object with the
same dates as tsobj and a single data series named WillAD.

wadlts = willad(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs

17-960

willad

specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the Williams A/D line for Disney stock and plot the results:

load disney.mat
dis_Willad = willad(dis)
plot(dis_Willad)
title('Williams A/D Line for Disney')

17-961

willad

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 314 - 315.

See Also adline | adosc | willpctr

17-962

willpctr

Purpose Williams %R

Syntax wpctr = willpctr(highp, lowp, closep, nperiods)
wpctr = willpctr([highp, lowp, closep], nperiods)
wpctrts = willpctr(tsobj)
wpctrts = willpctr(tsobj, nperiods)
wpctrts = willpctr(tsobj, nperiods, ParameterName, ParameterValue,
...)

Arguments

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

nperiods Number of periods (scalar). Default = 14.

tsobj Financial time series object

Description wpctr = willpctr(highp, lowp, closep, nperiods) calculates
the Williams %R values for the given set of stock prices for a specified
number of periods nperiods. The stock prices needed are the high
(highp), low (lowp), and closing (closep) prices. wpctr is a vector that
represents the Williams %R values from the stock data.

wpctr = willpctr([highp, lowp, closep], nperiods) accepts the
price input as a three-column matrix representing the high, low, and
closing prices, in that order.

wpctrts = willpctr(tsobj) calculates the Williams %R values for
the financial time series object tsobj. The object must contain at least
three data series named High (high prices), Low (low prices), and Close
(closing prices). wpctrts is a financial time series object with the same
dates as tsobj and a single data series named WillPctR.

17-963

willpctr

wpctrts = willpctr(tsobj, nperiods) calculates the Williams %R
values for the financial time series object tsobj for nperiods periods.

wpctrts = willpctr(tsobj, nperiods, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value
pairs as input. These pairs specify the name(s) for the required
data series if it is different from the expected default name(s). Valid
parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter
names.

Examples Compute the Williams %R values for Disney stock and plot the results:

load disney.mat
dis_Wpctr = willpctr(dis)
plot(dis_Wpctr)
title('Williams %R for Disney')

17-964

willpctr

References Achelis, Steven B., Technical Analysis from A to Z, Second printing,
McGraw-Hill, 1995, pp. 316 - 317.

See Also stochosc | willad

17-965

wrkdydif

Purpose Number of working days between dates

Syntax Days = wrkdydif(StartDate, EndDate, Holidays)

Arguments

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

Holidays A vector containing values for the number of Holidays
between the two dates.

Description Days = wrkdydif(StartDate, EndDate, Holidays) returns the
number of working days between dates StartDate and EndDate
inclusive. Holidays is the number of holidays between the given dates,
an integer. Enter dates as serial date numbers or date strings.

Examples Days = wrkdydif('9/1/2000', '9/11/2000', 1)

or

Days = wrkdydif(730730, 730740, 1)

returns

Days =
6

See Also busdate | datewrkdy | days360 | days365 | daysact | daysdif |
holidays | yearfrac

17-966

x2mdate

Purpose Excel serial date number to MATLAB serial date number

Syntax MATLABDate = x2mdate(ExcelDateNumber, Convention)

Arguments

ExcelDateNumber A vector or scalar of Excel serial date numbers.

Convention (Optional) Excel date system. A vector or
scalar. When Convention = 0 (default), the
Excel 1900 date system is in effect. When
Convention = 1, the Excel 1904 date system
is used.

In the Excel 1900 date system, the Excel serial
date number 1 corresponds to January 1,
1900 A.D. In the Excel 1904 date system, date
number 0 is January 1, 1904 A.D.

Due to a software limitation in Excel software,
the year 1900 is considered a leap year. As a
result, all DATEVALUEs reported by Excel
software between Jan. 1, 1900 and Feb. 28,
1900 (inclusive) differ from the values reported
by 1. For example:

• In Excel software, Jan. 1, 1900 = 1

• In MATLAB, Jan. 1, 1900 = 2

Vector arguments must have consistent dimensions.

Description DateNumber = x2mdate(ExcelDateNumber, Convention) converts
Excel serial date numbers to MATLAB serial date numbers. MATLAB
date numbers start with 1 = January 1, 0000 A.D., hence there is a
difference of 693960 relative to the 1900 date system, or 695422 relative

17-967

x2mdate

to the 1904 date system. This function is useful with Spreadsheet Link
EX software.

Examples Given Excel date numbers in the 1904 system

ExDates = [35423 35788 36153];

convert them to MATLAB date numbers

MATLABDate = x2mdate(ExDates, 1)

MATLABDate =

730845 731210 731575

and then to date strings.

datestr(MATLABDate)

ans =

25-Dec-2000
25-Dec-2001
25-Dec-2002

See Also datenum | datestr | m2xdate

17-968

xirr

Purpose Internal rate of return for nonperiodic cash flow

Syntax Return = xirr(CashFlow, CashFlowDates)
Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations,
Basis)

Description Return = xirr(CashFlow, CashFlowDates) returns the internal rate
of return for a schedule of nonperiodic cash flows.

Return = xirr(CashFlow, CashFlowDates, Guess,
MaxIterations, Basis) returns the internal rate of return for a
schedule of nonperiodic cash flows with optional inputs.

Input
Arguments

CashFlow

A vector or matrix of cash flows. If CashFlow is a matrix, each column
represents a separate stream of cash flows whose internal rate of
return is calculated. The first cash flow of each stream is the initial
investment, entered as a negative number.

CashFlowDates

(Required) A vector or matrix of serial date numbers the same size as
CashFlow, or a cell array of date strings the same size as CashFlow.
Each column of CashFlowDate represents the dates of the corresponding
column of CashFlow.

Guess

The initial estimate of the internal rate of return. Guess is a scalar
applied to all streams, or a vector the same length as the number of
streams.

Default: 0.1 (10%)

MaxIterations

17-969

xirr

The positive integer number of iterations used by Newton’s method to
solve the internal rate of return. MaxIterations is a scalar applied to
all streams, or a vector the same length as the number of streams.

Default: 50

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Default: 0

Output
Arguments

Return

Vector of the annualized internal rate of return of each cash flow
stream. A NaN indicates that a solution is not found.

17-970

xirr

Examples Find the internal rate of return for an investment of $10,000 that
returns the following nonperiodic cash flow. The original investment is
the first cash flow and is a negative number.

Cash Flow Dates

($10000) January 12, 2007

$2500 February 14, 2008

$2000 March 3, 2008

$3000 June 14, 2008

$4000 December 1, 2008

Calculate the internal rate of return for this nonperiodic cash flow:

CashFlow = [-10000, 2500, 2000, 3000, 4000];
CashFlowDates = ['01/12/2007'

'02/14/2008'
'03/03/2008'
'06/14/2008'
'12/01/2008'];

Return = xirr(CashFlow, CashFlowDates)

This returns:

Return =
0.1006 (or 10.0644% per annum)

References Brealey and Myers, Principles of Corporate Finance, McGraw-Hill
Higher Education, Chapter 5, 2003.

Sharpe, William F., and Gordon J. Alexander, Investments. Englewood
Cliffs, NJ: Prentice-Hall. 4th ed., 1990.

See Also fvvar | irr | mirr | pvvar

17-971

year

Purpose Year of date

Syntax Year = year(Date)
Year = year(Date, F)

Description Year = year(Date) returns the year of a serial date number or a date
string.

Year = year(Date, F) returns the day of the of the month, given a
serial date number or date string, in a specified date format.

Examples Year = year(731798.776)

or

Year = year('05-Aug-2003')

returns

Year =

2003

You can also use the F argument to designate a country-specific date
format:

Year = year('2003/08/05','yyyy/mm/dd')

returns Year = 2003

See Also datevec | day | month | yeardays

17-972

yeardays

Purpose Number of days in year

Syntax Days = yeardays(Year, Basis)

Arguments

Year Enter as a four-digit integer.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

17-973

yeardays

Description Days = yeardays(Year, Basis) returns the number of days in the
given year, based upon the day-count basis.

Examples Days = yeardays(2000)

Days =

366
Days = yeardays(2000, 1)

Days =

360

See Also days360 | days365 | daysact | year | yearfrac

17-974

yearfrac

Purpose Fraction of year between dates

Syntax YearFraction = yearfrac(StartDate, EndDate, Basis)

Arguments

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

17-975

yearfrac

All specified arguments must be number of instruments (NUMINST)-by-1
or 1-by-NUMINST conforming vectors or scalar arguments.

Description YearFraction = yearfrac(StartDate, EndDate, Basis) returns a
fraction based on the number of days between dates StartDate and
EndDate using the given day-count basis. Note, the number of days in a
year (365 or 366) is equal to the number of days in the calendar year
after the StartDate. If EndDate is earlier than StartDate, Fraction
is negative.

Examples Compute yearfrac When the Calendar Year After the
StartDate is Not a Leap Year

Given a Basis of 0 and a Basis of 1, compute yearfrac.

Define the StartDate and EndDate using a Basis of 0.

YearFraction = yearfrac('14 mar 01', '14 sep 01', 0)

YearFraction =

0.5041

Define the StartDate and EndDate using a Basis of 1.

YearFraction = yearfrac('14 mar 01', '14 sep 01', 1)

YearFraction =

0.5000

Compute yearfrac When the Calendar Year After the
StartDate is a Leap Year

Given a Basis of 0, compute yearfrac when the calendar after
StartDate is in a leap year.

Define the StartDate and EndDate using a Basis of 0.

17-976

yearfrac

yearFraction = yearfrac(' 14 mar 03', '14 sep 03', 0)

yearFraction =

0.5027

There are 184 days between March 14 and September 14, and the
calendar year after the StartDate is a leap year, so yearfrac returns
184/366 = 0.5027.

See Also days360 | days365 | daysact | daysdif | months | wrkdydif | year
| yeardays

17-977

ylddisc

Purpose Yield of discounted security

Syntax Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

Arguments

Settle Settlement date. Enter as serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. Enter as serial date number or date
string.

Face Redemption (par, face) value.

Price Discounted price of the security.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

17-978

ylddisc

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description Yield = ylddisc(Settle, Maturity, Face, Price, Basis) finds
the yield of a discounted security.

Examples Using the data

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Price = 96.28;
Basis = 2;

Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

returns

Yield =

0.0903 (or 9.03%)

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd
edition. Formula 1.

See Also acrudisc | bndprice | bndyield | prdisc | yldmat | yldtbill

17-979

yldmat

Purpose Yield with interest at maturity

Syntax Yield = yldmat(Settle, Maturity, Issue, Face, Price,
CouponRate, Basis)

Arguments

Settle Settlement date. Enter as serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. Enter as serial date number or date
string.

Issue Issue date. Enter as serial date number or date
string.

Face Redemption (par, face) value.

Price Price of the security.

CouponRate Coupon rate. Enter as decimal fraction.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

17-980

yldmat

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description Yield = yldmat(Settle, Maturity, Issue, Face, Price,
CouponRate, Basis) returns the yield of a security paying interest
at maturity.

Examples Using the data

Settle = '02/07/2000';
Maturity = '04/13/2000';
Issue = '10/11/1999';
Face = 100;
Price = 99.98;
CouponRate = 0.0608;
Basis = 1;

Yield = yldmat(Settle, Maturity, Issue, Face, Price,...
CouponRate, Basis)

returns

Yield =
0.0607 (or 6.07%)

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd
edition. Formula 3.

See Also acrubond | bndprice | bndyield | prmat | ylddisc | yldtbill

17-981

yldtbill

Purpose Yield of Treasury bill

Syntax Yield = yldtbill(Settle, Maturity, Face, Price)

Arguments

Settle Settlement date. Enter as serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. Enter as serial date number or date
string.

Face Redemption (par, face) value.

Price Price of the Treasury bill.

Description Yield = yldtbill(Settle, Maturity, Face, Price) returns the
yield for a Treasury bill.

Examples The settlement date of a Treasury bill is February 10, 2000, the
maturity date is August 6, 2000, the par value is $1000, and the price is
$981.36. Using this data

Yield = yldtbill('2/10/2000', '8/6/2000', 1000, 981.36)

returns

Yield =

0.0384 (or 3.84%)

References Bodie, Kane, and Marcus, Investments, pages 41-43.

See Also beytbill | bndyield | prtbill | yldmat

17-982

zbtprice

Purpose Zero curve bootstrapping from coupon bond data given price

Syntax [ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,
OutputCompounding)

Arguments

Bonds Coupon bond information used to generate
the zero curve. An n-by-2 to n-by-6 matrix
where each row describes a bond. The first two
columns are required; the rest are optional but
must be added in order. All rows in Bonds must
have the same number of columns.

Columns are
[Maturity CouponRate Face Period Basis
EndMonthRule] where

Maturity Maturity date of the bond,
as a serial date number.
Use datenum to convert date
strings to serial date numbers.

CouponRate Coupon rate of the bond, as a
decimal fraction.

Face (Optional) Redemption or
face value of the bond.
Default = 100.

Period (Optional) Coupons per year
of the bond, as an integer.
Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

17-983

zbtprice

Basis (Optional) Day-count basis of
the bond:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see
basis on page Glossary-1.

17-984

zbtprice

EndMonthRule (Optional) End-of-month flag.
This flag applies only when
Maturity is an end-of-month
date for a month having 30 or
fewer days. 0 = ignore flag,
meaning that a bond’s coupon
payment date is always the
same day of the month. 1 = set
flag (default), meaning that a
bond’s coupon payment date
is always the last day of the
month.

Prices Column vector containing the clean price (price
without accrued interest) of each bond in
Bonds, respectively. The number of rows (n)
must match the number of rows in Bonds.

Settle Settlement date, as a scalar serial date number.
This represents time zero for deriving the
zero curve, and it is normally the common
settlement date for all the bonds.

OutputCompounding (Optional) Scalar that sets the compounding
frequency per year for the output zero rates in
ZeroRates. Allowed values are:

1 Annual compounding

2 Semiannual compounding
(default)

3 Compounding three times per
year

4 Quarterly compounding

6 Bimonthly compounding

17-985

zbtprice

12 Monthly compounding

-1 Continuous compounding

Description [ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,
OutputCompounding) uses the bootstrap method to return a zero curve
given a portfolio of coupon bonds and their prices. A zero curve consists
of the yields to maturity for a portfolio of theoretical zero-coupon bonds
that are derived from the input Bonds portfolio. The bootstrap method
that this function uses does not require alignment among the cash-flow
dates of the bonds in the input portfolio. It uses theoretical par bond
arbitrage and yield interpolation to derive all zero rates; specifically, the
interest rates for cash flows are determined using linear interpolation.
For best results, use a portfolio of at least 30 bonds evenly spaced across
the investment horizon.

ZeroRates An m-by-1 vector of decimal fractions that
are the implied zero rates for each point
along the investment horizon represented
by CurveDates; m is the number of bonds of
unique maturity dates. In aggregate, the rates
in ZeroRates constitute a zero curve.

If more than one bond has the same maturity
date, zbtprice returns the mean zero rate
for that maturity. Any rates before the first
maturity are assumed to be equal to the rate at
the first maturity, that is, the curve is assumed
to be flat before the first maturity.

CurveDates An m-by-1 vector of unique maturity dates (as
serial date numbers) that correspond to the
zero rates in ZeroRates; m is the number of
bonds of different maturity dates. These dates
begin with the earliest maturity date and end

17-986

zbtprice

with the latest maturity date Maturity in the
Bonds matrix.

Examples Given data and prices for 12 coupon bonds, two with the same maturity
date; and given the common settlement date

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
datenum('7/1/2000') 0.06 100 2 0 0;
datenum('7/1/2000') 0.09375 100 6 1 0;
datenum('6/30/2001') 0.05125 100 1 3 1;
datenum('4/15/2002') 0.07125 100 4 1 0;
datenum('1/15/2000') 0.065 100 2 0 0;
datenum('9/1/1999') 0.08 100 3 3 0;
datenum('4/30/2001') 0.05875 100 2 0 0;
datenum('11/15/1999') 0.07125 100 2 0 0;
datenum('6/30/2000') 0.07 100 2 3 1;
datenum('7/1/2001') 0.0525 100 2 3 0;
datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [99.375;
99.875;

105.75 ;
96.875;

103.625;
101.125;
103.125;
99.375;

101.0 ;
101.25 ;
96.375;

102.75];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

17-987

zbtprice

OutputCompounding = 2;

Execute the function

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,...

OutputCompounding)

which returns the zero curve at the maturity dates. Note the mean zero
rate for the two bonds with the same maturity date.

ZeroRates =

0.0616

0.0609

0.0658

0.0590

0.0648

0.0655*

0.0606

0.0601

0.0642

0.0621

0.0627

CurveDates =

729907 (serial date number for 01-Jun-1998)

730364 (01-Sep-1999)

730439 (15-Nov-1999)

730500 (15-Jan-2000)

730667 (30-Jun-2000)

730668 (01-Jul-2000)*

730971 (30-Apr-2001)

731032 (30-Jun-2001)

731033 (01-Jul-2001)

731321 (15-Apr-2002)

731336 (30-Apr-2002)

17-988

zbtprice

References Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi,
Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income
Securities. 4th ed. New York: Irwin Professional Publishing. 1995.

McEnally, Richard W. and James V. Jordan. “The Term Structure of
Interest Rates.” Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. “Calculating Zero Coupon Rates.” Swap and Derivative
Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin
Professional Publishing. 1994.

See Also zbtyield

17-989

zbtyield

Purpose Zero curve bootstrapping from coupon bond data given yield

Syntax [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,
OutputCompounding)

Arguments

Bonds Coupon bond information used to generate
the zero curve. An n-by-2 to n-by-6 matrix
where each row describes a bond. The first two
columns are required; the rest are optional but
must be added in order. All rows in Bondsmust
have the same number of columns. Columns are
[Maturity CouponRate Face Period Basis
EndMonthRule] where

Maturity Maturity date of the bond,
as a serial date number.
Use datenum to convert date
strings to serial date numbers.

CouponRate Coupon rate of the bond, as a
decimal fraction.

Face (Optional) Redemption or face
value of the bond. Default =
100.

Period (Optional) Coupons per year
of the bond, as an integer.
Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

17-990

zbtyield

Basis (Optional) Day-count basis of
the bond.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see
basis on page Glossary-1.

17-991

zbtyield

EndMonthRule (Optional) End-of-month flag.
This flag applies only when
Maturity is an end-of-month
date for a month having 30 or
fewer days. 0 = ignore flag,
meaning that a bond’s coupon
payment date is always the
same day of the month. 1 = set
flag (default), meaning that a
bond’s coupon payment date
is always the last day of the
month.

Yields Column vector containing the yield to maturity
of each bond in Bonds, respectively. The
number of rows (n) must match the number
of rows in Bonds. Yield to maturity must be
compounded semiannually.

Settle Settlement date, as a scalar serial date
number. This represents time zero for deriving
the zero curve, and it is normally the common
settlement date for all the bonds.

OutputCompounding (Optional) Scalar that sets the compounding
frequency per year for the output zero rates in
ZeroRates. Allowed values are:

1 Annual compounding

2 Semiannual compounding
(default)

3 Compounding three times per
year

4 Quarterly compounding

6 Bimonthly compounding

17-992

zbtyield

12 Monthly compounding

-1 Continuous compounding

Description [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,
OutputCompounding) uses the bootstrap method to return a zero curve
given a portfolio of coupon bonds and their yields. A zero curve consists
of the yields to maturity for a portfolio of theoretical zero-coupon bonds
that are derived from the input Bonds portfolio. The bootstrap method
that this function uses does not require alignment among the cash-flow
dates of the bonds in the input portfolio. It uses theoretical par bond
arbitrage and yield interpolation to derive all zero rates; specifically, the
interest rates for cash flows are determined using linear interpolation.
For best results, use a portfolio of at least 30 bonds evenly spaced across
the investment horizon.

ZeroRates An m-by-1 vector of decimal fractions that
are the implied zero rates for each point
along the investment horizon represented
by CurveDates; m is the number of bonds of
different maturity dates. In aggregate, the
rates in ZeroRates constitute a zero curve.

If more than one bond has the same maturity
date, zbtyield returns the mean zero rate
for that maturity. Any rates before the first
maturity are assumed to be equal to the rate at
the first maturity, that is, the curve is assumed
to be flat before the first maturity.

CurveDates An m-by-1 vector of unique maturity dates (as
serial date numbers) that correspond to the
zero rates in ZeroRates; m is the number of
bonds of different maturity dates. These dates
begin with the earliest maturity date and end

17-993

zbtyield

with the latest maturity date Maturity in the
Bonds matrix. Use datestr to convert serial
date numbers to date strings.

Examples Given data and yields to maturity for 12 coupon bonds, two with the
same maturity date; and given the common settlement date

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
datenum('7/1/2000') 0.06 100 2 0 0;
datenum('7/1/2000') 0.09375 100 6 1 0;
datenum('6/30/2001') 0.05125 100 1 3 1;
datenum('4/15/2002') 0.07125 100 4 1 0;
datenum('1/15/2000') 0.065 100 2 0 0;
datenum('9/1/1999') 0.08 100 3 3 0;
datenum('4/30/2001') 0.05875 100 2 0 0;
datenum('11/15/1999') 0.07125 100 2 0 0;
datenum('6/30/2000') 0.07 100 2 3 1;
datenum('7/1/2001') 0.0525 100 2 3 0;
datenum('4/30/2002') 0.07 100 2 0 0];

Yields = [0.0616
0.0605
0.0687
0.0612
0.0615
0.0591
0.0603
0.0608
0.0655
0.0646
0.0641
0.0627];

Settle = datenum('12/18/1997');

17-994

zbtyield

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function

[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,...

OutputCompounding)

which returns the zero curve at the maturity dates. Note the mean zero
rate for the two bonds with the same maturity date.

ZeroRates =

0.0616
0.0603
0.0657
0.0590
0.0649
0.0650
0.0606
0.0611
0.0643
0.0614
0.0627

CurveDates =

729907 (serial date number for 01-Jun-1998)
730364 (01-Sep-1999)
730439 (15-Nov-1999)
730500 (15-Jan-2000)
730667 (30-Jun-2000)
730668 (01-Jul-2000)
730971 (30-Apr-2001)
731032 (30-Jun-2001)
731033 (01-Jul-2001)
731321 (15-Apr-2002)

17-995

zbtyield

731336 (30-Apr-2002)

References Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi,
Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income
Securities. 4th ed. New York: Irwin Professional Publishing. 1995.

McEnally, Richard W. and James V. Jordan. “The Term Structure of
Interest Rates.” Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. “Calculating Zero Coupon Rates.” Swap and Derivative
Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin
Professional Publishing. 1994.

See Also zbtprice

How To • “Term Structure of Interest Rates” on page 2-36

17-996

zero2disc

Purpose Discount curve given zero curve

Syntax [DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle,
Compounding, Basis)

Arguments

ZeroRates Number of bonds (NUMBONDS)-by-1 vector of
annualized zero rates, as decimal fractions. In
aggregate, the rates constitute an implied zero
curve for the investment horizon represented by
CurveDates.

CurveDates NUMBONDS-by-1 vector of maturity dates (as serial
date numbers) that correspond to the zero rates.

Settle Serial date number that is the common settlement
date for the zero rates; that is, the settlement
date for the bonds from which the zero curve was
bootstrapped.

Compounding (Optional) Scalar that indicates the compounding
frequency per year used for annualizing the input
zero rates in ZeroRates. Allowed values are:

1 Annual compounding

2 Semiannual compounding (default)

3 Compounding three times per year

4 Quarterly compounding

6 Bimonthly compounding

12 Monthly compounding

365 Daily compounding

17-997

zero2disc

-1 Continuous compounding

Basis (Optional) Day-count basis used for annualizing the
input zero rates.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description [DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,
Settle, Compounding, Basis) returns a discount curve given a zero
curve and its maturity dates.

17-998

zero2disc

DiscRates A NUMBONDS-by-1 vector of discount factors, as
decimal fractions. In aggregate, the factors in
constitute a discount curve for the investment
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial
date numbers) that correspond to the discount
rates. This vector is the same as the input vector
CurveDates.

Examples Given a zero curve over a set of maturity dates and a settlement date

ZeroRates = [0.0464
0.0509
0.0524
0.0525
0.0531
0.0525
0.0530
0.0531
0.0549
0.0536];

CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

17-999

zero2disc

The zero curve was compounded daily on an actual/365 basis.

Compounding = 365;
Basis = 3;

Execute the function

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...

Settle, Compounding, Basis)

which returns the discount curve DiscRates at the maturity dates
CurveDates.

DiscRates =

0.9996
0.9947
0.9896
0.9866
0.9826
0.9787
0.9745
0.9665
0.9552
0.9466

CurveDates =

730796
730831
730866
730887
730914
730943
730971
731027
731098
731167

17-1000

zero2disc

For readability, ZeroRates and DiscRates are shown here only to
the basis point. However, MATLAB software computed them at full
precision. If you enter ZeroRates as shown, DiscRates may differ due
to rounding.

See Also disc2zero

How To • “Term Structure of Interest Rates” on page 2-36

17-1001

zero2fwd

Purpose Forward curve given zero curve

Syntax [ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,
Settle, Compounding, Basis)

Arguments

ZeroRates Number of bonds (NUMBONDS)-by-1 vector of
annualized zero rates, as decimal fractions. In
aggregate, the rates constitute an implied zero
curve for the investment horizon represented by
CurveDates. The first element pertains to forward
rates from the settlement date to the first curve date.

CurveDates NUMBONDS-by-1 vector of maturity dates (as serial
date numbers) that correspond to the zero rates.

Settle Serial date number that is the common settlement
date for the zero rates.

Compounding (Optional) Scalar that sets the compounding
frequency per year used to annualize the input zero
rates and the output implied forward rates. Allowed
values are:

1 Annual compounding

2 Semiannual compounding (default)

3 Compounding three times per year

4 Quarterly compounding

6 Bimonthly compounding

12 Monthly compounding

365 Daily compounding

17-1002

zero2fwd

-1 Continuous compounding

Basis (Optional) Day-count basis used to construct the
input zero and output implied forward rate curves.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page Glossary-1.

Description [ForwardRates, CurveDates] = zero2fwd(ZeroRates,
CurveDates, Settle, Compounding, Basis) returns an implied
forward rate curve given a zero curve and its maturity dates.

17-1003

zero2fwd

ForwardRates A NUMBONDS-by-1 vector of decimal fractions. In
aggregate, the rates in ForwardRates constitute a
forward curve over the dates in CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial
date numbers) that correspond to the forward rates
in. This vector is the same as the input vector
CurveDates.

Examples Given a zero curve over a set of maturity dates, a settlement date, and a
compounding rate, compute the forward rate curve.

ZeroRates = [0.0458
0.0502
0.0518
0.0519
0.0524
0.0519
0.0523
0.0525
0.0541
0.0529];

CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
Compounding = 1;

17-1004

zero2fwd

Execute the function

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,...

Settle, Compounding)

which returns the forward rate curve ForwardRates at the maturity
dates CurveDates.

ForwardRates =

0.0458
0.0506
0.0535
0.0522
0.0541
0.0498
0.0544
0.0531
0.0594
0.0476

CurveDates =

730796
730831
730866
730887
730914
730943
730971
731027
731098
731167

For readability, ZeroRates and ForwardRates are shown here only to
the basis point. However, MATLAB software computed them at full

17-1005

zero2fwd

precision. If you enter ZeroRates as shown, ForwardRates may differ
due to rounding.

See Also fwd2zero

How To • “Term Structure of Interest Rates” on page 2-36

17-1006

zero2pyld

Purpose Par yield curve given zero curve

Syntax [ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle,
Compounding, Basis, InputCompounding)

Arguments

ZeroRates A number of bonds (NUMBONDS)-by-1 vector of
annualized zero rates, as decimal fractions. In
aggregate, the rates constitute an implied zero
curve for the investment horizon represented
by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as
serial date numbers) that correspond to the
zero rates.

Settle A serial date number that is the common
settlement date for the zero rates.

Compounding (Optional) Scalar value representing the
periodicity in which the output par rates are
compounded when annualized. Allowed values
are:

1 Annual compounding

2 Semiannual compounding (default)

3 Compounding three times per year

4 Quarterly compounding

6 Bimonthly compounding

12 Monthly compounding

365 Daily compounding

17-1007

zero2pyld

Basis (Optional) Day-count basis used to annualize
the implied zero rates.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis on page
Glossary-1.

InputCompounding (Optional) Scalar value representing the
periodicity in which the input zero rates were
compounded when annualized. The default is
the value for Compounding.

Description [ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,
Settle, Compounding, Basis, InputCompounding) returns a par
yield curve given a zero curve and its maturity dates.

17-1008

zero2pyld

ParRates A NUMBONDS-by-1 vector of annualized par yields, as
decimal fractions. (Par yields = coupon rates.) In
aggregate, the yield rates in ParRates constitute
a par yield curve for the investment horizon
represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial
date numbers) that correspond to the par yield
rates. This vector is the same as the input vector
CurveDates.

Examples Given

• A zero curve over a set of maturity dates and

• A settlement date

• Annual compounding for the input zero curve and monthly
compounding for the output par rates

compute a par yield curve.

ZeroRates = [0.0457

0.0487

0.0506

0.0507

0.0505

0.0504

0.0506

0.0516

0.0539

0.0530];

CurveDates = [datenum('06-Nov-2000')

datenum('11-Dec-2000')

datenum('15-Jan-2001')

datenum('05-Feb-2001')

datenum('04-Mar-2001')

17-1009

zero2pyld

datenum('02-Apr-2001')

datenum('30-Apr-2001')

datenum('25-Jun-2001')

datenum('04-Sep-2001')

datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 1;

Compounding = 12;

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...

Settle, Compounding, [] , InputCompounding)

ParRates =

0.0479

0.0511

0.0530

0.0531

0.0526

0.0524

0.0525

0.0534

0.0555

0.0543

CurveDates =

730796

730831

730866

730887

730914

730943

730971

731027

731098

17-1010

zero2pyld

731167

For readability, ZeroRates and ParRates are shown only to the basis
point. However, MATLAB software computed them at full precision. If
you enter ZeroRates as shown, ParRates may differ due to rounding.

See Also pyld2zero

How To • “Term Structure of Interest Rates” on page 2-36

17-1011

zero2pyld

17-1012

A

Bibliography

• “Bond Pricing and Yields” on page A-2

• “Term Structure of Interest Rates” on page A-3

• “Derivatives Pricing and Yields” on page A-4

• “Portfolio Analysis” on page A-5

• “Investment Performance Metrics” on page A-6

• “Financial Statistics” on page A-8

• “Standard References” on page A-9

• “Credit Risk Analysis” on page A-11

• “Portfolio Optimization” on page A-12

Note For the well-known algorithms and formulas used in Financial Toolbox
software (such as how to compute a loan payment given principal, interest
rate, and length of the loan), no references are given here. The references
here pertain to less common formulas.

A Bibliography

Bond Pricing and Yields
The pricing and yield formulas for fixed-income securities come from:

[1] Golub, B.W. and L.M. Tilman, Risk Management: Approaches for Fixed
Income Markets Wiley, 2000.

[2] Martellini, L., P. Priaulet, and S. Priaulet Fixed Income SecuritiesWiley,
2003.

[3] Mayle, Jan, Standard Securities Calculation MethodsNew York: Securities
Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2,
1994, ISBN 1-882936-02-7.

[4] Tuckman, B. Fixed Income Securities: Tools for Today’s Markets Wiley,
2002.

In many cases these formulas compute the price of a security given yield,
dates, rates, and other data. These formulas are nonlinear, however; so when
solving for an independent variable within a formula, Financial Toolbox
software uses Newton’s method. See any elementary numerical methods
textbook for the mathematics underlying Newton’s method.

A-2

Term Structure of Interest Rates

Term Structure of Interest Rates
The formulas and methodology for term structure functions come from:

[5] Fabozzi, Frank J., “The Structure of Interest Rates.” Ch. 6 in Fabozzi,
Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities.
4th ed. New York: Irwin Professional Publishing, 1995, ISBN 0-7863-0001-9.

[6] McEnally, Richard W. and James V. Jordan, “The Term Structure of
Interest Rates.” Ch. 37 in Fabozzi and Fabozzi, ibid.

[7] Das, Satyajit, “Calculating Zero Coupon Rates.” Swap and Derivative
Financing. Appendix to Ch. 8, pp. 219-225, New York: Irwin Professional
Publishing., 1994, ISBN 1-55738-542-4.

A-3

A Bibliography

Derivatives Pricing and Yields
The pricing and yield formulas for derivative securities come from:

[8] Chriss, Neil A., “Black-Scholes and Beyond: Option Pricing Models,”
Chicago: Irwin Professional Publishing, 1997, ISBN 0-7863-1025-1.

[9] Cox, J., S. Ross, and M. Rubenstein, “Option Pricing: A Simplified
Approach”, Journal of Financial Economics 7, Sept. 1979, pp. 229 - 263.

[10] Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th
edition, 2003, ISBN 0-13-009056-5.

A-4

Portfolio Analysis

Portfolio Analysis
The Markowitz model is used for portfolio analysis computations. For a
discussion of this model see Chapter 7 of:

[11] Bodie, Zvi, Alex Kane, and Alan J. Marcus, Investments, Burr Ridge, IL:
Irwin. 2nd. ed., 1993, ISBN 0-256-08342-8.

A-5

A Bibliography

Investment Performance Metrics
The risk and ratio formulas for investment performance metrics come from:

[12] Daniel Bernoulli, "Exposition of a New Theory on the Measurement
of Risk," Econometrica, Vol. 22, No 1, January 1954, pp. 23-36 (English
translation of "Specimen Theoriae Novae de Mensura Sortis," Commentarii
Academiae Scientiarum Imperialis Petropolitanae, Tomus V, 1738, pp.
175-192).

[13] Martin Eling and Frank Schuhmacher, Does the Choice of Performance
Measure Influence the Evaluation of Hedge Funds?, Working Paper, November
2005.

[14] John Lintner, "The Valuation of Risk Assets and the Selection of Risky
Investments in Stocks Portfolios and Capital Budgets," Review of Economics
and Statistics, Vol. 47, No. 1, February 1965, pp. 13-37.

[15] Malik Magdon-Ismail, Amir F. Atiya, Amrit Pratap, and Yaser S.
Abu-Mostafa, "On the Maximum Drawdown of a Brownian Motion," Journal
of Applied Probability, Volume 41, Number 1, March 2004, pp. 147-161.

[16] Malik Magdon-Ismail and Amir Atiya, "Maximum Drawdown,"
www.risk.net, October 2004.

[17] Harry Markowitz, "Portfolio Selection," Journal of Finance, Vol. 7, No. 1,
March 1952, pp. 77-91.

[18] Harry Markowitz, Portfolio Selection: Efficient Diversification of
Investments, John Wiley & Sons, 1959.

[19] Jan Mossin, "Equilibrium in a Capital Asset Market," Econometrica, Vol.
34, No. 4, October 1966, pp. 768-783.

[20] Christian S. Pedersen and Ted Rudholm-Alfvin, "Selecting a
Risk-Adjusted Shareholder Performance Measure," Journal of Asset
Management, Vol. 4, No. 3, 2003, pp. 152-172.

A-6

http://www.risk.net

Investment Performance Metrics

[21] William F. Sharpe, "Capital Asset Prices: A Theory of Market
Equilibrium under Conditions of Risk," Journal of Finance, Vol. 19, No. 3,
September 1964, pp. 425-442.

[22] Katerina Simons, "Risk-Adjusted Performance of Mutual Funds," New
England Economic Review, September/October 1998, pp. 34-48.

A-7

A Bibliography

Financial Statistics
The discussion of computing statistical values for portfolios containing
missing data elements derives from the following references:

[23] Little, Roderick J.A. and Donald B. Rubin, Statistical Analysis with
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.

[24] Meng, Xiao-Li, and Donald B. Rubin, “Maximum Likelihood Estimation
via the ECM Algorithm,” Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.

[25] Sexton, Joe and Anders Rygh Swensen, “ECM Algorithms That Converge
at the Rate of EM,” Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.

[26] Dempster, A.P., N.M. Laird, and Donald B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

A-8

Standard References

Standard References
Standard references include:

[27] Addendum to Securities Industry Association, Standard Securities
Calculation Methods: Fixed Income Securities Formulas for Analytic
Measures, Vol. 2, Spring 1995. This addendum explains and clarifies the
end-of-month rule.

[28] Brealey, Richard A. and Stewart C. Myers, Principles of Corporate
Finance, New York: McGraw-Hill. 4th ed., 1991, ISBN 0-07-007405-4.

[29] Daigler, Robert T., Advanced Options Trading. Chicago: Probus
Publishing Co., 1994, ISBN 1-55738-552-1.

[30] A Dictionary of Finance. Oxford: Oxford University Press., 1993, ISBN
0-19-285279-5.

[31] Fabozzi, Frank J. and T. Dessa Fabozzi, eds. The Handbook of
Fixed-Income Securities. Burr Ridge, IL: Irwin. 4th ed., 1995, ISBN
0-7863-0001-9.

[32] Fitch, Thomas P., Dictionary of Banking Terms. Hauppauge, NY:
Barron’s. 2nd ed., 1993, ISBN 0-8120-1530-4.

[33] Hill, Richard O., Jr., Elementary Linear Algebra. Orlando, FL: Academic
Press. 1986, ISBN 0-12-348460-X.

[34] Luenberger, David G., Investment Science, Oxford University Press,
1998. ISBN 0195108094.

[35] Marshall, John F. and Vipul K. Bansal, Financial Engineering: A
Complete Guide to Financial Innovation. New York: New York Institute of
Finance. 1992, ISBN 0-13-312588-2.

[36] Sharpe, William F., Macro-Investment Analysis. An “electronic
work-in-progress” published on the World Wide Web, 1995, at
http://www.stanford.edu/~wfsharpe/mia/mia.htm.

A-9

http://www.stanford.edu/~wfsharpe/mia/mia.htm

A Bibliography

[37] Sharpe, William F. and Gordon J. Alexander, Investments. Englewood
Cliffs, NJ: Prentice-Hall. 4th ed., 1990, ISBN 0-13-504382-4.

[38] Stigum, Marcia, with Franklin Robinson, Money Market and Bond
Calculations. Richard D. Irwin., 1996, ISBN 1-55623-476-7.

A-10

Credit Risk Analysis

Credit Risk Analysis
The credit rating and estimation transition probabilities come from:

[39] Altman, E., "Financial Ratios, Discriminant Analysis and the Prediction
of Corporate Bankruptcy," Journal of Finance, Vol. 23, No. 4, (Sep., 1968),
pp. 589-609.

[40] Basel Committee on Banking Supervision, International Convergence of
Capital Measurement and Capital Standards: A Revised Framework, Bank
for International Settlements (BIS), comprehensive version, June 2006.

[41] Hanson, S. and T. Schuermann, "Confidence Intervals for Probabilities of
Default,” Journal of Banking & Finance, Elsevier, vol. 30(8), August 2006,
pp. 2281-2301.

[42] Jafry, Y. and T. Schuermann, "Measurement, Estimation and Comparison
of Credit Migration Matrices," Journal of Banking & Finance, Elsevier, vol.
28(11), November 2004, pp. 2603-2639.

[43] Löffler, G. and P. N. Posch, Credit Risk Modeling Using Excel and
VBA,West Sussex, England: Wiley Finance, 2007.

[44] Schuermann, T., "Credit Migration Matrices," in E. Melnick and B.
Everitt (eds.), Encyclopedia of Quantitative Risk Analysis and Assessment,
Wiley, 2008.

A-11

A Bibliography

Portfolio Optimization
The Markowitz model is used for portfolio optimization computations.

[45] Markowitz, H., "Portfolio Selection,"Journal of Finance, Vol. 7, No. 1,
March 1952, pp. 77-91.

[46] Markowitz, H. M., Portfolio Selection: Efficient Diversification of
Investments, John Wiley & Sons, Inc., 1959.

A-12

B

Examples

Use this list to find examples in the documentation.

B Examples

Bond Examples
“Single Bond Example” on page 2-27
“Bond Portfolio Example” on page 2-29

B-2

Portfolio Examples

Portfolio Examples
“Efficient Frontier Example” on page 3-5
“Optimal Risky Portfolio Example” on page 3-9
“Constraint Specification” on page 3-12

B-3

B Examples

Portfolio Object Examples
“Asset Allocation Example” on page 4-108

B-4

Estimation of Transition Probabilities

Estimation of Transition Probabilities
“Estimate Transition Probabilities” on page 6-4
“Estimate t-Year Default Probabilities” on page 6-12

B-5

B Examples

Estimating Transition Probabilities for Different Rating
Scales

“Estimate Transition Probabilities for Different Rating Scales” on page 6-7

B-6

Financial Statistics

Financial Statistics
“Example of Portfolios with Missing Data” on page 7-26
“Capital Asset Pricing Model” on page 7-34

B-7

B Examples

Sample Programs
“Sensitivity of Bond Prices to Changes in Interest Rates” on page 8-3
“Constructing a Bond Portfolio to Hedge Against Duration and Convexity”
on page 8-6
“Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve” on page 8-9
“Sensitivity of Bond Prices to Nonparallel Shifts in the Yield Curve” on
page 8-12
“Constructing Greek-Neutral Portfolios of European Stock Options” on
page 8-14
“Term Structure Analysis and Interest Rate Swap Pricing” on page 8-18

B-8

Graphics Programs

Graphics Programs
“Plotting an Efficient Frontier” on page 8-21
“Plotting Sensitivities of an Option” on page 8-24
“Plotting Sensitivities of a Portfolio of Options” on page 8-26

B-9

B Examples

Charting Financial Time Series
“Using chartfts” on page 9-18

B-10

Indexing Financial Time Series

Indexing Financial Time Series
“Indexing with Date Strings” on page 10-8
“Indexing with Date String Range” on page 10-10
“Indexing with Integers” on page 10-11
“Indexing When Time-of-Day Data Is Present” on page 10-13

B-11

B Examples

Financial Time Series Demonstration Program
“Financial Time Series Example” on page 10-25

B-12

Financial Time Series Graphical User Interface Examples

Financial Time Series Graphical User Interface Examples
“Fill Missing Data” on page 12-10
“Frequency Conversion” on page 12-12
“Analysis Menu” on page 12-13
“Graphs Menu” on page 12-15

B-13

B Examples

Technical Analysis
“Moving Average Convergence/Divergence (MACD)” on page 14-4
“Williams %R” on page 14-6
“Relative Strength Index (RSI)” on page 14-7
“Relative Strength Index (RSI))” on page 14-8

B-14

Glossary

Glossary

active return
Amount of return achieved in excess of the return produced by an
appropriate benchmark (for example, an index portfolio).

active risk
Standard deviation of the active return. Also known as the tracking
error on page Glossary-15.

American option
An option that can be exercised any time until its expiration date.
Contrast with European option.

amortization
Reduction in value of an asset over some period for accounting purposes.
Generally used with intangible assets. Depreciation is the term used
with fixed or tangible assets.

annuity
A series of payments over a period of time. The payments are usually
in equal amounts and usually at regular intervals such as quarterly,
semiannually, or annually.

arbitrage
The purchase of securities on one market for immediate resale on
another market to profit from a price or currency discrepancy.

basis point
One hundredth of one percentage point, or 0.0001.

basis
Day count basis determines how interest accrues over time for various
instruments and the amount transferred on interest payment dates.
The calculation of accrued interest for dates between payments also uses
day count basis. Day count basis is a fraction of Number of interest
accrual days / Days in the relevant coupon period. Supported
day count conventions and basis values are:

Glossary-1

Glossary

Basis
Value Day Count Convention

0 actual/actual (default) — Number of days in both a period
and a year is the actual number of days.

1 30/360 SIA — Year fraction is calculated based on a 360
day year with 30-day months, after applying the following
rules: If the first date and the second date are the last day
of February, the second date is changed to the 30th. If the
first date falls on the 31st or is the last day of February, it is
changed to the 30th. If after the preceding test, the first day
is the 30th and the second day is the 31st, then the second
day is changed to the 30th.

2 actual/360 — Number of days in a period is equal to the
actual number of days, however the number of days in a year
is 360.

3 actual/365 — Number of days in a period is equal to the
actual number of days, however the number of days in a year
is 365 (even in a leap year).

4 30/360 PSA — Number of days in every month is set to 30
(including February). If the start date of the period is either
the 31st of a month or the last day of February, the start
date is set to the 30th, while if the start date is the 30th of a
month and the end date is the 31st, the end date is set to the
30th. The number of days in a year is 360.

5 30/360 ISDA — Number of days in every month is set to 30,
except for February where it is the actual number of days. If
the start date of the period is the 31st of a month, the start
date is set to the 30th while if the start date is the 30th of a
month and the end date is the 31st, the end date is set to the
30th. The number of days in a year is 360.

6 30E /360 — Number of days in every month is set to 30
except for February where it is equal to the actual number
of days. If the start date or the end date of the period is the
31st of a month, that date is set to the 30th. The number of
days in a year is 360.

7 actual/365 Japanese — Number of days in a period is equal
to the actual number of days, except for leap days (29th
February) which are ignored. The number of days in a year
is 365 (even in a leap year).

Glossary-2

Glossary

Basis
Value Day Count Convention

8 actual/actual ISMA — Number of days in both a period and
a year is the actual number of days and the compounding
frequency is annual.

9 actual/360 ISMA — Number of days in a period is equal to
the actual number of days, however the number of days in a
year is 360 and the compounding frequency is annual.

10 actual/365 ISMA — Number of days in a period is equal to
the actual number of days, however the number of days in
a year is 365 (even in a leap year) and the compounding
frequency is annual.

11 30/360 ISMA — Number of days in every month is set to 30,
except for February where it is equal to the actual number of
days. If the start date or the end date of the period is the 31st
of a month, that date is set to the 30th. The number of days
in a year is 360 and the compounding frequency is annual.

12 actual/365 ISDA — The day count fraction is calculated using
the following formula: (Actual number of days in period
that fall in a leap year / 366) + (Actual number of
days in period that fall in a normal year / 365).

13 bus/252 — The number of days in a period is equal to the
actual number of days however the number of days in a year
is 252.

beta
The price volatility of a financial instrument relative to the price
volatility of a market or index as a whole. Beta is commonly used with
respect to equities. A high-beta instrument is riskier than a low-beta
instrument.

binomial model
A method of pricing options or other equity derivatives in which
the probability over time of each possible price follows a binomial
distribution. The basic assumption is that prices can move to only two
values (one higher and one lower) over any short time period.

Glossary-3

Glossary

Black-Scholes model
The first complete mathematical model for pricing options, developed
by Fischer Black and Myron Scholes. It examines market price, strike
price, volatility, time to expiration, and interest rates. It is limited to
only certain kinds of options.

Bollinger band chart
A financial chart that plots actual asset data along with three other
bands of data: the upper band is two standard deviations above
a user-specified moving average; the lower band is two standard
deviations below that moving average; and the middle band is the
moving average itself.

bootstrapping, bootstrap method
An arithmetic method for backing an implied zero curve out of the par
yield curve.

building a binomial tree
For a binomial option model: plotting the two possible short-term
price-changes values, and then the subsequent two values each, and
then the subsequent two values each, and so on over time, is known
as “building a binomial tree.” See also binomial model on page
Glossary-3.

call
a. An option to buy a certain quantity of a stock or commodity for a
specified price within a specified time. See also put on page Glossary-12.
b. A demand to submit bonds to the issuer for redemption before the
maturity date. c. A demand for payment of a debt. d. A demand for
payment due on stock bought on margin.

callable bond
A bond that allows the issuer to buy back the bond at a predetermined
price at specified future dates. The bond contains an embedded call
option; that is, the holder has sold a call option to the issuer. See also
puttable bond on page Glossary-12.

candlestick chart
A financial chart usually used to plot the high, low, open, and close price
of a security over time. The body of the “candle” is the region between

Glossary-4

Glossary

the open and close price of the security. Thin vertical lines extend up to
the high and down to the low, respectively. If the open price is greater
than the close price, the body is empty. If the close price is greater
than the open price, the body is filled. See also high-low-close chart
on page Glossary-9.

cap
Interest-rate option that guarantees that the rate on a floating-rate
loan will not exceed a certain level.

cash flow
Cash received and paid over time.

clean price
The price of a bond excluding any interest that has accrued since issue
or the most recent coupon payment.

collar
Interest-rate option that guarantees that the rate on a floating-rate
loan will not exceed a certain upper level nor fall below a lower level. It
is designed to protect an investor against wide fluctuations in interest
rates.

convexity
A measure of the rate of change in duration; measured in time. The
greater the rate of change, the more the duration changes as yield
changes.

correlation
The simultaneous change in value of two random numeric variables.

correlation coefficient
A statistic in which the covariance is scaled to a value between
minus one (perfect negative correlation) and plus one (perfect positive
correlation).

coupon
Detachable certificate attached to a bond that shows the amount of
interest payable at regular intervals, usually semiannually. Originally

Glossary-5

Glossary

coupons were actually attached to the bonds and had to be cut off or
“clipped” to redeem them and receive the interest payment.

coupon dates
The dates when the coupons are paid. Typically a bond pays coupons
annually or semiannually.

coupon rate
The nominal interest rate that the issuer promises to pay the buyer of
a bond.

covariance
A measure of the degree to which returns on two assets move in tandem.
A positive covariance means that asset returns move together; a
negative covariance means they vary inversely.

credit rating
A credit rating evaluates a potential borrower’s ability to repay debt.

day count convention
A convention used to determine the number of days between two coupon
dates, which is important in calculating accrued interest and present
value when the next coupon payment is less than a full coupon period
away. See also basis on page Glossary-1

delta
The rate of change of the price of a derivative security relative to the
price of the underlying asset; that is, the first derivative of the curve that
relates the price of the derivative to the price of the underlying security.

depreciation
Reduction in value of fixed or tangible assets over some period for
accounting purposes. See also amortization on page Glossary-1.

derivative
A financial instrument that is based on some underlying asset. For
example, an option is a derivative instrument based on the right to buy
or sell an underlying instrument.

Glossary-6

Glossary

dirty price
The price of a bond including the accrued interest.

discount curve
The curve of discount rates versus maturity dates for bonds.

drawdown
The peak to trough decline during a specific record period of an
investment or fund.

duration
The expected life of a fixed-income security considering its coupon yield,
interest payments, maturity, and call features. As market interest
rates rise, the duration of a financial instrument decreases. See also
Macaulay duration on page Glossary-10.

efficient frontier
A graph representing a set of portfolios that maximizes expected return
at each level of portfolio risk. See also Markowitz model on page
Glossary-10.

efficient portfolio
Portfolios satisfying the criteria of minimum risk for a given level
of return and maximum return for a given level of risk. See also
Markowitz model on page Glossary-10.

elasticity
See Lambda on page Glossary-10.

European option
An option that can be exercised only on its expiration date. Contrast
with American option.

ex-ante
Referring to future events, such as the future price of a stock.

ex-post
Referring to past events, when uncertainty of the result has been
eliminated.

Glossary-7

Glossary

exercise price
The price set for buying an asset (call) or selling an asset (put). The
strike price.

face value
The maturity value of a security. Also known as par value, principal
value, or redemption value.

fixed-income security
A security that pays a specified cash flow over a specific period. Bonds
are typical fixed-income securities.

floor
Interest-rate option that guarantees that the rate on a floating-rate loan
will not fall below a certain level.

forward curve
The curve of forward interest rates versus maturity dates for bonds.

forward rate
The future interest rate of a bond inferred from the term structure,
especially from the yield curve of zero-coupon bonds, calculated from the
growth factor of an investment in a zero held until maturity.

future value
The value that a sum of money (the present value) earning compound
interest will have in the future.

gamma
The rate of change of delta for a derivative security relative to the price
of the underlying asset; that is, the second derivative of the option price
relative to the security price.

greeks
Collectively, “greeks” refer to the financial measures beta, delta,
gamma, lambda, rho, theta, and vega, which are sensitivity measures
used in evaluating derivatives.

ISDA
International Swaps and Derivatives Association.

Glossary-8

Glossary

ISMA
International Securities Market Association.

hedge
A securities transaction that reduces or offsets the risk on an existing
investment position.

high-low-close chart
A financial chart usually used to plot the high, low, open, and close price
of a security over time. Plots are vertical lines whose top is the high,
bottom is the low, open is a short horizontal tick to the left, and close is
a short horizontal tick to the right.

implied volatility
For an option, the variance that makes a call option price equal to the
market price. Given the option price, strike price, and other factors, the
Black-Scholes model computes implied volatility.

information ratio
The ratio of relative return to relative risk.

internal rate of return
a. The average annual yield earned by an investment during the period
held. b. The effective rate of interest on a loan. c. The discount rate
in discounted cash flow analysis. d. The rate that adjusts the value of
future cash receipts earned by an investment so that interest earned
equals the original cost. See also yield on page Glossary-16.

issue date
The date a security is first offered for sale. That date usually determines
when interest payments, known as coupons, are made.

Ito process
Statistical assumptions about the behavior of security prices. For
details, see the book by Hull in “Derivatives Pricing and Yields” on page
A-4.

Glossary-9

Glossary

key rate duration
Key rate duration measures the sensitivity of a portfolio’s (or security’s)
value in relation to changes in specific maturities of the zero or spot
curve.

Lambda
The percentage change in the price of an option relative to a 1% change
in the price of the underlying security. Also known as elasticity.

long position
Outright ownership of a security or financial instrument. The owner
expects the price to rise in order to make a profit on some future sale.

long rate
The yield on a zero-coupon Treasury bond.

lower partial moment
A model for the moments of asset returns that fall below a minimum
acceptable level of return.

Macaulay duration
A widely used measure of price sensitivity to yield changes developed by
Frederick Macaulay in 1938. It is measured in years and is a weighted
average-time-to-maturity of an instrument. The Macaulay duration
of an income stream, such as a coupon bond, measures how long, on
average, the owner waits before receiving a payment. It is the weighted
average of the times payments are made, with the weights at time T
equal to the present value of the money received at time T.

Markowitz model
A model for selecting an optimum investment portfolio, devised by H.
M. Markowitz. It uses a discrete-time, continuous-outcome approach
for modeling investment problems, often called the mean-variance
paradigm. See also efficient portfolio on page Glossary-7 and
efficient frontier on page Glossary-7.

maturity date
The date when the issuer returns the final face value of a bond to the
buyer.

Glossary-10

Glossary

mean
a. A number that typifies a set of numbers, such as a geometric mean or
an arithmetic mean. b. The average value of a set of numbers.

modified duration
The Macaulay duration discounted by the per-period interest rate; that
is, divided by (1+rate/frequency).

Monte-Carlo simulation
A mathematical modeling process. For a model that has several
parameters with statistical properties, pick a set of random values for
the parameters and run a simulation. Then pick another set of values,
and run it again. Run it many times (often 10,000 times) and build up a
statistical distribution of outcomes of the simulation. This distribution
of outcomes is then used to answer whatever question you are asking.

moving average
A price average that is adjusted by adding other parametrically
determined prices over some time period.

moving-averages chart
A financial chart that plots leading and lagging moving averages for
prices or values of an asset.

normal (bell-shaped) distribution
In statistics, a theoretical frequency distribution for a set of variable
data, usually represented by a bell-shaped curve symmetrical about
the mean.

odd first or last period
Fixed-income securities may be purchased on dates that do not coincide
with coupon or payment dates. The length of the first and last periods
may differ from the regular period between coupons, and thus the bond
owner is not entitled to the full value of the coupon for that period.
Instead, the coupon is prorated according to how long the bond is held
during that period.

on-the-run treasury bonds
The most recently auctioned issue of a U.S. Treasury bond or note of a
particular maturity.

Glossary-11

Glossary

option
A right to buy or sell specific securities or commodities at a stated price
(exercise or strike price) within a specified time. An option is a type of
derivative.

par value
The maturity or face value of a security or other financial instrument.

par yield curve
The yield curve of bonds selling at par, or face, value.

point and figure chart
A financial chart usually used to plot asset price data. Upward price
movements are plotted as X’s and downward price movements are
plotted as O’s.

present value
Today’s value of an investment that yields some future value when
invested to earn compounded interest at a known interest rate; that is,
the future value at a known period in time discounted by the interest
rate over that time period.

principal value
See par value on page Glossary-12.

PSA
Public Securities Association.

purchase price
Price actually paid for a security. Typically the purchase price of a bond
is not the same as the redemption value.

put
An option to sell a stipulated amount of stock or securities within a
specified time and at a fixed exercise price. See also call on page
Glossary-4.

puttable bond
A bond that allows the holder to redeem the bond at a predetermined
price at specified future dates. The bond contains an embedded put

Glossary-12

Glossary

option; that is, the holder has bought a put option. See also callable
bond on page Glossary-4.

Quant
A quantitative analyst; someone who does numerical analysis of
financial information in order to detect relationships, disparities, or
patterns that can lead to making money.

redemption value
See par value on page Glossary-12.

regression analysis
Statistical analysis techniques that quantify the relationship between
two or more variables. The intent is quantitative prediction or
forecasting, particularly using a small population to forecast the
behavior of a large population.

rho
The rate of change in a derivative’s price relative to the underlying
security’s risk-free interest rate.

return proxy
The proxy for return is a function that characterizes either the gross
benefits or net benefits associated with portfolio choices.

risk proxy
The proxy for risk is a function that characterizes either the variability
or losses associated with portfolio choices.

sensitivity
The “what if” relationship between variables; the degree to which
changes in one variable cause changes in another variable. A specific
synonym is volatility.

settlement date
The date when money first changes hands; that is, when a buyer
actually pays for a security. It need not coincide with the issue date.

Glossary-13

Glossary

Sharpe ratio
The ratio of the excess return of an asset divided by the asset’s standard
deviation of returns.

short rate
The annualized one-period interest rate.

short sale, short position
The sale of a security or financial instrument not owned, in anticipation
of a price decline and making a profit by purchasing the instrument
later at a lower price, and then delivering the instrument to complete
the sale. See also long position on page Glossary-10.

SIA
Securities Industry Association.

spot curve, spot yield curve
See zero curve, zero-coupon yield curve on page Glossary-16.

spot rate
The current interest rate appropriate for discounting a cash flow of
some given maturity.

spread
For options, a combination of call or put options on the same stock with
differing exercise prices or maturity dates.

standard deviation
A measure of the variation in a distribution, equal to the square root of
the arithmetic mean of the squares of the deviations from the arithmetic
mean; the square root of the variance.

stochastic
Involving or containing a random variable or variables; involving chance
or probability.

straddle
A strategy used in trading options or futures. It involves simultaneously
purchasing put and call options with the same exercise price and

Glossary-14

Glossary

expiration date, and it is most profitable when the price of the
underlying security is very volatile.

strike
Exercise a put or call option.

strike price
See exercise price on page Glossary-8.

swap
A contract between two parties to exchange cash flows in the future
according to some formula.

swaption
A swap option; an option on an interest-rate swap. The option gives
the holder the right to enter into a contracted interest-rate swap at a
specified future date. See also swap on page Glossary-15.

term structure
The relationship between the yields on fixed-interest securities and
their maturity dates. Expectation of changes in interest rates affects
term structure, as do liquidity preferences and hedging pressure. A
yield curve is one representation in the term structure.

theta
The rate of change in the price of a derivative security relative to time.
Theta is usually very small or negative since the value of an option
tends to drop as it approaches maturity.

tracking error
See active risk on page Glossary-1.

Treasury bill
Short-term U.S. government security issued at a discount from the face
value and paying the face value at maturity.

Treasury bond
Long-term debt obligation of the U.S. government that makes coupon
payments semiannually and is sold at or near par value in $1000
denominations or higher. Face value is paid at maturity.

Glossary-15

Glossary

variance
The dispersion of a variable. The square of the standard deviation.

vega
The rate of change in the price of a derivative security relative to the
volatility of the underlying security. When vega is large, the security is
sensitive to small changes in volatility.

volatility
a. Another general term for sensitivity. b. The standard deviation of
the annualized continuously compounded rate of return of an asset. c.
A measure of uncertainty or risk.

yield
a. Measure of return on an investment, stated as a percentage of
price. Yield can be computed by dividing return by purchase price,
current market value, or other measure of value. b. Income from a bond
expressed as an annualized percentage rate. c. The nominal annual
interest rate that gives a future value of the purchase price equal to
the redemption value of the security. Any coupon payments determine
part of that yield.

yield curve
Graph of yields (vertical axis) of a particular type of security versus the
time to maturity (horizontal axis). This curve usually slopes upward,
indicating that investors usually expect to receive a premium for
securities that have a longer time to maturity. The benchmark yield
curve is for U.S. Treasury securities with maturities ranging from three
months to 30 years. See also term structure on page Glossary-15.

yield to maturity
A measure of the average rate of return that will be earned on a bond
if held to maturity.

zero curve, zero-coupon yield curve
A yield curve for zero-coupon bonds; zero rates versus maturity dates.
Since the maturity and duration (Macaulay duration) are identical for
zeros, the zero curve is a pure depiction of supply/demand conditions for
loanable funds across a continuum of durations and maturities. Also
known as spot curve or spot yield curve.

Glossary-16

Glossary

zero-coupon bond, or zero
A bond that, instead of carrying a coupon, is sold at a discount from its
face value, pays no interest during its life, and pays the principal only
at maturity.

Glossary-17

Glossary

Glossary-18

Index

IndexSymbols and Numerics
1900 date system 17-544 17-967
1904 date system 17-545 17-968
360-day year 17-292
365-day year 17-300

A
abs2active 17-2
AbstractPortfolio 17-6
acceleration 17-910
accrfrac 17-14
accrued interest 2-22 17-18 17-20

computing fractional period 17-14
acrubond 17-18
acrudisc 17-20
active return 3-20
active risk 3-20
active2abs 17-22
actual days

between dates 17-302
addEquality 17-24
addGroupRatio 17-27
addGroups 17-31
addInequality 17-34
adding a scalar and a matrix 1-8
adding matrices 1-7
adline 17-37
adosc 17-40
advance payments, periodic payment

given 17-617
after-tax rate of return 17-819
algebra, linear 1-8 1-13
American options 2-3 2-42
amortization 1-21 2-19 to 2-20 17-43
amortize 17-43
analysis models for equity derivatives 2-40
analysis, technical 14-2
analyzing

and computing cash flows 2-17

equity derivatives 2-39
portfolios 2-43

annuity 2-19
payment of with odd first period 17-619
periodic interest rate of 17-46
periodic payment of loan or 17-620

annurate 17-46
annuterm 17-47
apostrophe or prime character (\q) 1-6
arguments

function return 1-20
interest rate 1-21
matrices as, limitations 1-21
vectors as, limitations 1-21

arith2geom 17-48
arithmetic 10-16
array operations 1-17
ASCII character 1-20
ascii2fts 17-51

creating object with 9-14
asset covariance matrix with exponential

weighting 17-405
asset life 1-21
axes

combining 9-24
axis labels, converting 17-261

B
bank format 17-257
bar 17-56
bar3 17-59
bar3h 17-59
barh 17-56
basis 2-23
basis, day-count 17-307
beytbill 17-62
binomial

functions 2-3
model 2-42

Index-1

Index

put and call pricing 17-63
tree, building 2-42

binprice 17-63
Black’s option pricing 17-68
Black-Scholes

elasticity 17-77
functions 2-3
implied volatility 17-74
model 2-41
options 8-24 8-26
put and call pricing 17-79
sensitivity to

interest rate change 17-81
time-until-maturity change 17-83
underlying delta change 17-72
underlying price change 17-70
underlying price volatility 17-85

blkimpv 17-66
blkprice 17-68
blsdelta 17-70
blsgamma 17-72
blsimpv 17-74
blslambda 17-77
blsprice 17-79
blsrho 17-81
blstheta 17-83
blsvega 17-85
bndconvp 17-87
bndconvy 17-93
bnddurp 17-99
bnddury 17-105
bndkrdur 17-111
bndprice 17-116
bndspread 17-124
bndyield 17-132
bolling 17-139
bollinger 17-141
Bollinger band chart 2-15
bond

convexity 8-3

duration 8-3
equivalent yield for Treasury bill 17-62
portfolio

constructing based on key rate
duration 8-12

constructing to hedge against duration
and convexity 8-6

visualizing sensitivity of price to parallel
shifts in the yield curve 8-9

sensitivity of prices to changes in interest
rates 8-3

zero-coupon 17-986
bootstrapping 2-37 17-871 17-983 17-990
boxcox 17-143

example 10-20
building a binomial tree 2-42
busdate 17-145
busdays 17-147
business date

last of month 17-528
business day

next 2-10 17-145
previous 17-145

business days 17-518

C
call and put pricing

Black-Scholes 17-79
candle 17-149
candle (time series) 17-152
candlestick chart 17-149
capital allocation line 3-3
cash flow

analyzing and computing 2-17
convexity 17-170
dates 2-10 17-171
duration 17-176
future value of varying 17-461
internal rate of return 17-514

Index-2

Index

internal rate of return for nonperiodic 17-969
irregular 17-461
modified internal rate of return 17-562
negative 2-17
portfolio form of amounts 17-177
present value of varying 17-725
sensitivity of 2-19
uniform payment equal to varying 17-621

cell array 8-19
cfamounts 17-155
cfconv 17-170
cfdates 17-171
cfdur 17-176
cfport 17-177
cfprice 17-181
cfspread 17-184
cftimes 17-191
cfyield 17-188
chaikosc 17-196
chaikvolat 17-199
character array

strings stored as 1-20
character, ASCII 1-20
chart

Bollinger band 2-15
candlestick 17-149
high, low, open, close 17-502
leading and lagging moving averages 17-568
point and figure 17-646

chartfts 17-202
combine axes feature 9-24
purpose 9-18
using 9-18

chartfts zoom feature 9-21
charting 14-2
charting financial data 2-12
checkFeasibility 17-205
chfield 17-207
colon (:) 1-6
Combine Axes tool 9-24

commutative law 1-8 1-13
compatible time series 10-16
component 10-3
computing

cash flows 2-17
dot products of vectors 1-10
yields for fixed-income securities 2-21

constraint functions 3-15
constraint matrix 3-17
constructing

a bond portfolio to hedge against duration
and convexity 8-6

greek-neutral portfolios of European stock
options 8-14

conventions
SIA 2-21

conversions
currency 2-12
date input 2-5
date output 2-7

convert2sur 17-208
converting

and handling dates 2-4
axis labels 17-261

convertto 17-210
convexity 8-3

cash flow 17-170
constructing a bond portfolio to hedge

against 8-6
portfolio 8-5 8-7

corr2cov 17-213
corr2cov function 17-213
corrcoef 17-211
coupon bond

prices to zero curve 17-983
yields to zero curve 17-990

coupon date
after settlement date 17-222
days between 17-240 17-244

coupon dates 2-30

Index-3

Index

coupon payments remaining until
maturity 17-218

coupon period
containing settlement date 17-248
fraction of 17-14

coupons payable between dates 17-218
cov 17-214
cov2corr 17-216
covariance matrix 3-5
covariance matrix with exponential

weighting 17-405
cpncount 17-218
cpndaten 17-222
cpndatenq 17-226
cpndatep 17-231
cpndatepq 17-235
cpndaysn 17-240
cpndaysp 17-244
cpnpersz 17-248
createholidays 17-252

graphical user interface 13-2
credit quality thresholds 6-26
Credit rating 6-2
cumsum 17-254
cur2frac 17-256
cur2str 17-257
currency

converting 2-12
decimal 17-435
formatting 2-12
fractional 17-256 17-435
values 17-256

current date 17-845
and time 2-8 17-606

D
data extraction 10-4
data series vector 10-4
data transformation 10-19

date 2-8
components 17-283
conversions 2-5
current 2-8 17-606 17-845
end of month 17-369
first business, of month 17-409
formats 2-4
hour of 17-511
input conversions 2-5
last date of month 17-369
last weekday in month 17-541
maturity 2-22
minute of 17-561
number 2-4 17-271

displaying as string 17-264
Excel to MATLAB 17-967
indices of in matrix 17-266
MATLAB to Excel 17-544

of day in future or past month 17-268
of future or past workday 17-287
output conversions 2-7
seconds of 17-747
starting, add month to 17-268
string 2-4 17-275
year of 17-972

date and time functions 17-371
date of specific weekday in month 17-607
date string 10-8

indexing 10-8
range 10-10

date system
1900 17-544 17-967
1904 17-545 17-968

date vector 10-4 17-284
date2time 17-258
dateaxis 17-261
datedisp 17-264
datefind 17-266
datemnth 17-268
datenum 17-271

Index-4

Index

dates
actual days between 17-302
business days 17-518
cash-flow 2-10 17-171
coupon 2-30
days between 17-292 17-300 17-302 17-304

17-307
determining 2-9
first coupon 2-22
fraction of year between 17-975
handling and converting 2-4
investment horizon 2-37
issue 2-21
last coupon 2-22
number of months between 17-566
quasi-coupon 2-22
settlement 2-21
vector of 1-20
working days between 17-966

datestr 10-8 17-275
datevec 17-283
datewrkdy 17-287
day 17-289

date of specific weekday in month 17-607
of month 17-289
of month, last 17-371
of the week 17-954

day-count basis 17-307
day-count convention 2-23
days

between
coupon date and settlement date 17-244
dates 17-292 17-300 17-302 17-304

17-307 17-966
settlement date and next coupon

date 17-240
business 17-518
holidays 17-507
in coupon period containing settlement

date 17-248

last business date of month 17-528
last weekday in month 17-541
nontrading 17-507
number of, in year 17-973

days250bus 17-290
days360 17-292
days360e 17-294
days360isda 17-296
days360psa 17-298
days365 17-300
daysact 17-302
daysadd 17-304
daysdif 17-307
dec2thirtytwo 17-309
decimal currency 17-435

to fractional currency 17-256
declining-balance depreciation

fixed 2-19 17-311
general 2-19 17-312

default values 10-3
definitions 1-4
delta 2-39

change, Black-Scholes sensitivity to
underlying 17-72

depfixdb 17-311
depgendb 17-312
deprdv 17-314
depreciable value, remaining 17-314
depreciation 2-19

fixed declining-balance 2-19 17-311
general declining-balance 2-19 17-312
straight-line 2-19 17-317
sum of years’ digits 2-19 17-315

depsoyd 17-315
depstln 17-317
derivatives

equity, pricing and analyzing 2-39
sensitivity measures for 2-39

description field
component name 10-3

Index-5

Index

setting 9-14
determining dates 2-9
diff 17-318
disc2zero 17-319
discount curve

from zero curve 17-997
to zero curve 17-319

discount rate of a security 17-324
discount security 17-20

future value of 17-458
price of 17-714
yield of 17-978

discrate 17-324
dividing matrices 1-13
dot products of vectors 1-10
double-colon operator 10-10
duration

cash-flow and modified 17-176
constructing a bond portfolio to hedge

against 8-6
for fixed-income securities 2-33
Macaulay 2-33
modified 2-33
portfolio 8-5 8-7

E
ECM (expectation conditional

maximization) 17-354
ecmlsrmle 17-326
ecmlsrobj 17-332
ecmmvnrfish 17-334
ecmmvnrmle 17-337
ecmmvnrobj 17-342
ecmmvnrstd 17-344
ecmnfish 17-347
ecmnhess 17-349
ecmninit 17-351
ecmnmle 17-353
ecmnobj 17-359

ecmnstd 17-360
effective rate of return 17-362
efficient frontier 3-5

plotting an 8-21
tracking error 3-20

effrr 17-362
elasticity

Black-Scholes 17-77
element by element

operating 1-17
element-by-element 1-7
elements, referencing matrix 1-5
elpm 17-363
emaxdrawdown 17-365
end 17-367

MATLAB variable 10-13
end-of-month rule 2-26
enlarging matrices 1-5
eomdate 17-369
eomday 17-371
eq (time series) 17-372
equal time series 10-16
equations

solving simultaneous linear 1-14
equity derivatives 2-39

analysis models for 2-40
estimateAssetMoments 17-373
estimateBounds 17-380
estimateFrontier 17-383
estimateFrontierByReturn 17-387
estimateFrontierByRisk 17-390
estimateFrontierLimits 17-393
estimateMaxSharpeRatio 17-396
estimatePortMoments 17-399
estimatePortReturn 17-401
estimatePortRisk 17-403
European options 2-3

constructing greek-neutral portfolios of 8-14
ewstats 17-405
Excel date number

Index-6

Index

from MATLAB date number 17-544
to MATLAB date number 17-967

exp 17-407
expectation conditional maximization 17-354
expected lower partial moments 5-14
expected maximum drawdown 5-17
exponential weighting of covariance

matrix 17-405
extfield 17-408
extracting data 10-4

F
fbusdate 17-409
fetch 17-411
fieldnames 17-416
fillts 17-417

example 12-10
filter 17-423
financial data

charting 2-12
financial time series example 10-25
Financial Time Series Tool 11-2

loading data 11-5
supported tasks 11-10
using with other Financial Time Series

GUIs 11-18
fints 17-424

syntaxes 9-3
first business date of month 17-409
first coupon date 2-22
fixed declining-balance depreciation 2-19 17-311
fixed periodic payments

future value with 17-460
fixed-income securities

cash-flow dates 17-171
Macaulay and modified durations for 2-33
pricing 2-31
pricing and computing yields for 2-21
terminology 2-21

yield functions for 2-32
fixed-income sensitivities 2-33
Forecast corporate default rates 6-25
formats

bank 17-257
date 2-4

formatting currency and charting financial
data 2-12

forward curve
from zero curve 17-1002
to zero curve 17-464

fpctkd 17-432
frac2cur 17-435
fraction of

coupon period 17-14
year between dates 17-975

fractional currency 17-256 17-435
freqnum 17-436
freqstr 17-438
frequency

indicator field 10-3
indicators 9-13
setting 9-13

frequency conversion functions
Data menu 12-12
table 10-19

frontcon 3-5 17-440
frontier 17-444

plotting an efficient 8-21
frontier, efficient 3-5
fts2ascii 17-446
fts2mat 17-448
ftsbound 17-450

displaying dates with 10-11
ftsdata subdirectory 9-15
ftsgui 17-451

command 12-2
ftsinfo 17-452
ftstool 11-2 17-455
ftsuniq 17-457

Index-7

Index

function
return arguments 1-20

future month, date of day in 17-268
future value 2-18 17-47

of discounted security 17-458
of varying cash flow 17-461
with fixed periodic payments 17-460

fvdisc 17-458
fvfix 17-460
fvvar 17-461
fwd2zero 17-464

G
gamma 2-39
general declining-balance depreciation 2-19

17-312
generating and referencing matrix elements 1-6
geom2arith 17-469
getAssetMoments 17-472
getBounds 17-474
getBudget 17-476
getCosts 17-478
getEquality 17-480
getfield 17-486
getGroupRatio 17-482
getGroups 17-484
getInequality 17-489
getnameidx 17-495
getOneWayTurnover 17-491
graphical user interface 12-2
graphics

producing 8-21
three-dimensional 8-12

greek-neutral portfolios, constructing 8-14
greeks 2-39

neutrality 8-14
GUI 12-2

starting with ftsgui 17-451
starting with ftstool 17-455

H
handling and converting dates 2-4
hedging 8-3

a bond portfolio against duration and
convexity 8-6

hhigh 17-497
high, low, open, close chart 17-502
highlow 17-502
highlow (time series) 17-499
hist 17-504
holdings2weights 17-506
holidays 2-10 17-507
holidays and nontrading days 17-507
horzcat 17-509
hour 17-511
hour of date or time 17-511

I
identity matrix 1-13
iid (independent identically-distributed

data) 17-352
implied volatility 2-40

Black-Scholes 17-74
independent identically-distributed data 17-352
indexing

date range 10-10
date string 10-8
integer 10-11
with time-of-day data 10-13

indices
of date numbers in matrix 17-266
of nonrepeating integers in matrix 17-266

indifference curve 3-8
inforatio 17-512
Information ratio 5-8
inner dimension rule 1-8
input

conversions 2-5
string 1-20

Index-8

Index

interest 17-43
accrued 17-18 17-20
on loan 2-19

interest rate swap 8-18
interest rates

arguments 1-21
Black-Scholes sensitivity to change 17-81
of annuity, periodic 17-46
rate of return 2-17
risk-free 8-27
sensitivity of bond prices to changes in 8-3
term structure 2-2 2-36

internal rate of return 17-514
for nonperiodic cash flow 17-969
modified 17-562

inversion, matrix 1-13
investment horizon 2-37
irr 17-514
isbusday 17-518
iscompatible 17-520
isempty 17-522
isequal 17-521
isfield 17-523
issorted 17-524
issue date 2-21
Ito process 2-41

K
Kagi chart 17-525
key rate duration

for bonds 2-34

L
lagging and leading moving averages

chart 17-568
lagts 17-527
lambda 2-40
last

business date of month 17-528
date of month 17-369
day of month 17-371
weekday in month 17-541

last coupon date 2-22
lbusdate 17-528
leading and lagging moving averages

chart 17-568
leadts 17-530
left division 1-16
length 17-531
leverage of an option 17-77
Line break chart 17-532
linear algebra 1-8 1-13
linear equations 8-8

solving simultaneous 1-14
system of 1-14

llow 17-534
loan

interest on 2-19
payment with odd first period 17-619
periodic payment of 17-620

log 17-536
log10 17-537
log2 17-538
lpm 17-539
lweekdate 17-541

M
m2xdate 17-544
Macaulay duration 8-3

for fixed-income securities 2-33
macd 17-546
MACD signal line 17-546
main GUI window 12-2
MATLAB

date number
from Excel date number 17-967
to Excel date number 17-544

Index-9

Index

matrices
adding and subtracting 1-7
as arguments, limitations 1-21
dividing 1-13
enlarging 1-5
multiplying 1-8 1-11
multiplying vectors and 1-11
of string input 1-20
singular 1-13
square 1-13
transposing 1-6

matrix 1-4
adding or subtracting a scalar 1-8
algebra refresher 1-7
covariance 17-405
elements

generating 1-6
referencing 1-5

identity 1-13
indices of date numbers 17-266
indices of integers in 17-266
inversion 1-13
multiplying by a scalar 1-13
numbers and strings in a 1-20

maturity
price with interest at 17-718
yield of a security paying interest at 17-981

maturity date 2-22
max 17-549
maxdrawdown 17-550
maximum drawdown 5-17
maximum likelihood estimate (MLE) 17-356
mean 17-552
medprice 17-553
merge 17-555
min 17-559
minus 17-560
minute 17-561
minute of date or time 17-561
mirr 17-562

MLE (maximum likelihood estimate) 17-356
modified duration 8-3 17-176

for fixed-income securities 2-33
modified internal rate of return 17-562
momentum 17-913
month 17-564

add, to starting date 17-268
date of specific weekday 17-607
day of 17-289
first business date of 17-409
last business date 17-528
last date of 17-369
last day of 17-371

months 17-566
last weekday in 17-541
number of months between dates 17-566

movavg 17-568
Moving Average Convergence/Divergence

(MACD) 17-546
moving averages chart 17-568
mrdivide 17-573
mtimes 17-575
multiplying

a matrix by a scalar 1-13
matrices 1-8
two matrices 1-11
vectors 1-9
vectors and matrices 1-11

mvnrfish 17-576
mvnrmle 17-579
mvnrobj 17-584
mvnrstd 17-586

N
names

variable 1-7
NaN 2-28
nancov 17-589
nanmax 17-591

Index-10

Index

nanmean 17-593
nanmedian 17-594
nanmin 17-595
nanstd 17-597
nansum 17-599
nanvar 17-600
negative cash flows 2-17
negvolidx 17-602
Newton’s method 2-32
next

business day 2-10
coupon date after settlement date 17-222
or previous business day 17-145

nominal rate of return 17-605
nomrr 17-605
nontrading days 2-10 17-507
notation 1-4

row, column 1-5
now 17-606
number of

days in year 17-973
periods to obtain value 17-47
whole months between dates 17-566

numbers
and strings in a matrix 1-20
date 2-4

nweekdate 17-607
nyseclosures 17-610

O
object structure 9-3
observation 17-353
odd first period

payment of loan or annuity with 17-619
On-Balance Volume (OBV) 14-8
onbalvol 17-614
operating element by element 1-17
operations, array 1-17
opprofit 17-616

optimal portfolio 3-2
option

leverage of 17-77
plotting sensitivities of 8-24
plotting sensitivities of a portfolio of 8-26
pricing

Black’s model 17-68
profit 17-616

output conversions, date 2-7
overloaded functions

most common 10-24
types of 10-15

P
par value 2-22
par yield curve

from zero curve 17-1007
to zero curve 17-728

past month, date of day in 17-268
payadv 17-617
payment

of loan or annuity with odd first
period 17-619

periodic, given number of advance
payments 17-617

periodic, of loan or annuity 17-620
uniform, equal to varying cash flow 17-621

payodd 17-619
payper 17-620
payuni 17-621
pcalims 17-623
pcgcomp 17-626
pcglims 17-629
pcpval 17-632
peravg 17-634
period 2-22
periodic interest rate of annuity 17-46
periodic payment

future value with fixed 17-460

Index-11

Index

given advance payments 17-617
of loan or annuity 17-620
present value with fixed 17-722

periodicreturns 17-637
plot 17-639
plotFrontier 17-641
plotting

efficient frontier 8-21
sensitivities of a portfolio of options 8-26
sensitivities of an option 8-24

plus 17-645
point and figure chart 17-646
pointfig 17-646
portalloc 3-9 to 3-10 17-647
portalpha 17-651
portcons 3-15 17-655
portfolio

convexity 8-5 8-7
duration 8-5 8-7
expected rate of return 17-697
of options, plotting sensitivities of 8-26
optimal 3-2
optimization 3-3
risks, returns, and weights

randomized 17-682
selection 3-8

Portfolio 17-659
Portfolio object

asset allocation example 4-108
asset returns 4-37
common operations 4-30
constraints 4-53
estimating efficient frontier 4-96
estimating efficient portfolio 4-82
moments of asset returns 4-37
post-processing 4-103
transaction costs 4-50
troubleshooting results 4-105
validating 4-78

Portfolio optimization

constructing portfolio object 4-23
portfolio object 4-13
portfolio object methods 4-13
portfolio object properties 4-13
problems 4-2
theory 4-2

portfolios
analyzing 2-43
of European stock options

constructing greek-neutral 8-14
portopt 17-677
portrand 17-682
portror 17-685
portsim 17-686
portstats 17-697
portvar 17-699
portvrisk 17-700
posvolidx 17-702
power 17-705
prbyzero 17-706
prcroc 17-712
prdisc 17-714
present value 2-18

of varying cash flow 17-725
with fixed periodic payments 17-722

previous quasi coupon date 17-237
price

change, Black-Scholes sensitivity to
underlying 17-70

of discounted security 17-714
of Treasury bill 17-721
volatility, Black-Scholes sensitivity to

underlying 17-85
with interest at maturity 17-718

Price and volume chart 17-716 17-947
pricing

and analyzing equity derivatives 2-39
and computing yields for fixed-income

securities 2-21
fixed-income securities 2-31

Index-12

Index

principal 17-43
prmat 17-718
profit, option 17-616
prtbill 17-721
purchase price 2-22
put and call pricing

binomial 17-63
Black-Scholes 17-79

pvfix 17-722
pvtrend 17-723
pvvar 17-725
pyld2zero 17-728

Q
quasi coupon date

previous 17-237
quasi-coupon dates 2-22

R
randomized portfolio risks, returns, and

weights 17-682
rate of a security, discount 17-324
rate of return 2-17

after-tax 17-819
effective 17-362
internal 17-514
internal for nonperiodic cash flow 17-969
modified internal 17-562
nominal 17-605
portfolio expected 17-697

Ratio
information 5-8
Sharpe 5-6

rdivide 17-733
record 17-353
redemption value 2-22
reference date 2-30
referencing matrix elements 1-5 to 1-6

Relative Strength Index (RSI) 14-7
remaining depreciable value 2-19 17-314
Renko chart 17-735
resamplets 17-737
ret2tick 17-738
ret2tick (time series) 17-741 17-829
return arguments, function 1-20
rho 2-40
risk aversion 3-8
risk-adjusted return 5-11
risk-free interest rates 8-27
risks

returns, and weights
randomized portfolio 17-682

rmfield 17-744
row, column notation 1-5
row-by-column 1-4
rsindex 17-745

S
sample lower partial moments 5-14
scalar 1-5

adding or subtracting 1-8
multiplying a matrix by 1-13

second 17-747
seconds of date or time 17-747
securities industry association 2-21
selectreturn 17-748
sensitivity

fixed-income 2-33
measures for derivatives 2-39
of a portfolio of options, plotting 8-26
of an option, plotting 8-24
of bond prices to changes in interest rates 8-3
of cash flow 2-19
to

interest rate change,
Black-Scholes 17-81

Index-13

Index

to time-until-maturity change,
Black-Scholes 17-83

to underlying delta change,
Black-Scholes 17-72

to underlying price change,
Black-Scholes 17-70

to underlying price volatility,
Black-Scholes 17-85

visualizing to nonparallel shifts in the yield
curve 8-12

visualizing to parallel shifts in the yield
curve 8-9

serial dates 10-8
setAssetList 17-749
setAssetMoments 17-752
setBounds 17-755
setBudget 17-758
setCosts 17-761
setDefaultConstraints 17-765
setEquality 17-768
setfield 17-794
setGroupRatio 17-770
setGroups 17-774
setInequality 17-777
setInitPort 17-779
setOneWayTurnover 17-782
setOptions 17-787
setSolver 17-788
settlement date 2-21

coupon period containing 17-248
days between previous coupon date

and 17-244
days between, and coupon date 17-240
next coupon date after 17-222

setTurnover 17-791
sharpe 17-796
Sharpe ratio 5-6
SIA 2-21

compatibility 2-21

order of precedence 2-30
SIA conventions 2-21
signal line 17-546
single quotes 1-20
singular matrices 1-13
size 17-798
smoothts 17-799
solving

sample problems with the toolbox 8-2
sortfts 17-801
spctkd 17-803
spreadsheets 1-4
square matrices 1-13
std 17-806
stochosc 17-807
straight-line depreciation 2-19 17-317
strings

and numbers in a matrix 1-20
date 2-4 17-275
input, matrices of 1-20
stored as character array 1-20

structures 10-3
subsasgn 17-810
subsref 17-814
subtracting

a scalar and a matrix 1-8
matrices 1-7

sum of years’ digits depreciation 2-19 17-315
swap 8-18
synch date 2-30
synchronization date 2-30
system of linear equations 1-14

T
targetreturn 17-818
taxedrr 17-819
tbl2bond 17-820
technical analysis 14-2

Index-14

Index

term structure 2-2 2-36 8-3 17-319 17-464
17-728 17-820 17-983 17-990 17-997 17-1002
17-1007
parameters from Treasury bond

parameters 17-871
terminology, fixed-income securities 2-21
text file transformation 9-14
theta 2-40
thirdwednesday 17-823
thirtytwo2dec 17-825
three-dimensional graphics 8-12
tick labels 17-261
tick2ret 17-826
time

current 2-8 17-606
hour of 17-511
minute of 17-561
seconds of 17-747

time and date functions 17-371
time-until-maturity change

Black-Scholes sensitivity to 17-83
time2date 17-831
times 17-835
toannual 17-836
todaily 17-841
today 17-845
todecimal 17-846
tomonthly 17-847
toquarterly 17-852
toquoted 17-858
tosemi 17-859
totalreturnprice 17-865
toweekly 17-866
tr2bonds 17-871
tracking error 3-20 5-10
tracking error efficient frontier 3-20
Transition probabilities 6-3
transposing matrices 1-6
transprob 17-875
transprobbytotals 17-887

transprobfromthresholds 17-893
transprobgrouptotals 17-897
transprobprep 17-903
transprobtothresholds 17-907
Treasury bill 2-36

bond equivalent yield for 17-62
parameters to Treasury bond

parameters 17-820
price of 17-721
yield of 17-982

Treasury bond 2-36
parameters

from Treasury bill parameters 17-820
to term-structure parameters 17-871

tsaccel 17-910
tsmom 17-913
tsmovavg 17-915
typprice 17-918

U
ugarch 17-921
ugarchllf 17-924
ugarchpred 17-927
ugarchsim 17-930
uicalendar 17-936

graphical user interface 13-4
uminus 17-941
uniform payment equal to varying cash

flow 17-621
uplus 17-942

V
value at risk (VaR)

portfolio 17-700
var 17-943
variable names 1-7
vector 1-4

of dates 1-20

Index-15

Index

vectors
as arguments, limitations 1-21
computing dot products of 1-10
multiplying 1-9
multiplying matrices and 1-11

vega 2-40
vertcat 17-945
volatility

Black-Scholes implied 17-74
implied 2-40

volroc 17-949

W
wclose 17-951
week, day of 17-954
week, in a year 17-956
weekday 17-954

date of specific, in month 17-607
weeknum 17-956
weights2holdings 17-959
willad 17-960
Williams %R 14-6
willpctr

example 14-6
willpctr function 17-963
workday, date of future or past 17-287
working days between dates 17-966
wrkdydif 17-966

X
x2mdate 17-967
xirr 17-969

Y
year 17-972

fraction of between dates 17-975
number of days in 17-973
of date 17-972

yeardays 17-973
yearfrac 17-975
yield

curve 8-4 8-6
visualizing sensitivity of bond portfolio’s

price to nonparallel shifts in 8-12
visualizing sensitivity of bond portfolio’s

price to parallel shifts in 8-9
for Treasury bill, bond equivalent 17-62
functions for fixed-income securities 2-32
of discounted security 17-978
of security paying interest at

maturity 17-981
of Treasury bill 17-982

yield-to-maturity 2-22
yields

for fixed-income securities, pricing and
computing 2-21

ylddisc 17-978
yldmat 17-980
yldtbill 17-982

Z
zbtprice 17-983
zbtyield 17-990
zero curve 17-871 17-986 17-993

from coupon bond prices 17-983
from coupon bond yields 17-990
from discount curve 17-319
from forward curve 17-464
from par yield curve 17-728
to discount curve 17-997
to forward curve 17-1002
to par yield curve 17-1007

zero-coupon bond 17-321 17-986 17-993
zero2disc 17-997
zero2fwd 17-1002
zero2pyld 17-1007
Zoom tool 9-21

Index-16

	toc
	Getting Started
	Product Description
	Key Features

	Expected Users
	Using Matrix Functions for Finance
	Introduction
	Key Definitions
	Matrix. A rectangular array of numeric or algebraic quantities

	Referencing Matrix Elements
	Transposing Matrices

	Matrix Algebra Refresher
	Introduction
	Adding and Subtracting Matrices
	Multiplying Matrices
	Multiplying Vectors
	Computing Dot Products of Vectors
	Multiplying Vectors and Matrices
	Multiplying Two Matrices
	Multiplying a Matrix by a Scalar

	Dividing Matrices
	Solving Simultaneous Linear Equations
	Operating Element by Element

	Function Input and Output Arguments
	Input Arguments
	Matrix Input
	Matrices of String Input

	Output Arguments
	Interest Rate Arguments

	Performing Common Financial Tasks
	Introduction
	Handling and Converting Dates
	Date Formats
	Date Conversions
	Input Conversions
	Output Conversions

	Current Date and Time
	Determining Dates

	Formatting Currency
	Charting Financial Data
	Introduction
	High-Low-Close Chart Example
	Bollinger Chart Example

	Analyzing and Computing Cash Flows
	Introduction
	Interest Rates/Rates of Return
	Present or Future Values
	Depreciation
	Annuities

	Pricing and Computing Yields for Fixed-Income Securities
	Introduction
	Fixed-Income Terminology
	Framework
	Default Parameter Values
	Single Bond Example
	Bond Portfolio Example

	Coupon Date Calculations
	Yield Conventions
	Pricing Functions
	Yield Functions
	Fixed-Income Sensitivities
	Calculating Duration and Convexity for Bonds
	Calculating Key Rate Durations for Bonds

	Term Structure of Interest Rates
	Introduction
	Deriving an Implied Zero Curve

	Pricing and Analyzing Equity Derivatives
	Introduction
	Sensitivity Measures
	Delta
	Gamma
	Lambda
	Rho
	Theta
	Vega
	Implied Volatility

	Analysis Models
	Black-Scholes Model
	Binomial Model

	Portfolio Analysis
	Analyzing Portfolios
	Portfolio Optimization Functions
	Portfolio Construction Examples
	Introduction
	Efficient Frontier Example

	Portfolio Selection and Risk Aversion
	Introduction
	Optimal Risky Portfolio Example

	Constraint Specification
	Example
	Linear Constraint Equations
	Specifying Additional Constraints

	Active Returns and Tracking Error Efficient Frontier

	Portfolio Optimization Tools
	Portfolio Optimization Theory
	Portfolio Optimization Problems
	Portfolio Problem Specification
	Return Proxy
	Gross Portfolio Returns
	Net Portfolio Returns

	Risk Proxy
	Variance of Portfolio Returns

	Portfolio Set for Mean-Variance Portfolio Optimization
	Linear Inequality Constraints
	Linear Equality Constraints
	Bound Constraints
	Budget Constraints
	Group Constraints
	Group Ratio Constraints
	Average Turnover Constraints
	One-Way Turnover Constraints

	Default Portfolio Problem

	Portfolio Object
	Portfolio Object Properties and Methods
	Working with Portfolio Objects
	Setting and Getting Properties
	Displaying Portfolio Objects
	Saving and Loading Portfolio Objects
	Estimating Efficient Portfolios and Frontiers
	Arrays of Portfolio Objects
	Subclassing Portfolio Objects
	Conventions for Representation of Data

	Constructing the Portfolio Object
	Syntax
	Portfolio Problem Sufficiency
	Constructor Examples
	Using the Constructor for a Single Step Setup
	Using the Constructor with a Sequence of Steps
	Shortcuts for Property Names
	Direct Setting of Portfolio Object Properties

	Common Operations on the Portfolio Object
	Naming a Portfolio Object
	Setting Up the Number of Assets in the Asset Universe
	Setting Up a List of Asset Identifiers
	Setting Up Asset Lists Using the Constructor
	Setting Up Asset Lists Using the setAssetList Method

	Truncating and Padding Asset Lists
	Setting Up an Initial or Current Portfolio

	Working with Asset Returns and Moments of Asset Returns
	Assignment Using the Portfolio Constructor
	Assignment Using the setAssetMoments Method
	Scalar Expansion of Arguments
	Estimating Asset Moments from Asset Prices or Returns
	Estimating Asset Moments from Asset Returns or Prices with Missi
	Estimating Asset Moments from Financial Time Series Data
	Working with a Riskless Asset
	Working with Transaction Costs
	Setting Transaction Costs Using the Constructor
	Setting Transaction Costs Using setCosts Method
	Using the Constructor or Method to Set Bounds

	Working with Portfolio Constraints
	Setting Default Constraints for Portfolio Weights
	Setting Default Constraints Using Constructor
	Setting Default Constraints Using setDefaultConstraints Method

	Working with Bound Constraints
	Setting Bounds Using the Constructor
	Setting Bounds Using the setBounds Method
	Setting Bounds Using the Constructor or setBounds Method

	Working with Budget Constraints
	Setting Budget Constraints Using the Constructor
	Setting Budget Constraints Using setBudget Method

	Working with Group Constraints
	Setting Group Constraints Using the Constructor
	Setting Group Constraints Using setGroups and addGroups Methods

	Working with Group Ratio Constraints
	Setting Group Ratio Constraints Using the Constructor
	Setting Group Ratio Constraints Using the setGroupRatio and addG

	Working with Linear Equality Constraints
	Setting Linear Equality Constraints Using the Constructor
	Setting Linear Equality Constraints Using the setEquality and a

	Working with Linear Inequality Constraints
	Setting Linear Inequality Constraints Using the Constructor
	Setting Linear Inequality Constraints Using setInequality and ad

	Working with Average Turnover Constraints
	Setting Average Turnover Constraints Using the Constructor
	Setting Average Turnover Constraints Using setTurnover Method

	Working with One-Way Turnover Constraints
	Setting One-Way Turnover Constraints Using the Constructor
	Setting Turnover Constraints Using setOneWayTurnover Method

	Validating the Portfolio Problem
	Validating a Portfolio Set
	Validating Portfolios

	Estimate Efficient Portfolios
	Obtaining Portfolios Along the Entire Efficient Frontier
	Obtaining Endpoints of the Efficient Frontier
	Obtaining Efficient Portfolios for Target Returns
	Obtaining Efficient Portfolios for Target Risks
	Obtaining an Efficient Portfolio that Maximizes the Sharpe Ratio
	Choosing and Controlling the Solver

	Estimate Efficient Frontiers
	Obtaining Portfolio Risks and Returns
	Plotting the Efficient Frontier
	Plotting Existing Efficient Portfolios
	Plotting Existing Efficient Portfolio Risks and Returns

	Post-Processing
	Setting Up Tradable Portfolios
	Troubleshooting Portfolio Optimization Results
	Portfolio Object Destroyed When Modifying
	Optimization Fails with “Bad Pivot” Message
	Matrix Incompatibility and "Non-Conformable" Errors
	Missing Data Estimation Fails
	mv_optim_transform Errors
	Efficient Portfolios Do Not Make Sense

	Asset Allocation Example
	Defining the Portfolio Problem
	Simulating Asset Prices
	Setting Up the Portfolio Object
	Validating the Portfolio Problem
	Plotting the Efficient Frontier
	Evaluating Gross vs. Net Portfolio Returns
	Analyzing Descriptive Properties of the Portfolio Structures
	Obtaining a Portfolio at the Specified Return Level on the Effic
	Obtaining a Portfolio at the Specified Risk Levels on the Effici
	Displaying the Final Results

	Investment Performance Metrics
	Overview of Performance Metrics
	Performance Metrics Types
	Performance Metrics Example

	Using the Sharpe Ratio
	Introduction
	Sharpe Ratio Example

	Using the Information Ratio
	Introduction
	Information Ratio Example

	Tracking Error
	Introduction
	Tracking Error Example

	Risk-Adjusted Return
	Introduction
	Risk-Adjusted Return Example

	Sample and Expected Lower Partial Moments
	Introduction
	Sample Lower Partial Moments Example
	Expected Lower Partial Moments Example

	Maximum and Expected Maximum Drawdown
	Introduction
	Maximum Drawdown Example
	Expected Maximum Drawdown Example

	Credit Risk Analysis
	Credit Rating
	Introduction
	Example

	Estimation of Transition Probabilities
	Introduction
	Estimate Transition Probabilities
	Estimate Transition Probabilities for Different Rating Scales
	Estimate Point-in-Time and Through-the-Cycle Probabilities
	Estimate t-Year Default Probabilities
	Estimate Bootstrap Confidence Intervals
	Group Credit Ratings
	Work with Nonsquare Matrices
	Remove Outliers
	Estimate Probabilities for Different Segments
	Work with Large Datasets

	Forecast Corporate Default Rates
	Introduction
	Example

	Credit Quality Thresholds
	Introduction
	Compute Credit Quality Thresholds
	Visualize Credit Quality Thresholds

	Regression with Missing Data
	Multivariate Normal Regression
	Introduction
	Multivariate Normal Linear Regression
	Maximum Likelihood Estimation
	Special Case of a Multiple Linear Regression Model
	Least-Squares Regression
	Mean and Covariance Estimation
	Convergence
	Fisher Information
	Statistical Tests

	Maximum Likelihood Estimation with Missing Data
	Introduction
	ECM Algorithm
	Standard Errors
	Data Augmentation
	Multivariate Normal Regression Functions
	Multivariate Normal Regression Without Missing Data
	Multivariate Normal Regression With Missing Data
	Least-Squares Regression with Missing Data
	Multivariate Normal Parameter Estimation with Missing Data
	Support Functions

	Multivariate Normal Regression Types
	Regressions
	Multivariate Normal Regression
	Multivariate Normal Regression Without Missing Data
	Multivariate Normal Regression with Missing Data

	Least-Squares Regression
	Least-Squares Regression Without Missing Data
	Least-Squares Regression with Missing Data

	Covariance-Weighted Least Squares
	Covariance-Weighted Least Squares Without Missing Data
	Covariance-Weighted Least Squares with Missing Data

	Feasible Generalized Least Squares
	Feasible Generalized Least Squares Without Missing Data
	Feasible Generalized Least Squares with Missing Data

	Seemingly Unrelated Regression
	Seemingly Unrelated Regression Without Missing Data
	Seemingly Unrelated Regression with Missing Data

	Mean and Covariance Parameter Estimation
	Troubleshooting Multivariate Normal Regression
	Biased Estimates
	Requirements

	Slow Convergence
	Nonrandom Residuals
	Nonconvergence
	Example of Portfolios with Missing Data

	Valuation with Missing Data
	Introduction
	Capital Asset Pricing Model
	Estimation of the CAPM
	Estimation with Missing Data
	Estimation of Some Technology Stock Betas
	Grouped Estimation of Some Technology Stock Betas
	References

	Solving Sample Problems
	Introduction
	Common Problems in Finance
	Sensitivity of Bond Prices to Changes in Interest Rates
	Step 1. Define three bonds using values for the settlement date

	Constructing a Bond Portfolio to Hedge Against Duration and Conv
	Step 1. Define three bonds available for hedging the original p

	Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve
	Step 1. Specify values for the settlement date, maturity date,

	Sensitivity of Bond Prices to Nonparallel Shifts in the Yield Cu
	Step 1. Compute the key rate durations for both the bond and th

	Constructing Greek-Neutral Portfolios of European Stock Options
	Step 1. Create an input data matrix to summarize the relevant i

	Term Structure Analysis and Interest Rate Swap Pricing
	Step 1. Specify values for the settlement date, maturity dates,

	Producing Graphics with the Toolbox
	Introduction
	Plotting an Efficient Frontier
	Plotting Sensitivities of an Option
	Plotting Sensitivities of a Portfolio of Options

	Financial Time Series Analysis
	Analyzing Financial Time Series
	Creating Financial Time Series Objects
	Introduction
	Using the Constructor
	Single Matrix Input
	Separate Vector Input
	Data Name Input
	Frequency Indicator Input
	Description Field Input

	Transforming a Text File

	Visualizing Financial Time Series Objects
	Introduction
	Using chartfts
	Zoom Tool
	Combine Axes Tool
	Combining All Axes
	Combining Selected Axes
	Resetting Axes

	Using Financial Time Series
	Introduction
	Working with Financial Time Series Objects
	Introduction
	Financial Time Series Object Structure
	Data Extraction
	Object-to-Matrix Conversion
	Indexing a Financial Time Series Object
	Indexing with Date Strings
	Indexing with Date String Range
	Indexing with Integers
	Indexing When Time-of-Day Data Is Present

	Financial Time Series Operations
	Basic Arithmetic
	Operations with Objects and Matrices
	Arithmetic Operations with Differing Data Series Names
	Other Arithmetic Operations

	Data Transformation and Frequency Conversion

	Financial Time Series Example
	Overview
	Loading the Data
	Create Financial Time Series Objects
	Create Closing Prices Adjustment Series
	Adjust Closing Prices and Make Them Spot Prices
	Create Return Series
	Regress Return Series Against Metric Data
	Plot the Results
	Calculate the Dividend Rate

	Financial Time Series Tool (FTSTool)
	What Is the Financial Time Series Tool?
	Getting Started with FTSTool
	Loading Data with FTSTool
	Overview
	Obtaining External Data
	Obtaining External Data with Datafeed Toolbox Software
	Obtaining External Data with Database Toolbox Software

	Obtaining Internal Data
	Viewing the MATLAB Workspace

	Using FTSTool for Supported Tasks
	Creating a Financial Time Series Object
	Merging Financial Time Series Objects
	Converting a Financial Time Series Object to a MATLAB Double-Pre
	Plotting the Output in Several Formats
	Viewing Data for a Financial Time Series Object in the Data Tabl
	Overwriting Data in the Data Table Display

	Modifying Data for a Financial Time Series Object in the Data Ta
	Adding and Removing Rows
	Adding and Removing Columns

	Viewing and Modifying the Properties for a FINTS Object

	Using FTSTool with Other Time Series GUIs

	Financial Time Series Graphical User Interface
	Introduction
	Main Window
	File Menu
	Data Menu
	Analysis Menu
	Graphs Menu
	Window Menu
	Help Menu

	Using the Financial Time Series GUI
	Getting Started
	Data Menu
	Fill Missing Data
	Frequency Conversion

	Analysis Menu
	Graphs Menu
	Candle Plot
	Interactive Chart

	Saving Time Series Data
	Saving into the Original File (Save)
	Saving into a New File (Save As)

	Trading Date Utilities
	Trading Calendars Graphical User Interface
	UICalendar Graphical User Interface
	Using UICalendar in Standalone Mode
	Using UICalendar with an Application
	Example of Using UICalendar with an Application

	Technical Analysis
	Technical Indicators
	Examples
	Overview
	Moving Average Convergence/Divergence (MACD)
	Williams %R
	Relative Strength Index (RSI)
	Relative Strength Index (RSI))

	Function Reference
	Dates
	Current Time and Date
	Date and Time Components
	Date Conversion
	Financial Dates
	Coupon Bond Dates

	Currency and Price
	Financial Data Charts
	Cash Flows
	Annuities
	Amortization and Depreciation
	Present Value
	Future Value
	Payment Calculations
	Rates of Return
	Cash Flow Sensitivities

	Fixed-Income Securities
	Accrued Interest
	Prices
	Term Structure of Interest Rates
	Yields
	Spreads
	Interest Rate Sensitivities

	Portfolio Optimization Objects
	Portfolio Objects
	Get Methods
	Set Methods
	Add Methods
	Preprocessing Methods
	Efficient Portfolio Estimation Methods
	Efficient Frontier Methods
	Utility Methods

	Portfolio Analysis
	Basic Portfolio Optimization
	Performance Metrics
	Portfolio Utilities

	Financial Statistics
	Expectation Conditional Maximization
	Multivariate Normal Regression
	Expectation Conditional Maximization – Multivariate Normal Regre
	Expectation Conditional Maximization – Least-Squares Regression
	Seemingly Unrelated Regression

	Derivatives
	Option Valuation and Sensitivity

	Credit Risk Utilities
	Estimation of Transition Probabilities

	GARCH Processes
	Univariate GARCH Processes

	Financial Time Series Object and File Construction
	Financial Time Series Arithmetic
	Financial Time Series Math
	Financial Time Series Descriptive Statistics
	Financial Time Series Utility
	Financial Time Series Data Transformation
	Financial Time Series Indicator
	Financial Time Series GUI
	Financial Time Series Tool

	Class Reference
	Functions — Alphabetical List
	Bibliography
	Bond Pricing and Yields
	Term Structure of Interest Rates
	Derivatives Pricing and Yields
	Portfolio Analysis
	Investment Performance Metrics
	Financial Statistics
	Standard References
	Credit Risk Analysis
	Portfolio Optimization

	Examples
	Bond Examples
	Portfolio Examples
	Portfolio Object Examples
	Estimation of Transition Probabilities
	Estimating Transition Probabilities for Different Rating Scales
	Financial Statistics
	Sample Programs
	Graphics Programs
	Charting Financial Time Series
	Indexing Financial Time Series
	Financial Time Series Demonstration Program
	Financial Time Series Graphical User Interface Examples
	Technical Analysis

	Glossary
	Index

	tables
	Period of a Bond
	Basis of a Bond
	End-of-Month Rule
	Common Input Arguments
	Maximum and Minimum Group Exposure
	Group Membership
	Portfolio Object Properties
	Portfolio Object Methods
	Data Transformation Functions
	Frequency Conversion Functions
	Technical Analysis: Oscillators
	Technical Analysis: Stochastics
	Technical Analysis: Indexes
	Technical Analysis: Indicators
	Standard MATLAB Date Format Definitions
	Free-Form Date Format Specifiers

